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ABSTRACT7
8

The paper concerns the nanopowder high-speed, 104 – 109 s–1, compaction processes modeling by a
two-dimensional granular dynamics method. Nanoparticles interaction, in addition to known contact
laws, included dispersive attraction, formation of a strong interparticle bonding (powder
agglomeration) as well as the forces caused by viscous stresses in the contact region. For different
densification rates, the “pressure vs. density” curves (densification curves) were calculated.
Relaxation of the stresses after the compression stage was analyzed as well. The densification curves
analysis allowed us to suggest the dependence of compaction pressure as a function of strain rate. It
was found that in contrast to the plastic flow of metals, where the yield strength is proportional to the
logarithm of the strain rate, the power-law dependence of applied pressure on the strain rate as

1/4p v was established for the modeled nanosized powders.
9
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1. INTRODUCTION14
15

The nanopowder cold compaction is a very important stage of novel nanostructured materials16
production by the powder metallurgy [1, 2]. As known, nanopowders in contrast to coarse-grained17
materials are very hard to densify due to the strong interparticle “friction”, which is caused by the18
intense dispersion attraction, and agglomeration of particles [2, 3]. To achieve a proper compact19
density for sintering the high quality, defect-free ceramic article, applying the high pressure of about20
several gigapascals is required. Such high pressures can even exceed the durability of pressing tools21
[2 – 4]. Thus, the theoretical description of powder body and reliable forecasting the compaction22
processes take on high topicality.23

24
The present paper is devoted to development of theoretical description of oxide nanosized powders25
cold compaction processes in the frameworks of the granular dynamics method [5, 6]. This method is26
of interest due to the oxide nanoparticles, for example, produced by the method of wires electric27
explosion [7] or target laser evaporation [8], usually have high strength properties and a spherical28
form. Therefore, such powders are the most convenient object for simulations. Nowadays the granular29
dynamics method is extensively used for description of compaction processes of different micro- and30
nanopowders [5, 6, 9, 10]. However at that quasistatic compaction processes are investigated. After31
every step of model cell deformation the new equilibrium locations of particles are determined during32
a large number of equilibration steps [5, 6].33

34
In view of necessity to achieve extremely large compaction pressures the magnetic pulsed methods35
[2, 4] attract a great attention at present time. These methods allow increasing the pressure into36
compacts owing to the inertial effects. The relative rate of compact densification is of 104 – 105 s–1. It37
is known that dynamical yield strength is not equal to static one, as a rule. For example, the yield38
strength of metal at high-speed loading can exceed the static limit by several times [11 – 13].39
Corresponding studies for nanopowders have not been conducted yet.40

41

UNDER PEER REVIEW



2. NUMERICAL EXPERIMENT DETAILS42
43

We simulate the dynamical processes of uniform pressing, which are characterized with the relative44
densification rate (1 / )( / )v d dt   , where  is density and t is time, from value 6.8×108 s–1 up to45
6.8×104 s–1. To perform the qualitative analysis we restrict to 2D geometry. The model cell has a form46
of square cell cellL L . The density is implied as a relative area of the model cell occupied by the47
particles, i.e. 2 2

cell( / 4) /p gN d L  , where 1000pN  is the number of particles in the cell, gd is the48
particle diameter. Periodic boundary conditions are used on all the sides of the cell. For initial packing49
generation, the algorithm defined in [5] is used, which allows us to create isotropic and uniform50
structures in a form of the connected 2D-periodic cluster. The initial density 0 is 0.5. The system51
deformation is performed by simultaneous changes of cell sizes and proportional rescaling of particles52
coordinates. This procedure corresponds to the instantaneous propagation of elastic perturbation53
along the model cell. The relative displacements and rotations of particles are determined by the54
usual equations55

56
2 2

2 2, ,d r dm f J M
dt dt
 


(1)57

58
where 3( / 6) m gm d   is the particle mass, m is the density of the particle material, f and M are59

the total force and torque caused by other particles, 2 /10gJ md is inertia moment,  is the rotation60
angle. The Verlet algorithm [14] is applied for the numerical solve of the equation (1).61

62
The stress tensor ij averaged over the model cell is calculated by the known expression [5, 9, 10]63
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66
where the summation is performed over all pairs of interacting particles (k,l); ( , )k lf is the total force67
affecting the particle k from the particle l; ( , )k lr is the vector connecting the centers of the particles. The68
particle interactions described in detail elsewhere [5, 6] include the elastic repulsion (modified Hertz69
law), the “friction” forces (Cattaneo – Mindlin law), the dispersive attraction force (Hamaker’s formula),70
and the contact elasticity of flexure because of strong interparticle bonding. Alumina is implied as the71
particle material for which, in particular, the Young modulus E is 382 GPa and the Poisson ratio  is72
0.25. Other parameters of interaction laws correspond to the system of II type in [5, 6], which imitates73
strongly agglomerating nanopowders [15] with particle diameter 10gd  nm. The exception as74
compared to the 3D simulations is only the larger value of friction coefficient 0.5 used in the75
present study.76

77
The high value of speed of modeled processes requires taking into account the viscous stresses in the78
vicinity of the contact area of particles. Using the similarity of Hooke’s elastic law and the Navier –79
Stokes equations the authors of [16] obtained the rigorous solution of the problem on contact80

interaction of viscoelastic spheres. In general case the influence of the viscous stresses has a form81
[16, 17]82

83

visc
edf df A
d dt





, (3)84

85
where viscf is the total force of the viscous stresses, ef is the elastic force,  is the variable, which86
describes the body deformation, and the coefficient A neglecting the bulk viscosity is described as:87

88
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The shear viscosity coefficient  is estimated by the known data on ultrasound damping into alumina91
[18]. The coefficient of damping into the isotropic medium 2 3/ (2 )t m tc   [19], where  and tc are92
the frequency and speed of sound. Using the value 230t  dB/m at the frequency of / 2 1.0  GHz93
[20] the shear viscosity coefficient  for alumina of 0.001 Pa·s was obtained.94

95
Starting from the equation (3) it is not difficult to write all expressions which describe the interactions of96
viscoelastic spherical particles. For example, for linearized tangential force of “friction” we have97

98
4, ,

(2 )(1 )
t

m m m
f dc a Ac a c
E dt
  

 


 
99

100
where  is the relative tangential displacement of contacting particles, / 2ga hd is the contact spot101

radius, gh d r  is the depth of particle overlapping.102
103

The characteristic time 2 1/2(( ) / (6 ))m gT d E  , which transforms the equations (1) to dimensionless104
form, is equal to 0.74 ps for our systems. The reduced time step of the numerical solving the equations105
(1) is , / 0.04t t dh h T  . The relative decreases of model cell sizes cell cell/L L corresponding to the time106
step are equal to values 10–5, 10–6, 10–7, 10–8, or 10–9. These values result in strain rates (in s–1):107

8
1 6.8 10v   , 7

2 6.8 10v   , 6
3 6.8 10v   , 5

4 6.8 10v   , and 4
5 6.8 10v   .108

109
110

3. RESULTS AND DISCUSSION111
112

Figure 1 presents the time-dependent hydrostatic pressure Sp( ) / 2ijp   averaged over 80 calculations113
and typical calculation curves for the compression rate v3. Averaging the other rates has been114
performed over 100 ( 1v , 2v ) and 10 ( 4v ) independent calculations. For the rate 5v the only one115
calculation has been carried out.116

117
118

119
120

Fig. 1. The time dependence of pressure for the densification rate 6
3 6.8 10v   s–1. Dashed121

lines are examples of calculation curves, solid line is the average over 80 independent122
calculations. Insert shows the period of the preliminary relaxation (10 ns) and the beginning of123
the compression.124
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125
126

It is helpful to note that the initial structures are being generated by the algorithm [5], which places the127
neighboring particles at equilibrium distances when attraction compensates repulsion, requires however128
a preliminary relaxation step. It is needed since the dispersion forces between further particles are not129
taken into account in the algorithm that results in slight fluctuations of particles in the initial structure. In130
order to extinguish the fluctuations, initially generated structure relaxes for 10 ns (see the inset in Fig. 1).131

132
Compression of the model cell was performed up to the density 0.95 where the pressure arrives at133
about 3 GPa. After that the system was relaxed during 30 ns. A considerable reduction of stresses is134
observed at this relaxation stage. This reduction for the hydrostatic pressure is well approximated by an135
expression136

137
0 1 1 2 2( ) exp( / ) exp( / )p t p p t p t      , (4)138

139
Coefficients of the approximation (4) for the simulated strain rates are presented in Table 1. Post-140
compression relaxation proceeds in two stages: “rapid” with a characteristic time of about tenths of141
nanoseconds, and “slow”, which lasts from several up to tens of nanoseconds. Change of hydrostatic142
pressure during relaxation decreases from 441 MPa (it is about 17% of the compaction pressure) at the143
densification rate v1 almost to zero at the rate v5. So, the compaction of the model system at the144
densification rate of the order of 104 s–1 can be considered as a nearly quasistatic process.145

146
Table 1. The coefficients of approximations (4)147

148

0p , MPa 1p , MPa 1 , ns 2p , MPa 2 , ns

1v 2603.9 441.1 0.0719 35.3 4.9304

2v 2810.3 109.7 0.1977 72.0 4.3350

3v 2803.2 13.3 0.4486 84.1 9.2157

4v 2835.1 49.8 0.1515 29.0 10.0

5v 2868.6 0.0 — 1.31 30.0
149
150

Fig. 2 presents the compaction curves corresponding to the different densification rates. It is interesting151
that the ( )p  curve for 1v rate has a local maximum at the beginning, which is very similar to the yield152
drop at stress-strain curves of metals [21]. This maximum has a dynamical nature and is caused by the153
retardation of relaxation processes from the powder compression. According to the simulation results,154
an increase in pressure up to the local maximum takes about 0.02 ns. This time is significantly less than155
the time of the “rapid” relaxation, which is about 0.07 ns (see Table 1) at the rate 1v . At slower156
densification rates this maximum disappears.157

158
159

UNDER PEER REVIEW



160
161

Fig. 2. Densification curves in “density – pressure” coordinates for strain rates 1v (left solid162
line), 2v (left dotted line), 3v (dashed line), 4v (right solid line), and 5v (right dotted line). Line 1163
is the asymptotic curve according to the eqs. (5) – (8). Insert shows the low pressure region in164
the expanded scale.165

166
167

As one can see on the Fig. 2, all the densification curves can be adequately approximated in the limit of168
large densities and pressures. To obtain the asymptote we use the interrelation of regular packing169
density of the disks on the plane with mean coordination number avk (the number of particle contacts) in170
the form171

172
av

reg
av

/
tan( / )

k
k





. (5)173

174
At high pressures we can expect strong friction forces between particles. It should result to that the175
uniform compression of the system proceeds without relative displacement of particles. In such a case176
the density increases in 2D geometry as177

178

 
reg

2( )
1 / g

h
h d





 . (6)179

180
For the hydrostatic pressure from Eq. (2) we have [9, 10]181

182
av
3 ( )( ) ,n g
g

kp f h d h
d

   



(7)183

184
where nf is the normal part of the contact force without taking into account the viscous stresses, and185
angle brackets mean the average over the all pairs of interacting particles. Replacing <…> in Eq. (7)186
with the corresponding interaction laws we get the dependence of ( )p  , which is implicitly determined187
by the equations (5) – (7) where the mean coordination number avk is a parameter. According to the188
analysis of simulation results, the interrelation of coordination number avk with density for all the strain189
rates is well described by the expression190

191
2

av 2.3 3.0k    . (8)192
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193
The asymptote relationship ( )p  determined by the equations (5) – (8) is shown in Fig. 2 (curve 1). It194
can be seen that the densification curves ( )p  reach the asymptote in the high pressure limit. At the195
pressure of 3 GPa the error in the density according to the asymptote is less than 3%.196

197
198

199
200

Fig. 3. The differences of compaction pressures from the pressure corresponding to the rate201
3v as a function of density. Symbols are the simulation results for rates 1v , 2v , 4v , and 5v (from202

the top); smooth lines are the dependences of Eq. (9) for the densification rates 1v – 5v and for203
the quasistatic conditions (the line 6).204

205
206

To analyze the dependencies in Fig. 2, the densification curve ( )p  corresponding to the rate 3v has207
been used as a reference one. Fig. 3 shows the differences between the other densification curves and208
the reference one. These differences are well approximated by the expression:209

210
 3 0( , ) ( ) ( )vp v p p v       .211

212
The analysis performed reveals that the index 3 , and the strain-rate-dependent coefficient vp is well213
described by the expression 1/4

0v v vp p k v  . As a result, taking the quasistatic conditions ( 0v , the214
line 6 in Fig. 3) as a reference line we have obtained215

216
 31/4

stat 0( , ) ( ) vp v p k v      . (9)217
218

where 21.5vk  MPa s1/4. Fig. 4 demonstrates the influence of compression rate on the acting pressure,219
which is determined by the equation (9).220

221
222

UNDER PEER REVIEW



223
224

Fig. 4. Difference between dynamical and static compaction pressure at preset values of225
compact density as a function of strain rate.226

227
228

For example, it can be seen from Fig. 4 that achievement of the density 0.95 with the strain rate229
810v  s–1 requires the pressure, which is larger than that at quasistatic process by 200 MPa.230

231
232

4. CONCLUSION233
234

For the first time, the influence of the compression rate on the compactibility of oxide nanopowders has235
been studied by a two-dimentional granular dynamics method. Processes of stress relaxation after the236
stage of high-speed compression with the strain rates of 104 – 109 s–1 up to the relative density 0.95237
have been analyzed. In particular, it has been found that the time of the stress relaxation is about 10 ns238
when the strain rate decreases down to 106 s–1. At this case the decrease of the mean pressure at the239
relaxation stage does not exceed 100 MPa which is significantly smaller than the compaction pressure240
(about 3 GPa). The explicit dependence of the compaction pressure, which is connected with the yield241
strength within phenomenology of powder body [1], on the strain rate has been established. It has been242
found that in 2D geometry, nanosized powders demonstrate the power-law dependence of pressure on243
strain rate as 1/4p v , in contrast to plastic flow of metals, where the yield strength is proportional to the244
logarithm of the strain rate [12].245
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