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ABSTRACT

We have proposed a novel potential called Hulthen plus Inversely Quadratic Exponential Mie-Type potential
(HIQEMP). The parametric Nikiforov-Uvarov method has been employed to study approximate solutions of
Schrédinger and Klein-Gordon equations with our novel potential. We obtain bound state energies and the
normalized wave function expressed in terms of Jacobi polynomial. The proposed potential is applicable in
the field of vibrational and rotational spectroscopy. To ascertain the accuracy of our results, we apply the
nonrelativistic limit to the Klein-Gordon equation to obtain the energy equation which is exactly the same to
that obtain in Schrodinger equation. This is a proof that relativistic equation can be converted to
nonrelativistic equation using a nonrelativistic limit with Greene-Aldrich approximation to the centrifugal
term. The wave functions were normalized analytically using two infinite series of confluent hypergeometric
functions. We implement MATLAB algorithm to obtain the numerical bound state energy eigenvalues for
both Schrédinger and Klein-Gordon equations. Our potential reduces to many existing potentials and the
result is in agreement with existing literature. The energy spectral diagrams were plotted using origin
software. The energy from Schrodinger equation decreases with increase in quantum state while that of
Klein-Gordon equation increases with increase in quantum state.

Keywords: Schrodinger equation, Klein-Gordon equation, Nikiforov-Uvarov method, novel potential
(HIQEMP).

PACS Nos.: 03.65.Ge; 03.65.-w; 03.65.Ca

1. INTRODUCTION

The molecular, vibrational and rotational spectroscopy is one of the most recent research field
that has practical applications in physical sciences especially in studying diatomic molecular
interactions [1-7]. Bound state solutions of relativistic and non-relativistic wave equation arouse a



lot of interest for decades. Schrodinger wave equations constitute non-relativistic wave equation
while Klein-Gordon and Dirac equations constitute the relativistic wave equations. [8-12] Hulthen
potential is one of the significant exponential potentials which behave like Coulomb potential [13].
This potential has a lot of applications in many branches of Physics specifically in atomic, solid
state, chemical and Nuclear Physics. [14-17]. Mie-Type potential which belongs to a class of multi
—parameter exponential potential has application in vibrational and rotational spectroscopy in
physical sciences because its interaction model comprises of both repulsive and attractive terms
for short and large intermolecular distances respectively for some diatomic molecules. [18]. The
Klein-Gordon equation is the relativistic version of Schrodinger equation which describes spinless
particles. This equation has attracted much attention in investigating the interaction of solitons in a
collisionless plasma. [19-20]. The proposed novel potential is used in studying bound state
energies of both Schrodinger and Klein-Gordon equations. Other potentials have been used to
obtain bound state solutions suchs as Multi-parameter exponential type potential , Quantum
interaction potential, Hulthen, Poschl-Teller, Eckart, Coulomb, Hyllearraas, Pseudoharmonic,
Scarf Il potentials and many others [21-28]. These potentials have been studied and investigated
with some specific methods and techniques such as: Asymptotic iteration method, Nikiforov-
Uvarov method, Supersymmetric quantum mechanics approach, formular method, exact
quantisation and many more [29-40]. This article is divided into six sections. Section 1 is the
introduction, section 2 is the brief introduction of parametric | Nikiforov-Uvarov method. In section
3, we present the radial solution to Schrodinger wave equation using the proposed potential and
obtained both the energy eigenvalue and their corresponding normalized wave function. In section
4, we present the solution to one dimensional Klein-Gordon equation using the proposed potential
and also present some deductions from the proposed potential and compare the result to that of
existing literature. In section 5, we present analytical solution on normalizing the wave function
using confluent hypergeometric function. Results and discussion of this work are presented in
section 6. Section 7 gives the general conclusions to the article.

The proposed potential is given as
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Equation (1) for the sake of clarity can be expressed as
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where V, is the potential depth, « is the adjustable parameter known as the screening parameter

which is measured in electron volt (eV). ¥V, x,,x, A, B C and nare all real constants. The

variations of the HIQEMP with small and large values of alpha « (screening parameter) are
presented in Figure 1 and Figure 2, respectively.
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Figure 1: HIQEMP versus small values of & (screening parameter)
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Figure 2: HIQEMP versus large values « (screening parameter).

2. NIKIFOROV-UVAROV METHOD: PARAMETRIC FORMULATION

The NU method is based on reducing second order linear differential equation to a generalized equation of
hyper-geometric type [31-32] .This method provides exact solutions in terms of special orthogonal functions
as well as corresponding energy eigen values. The NU method is applicable to both relativistic and non-

relativistic equations. With appropriate coordinate transformation S = S(x) the equation can be written as
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where 7(s)is a polynomial of degree one while o (s) and & () are polynomials of at most degree two.

The parametric formalization of NU is applicable and valid for both central and noncentral potential. Here
the hypergeometric differential equation is given by
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Comparing equation (4) to (3) the following parametric polynomials can be obtain
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Equation of the function 7z(s) is given as
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From the condition that the function under the square root should be the square of polynomial, that is the discriminant

(b* —4ac) = o then the parametric becomes
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where
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The negative value of the parametric is obtained as
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Then, the polynomial becomes
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For bound state condition to be satisfied, then the derivative of equation (13) will be negative. That is
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The energy equation is given by

(14)
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The weight function is obtained as
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with Rodrigue relation in equation, one part of the wave function can be obtain as
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And Pn(c“”c“) is the Jacobi polynomial which in most cases reduces to Lagguerre polynomial forc; =0.



The other part of the wave function is given as
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where
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The total wave function is the given by
P (5) = 4(5)7,(5) = N5 (1= €)™ B (1= 2¢,9) 21)
3. RADIAL SOLUTIONS OF SCHRODINGER EQUATION
One dimensional radial Schrodinger wave equation is given as
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Substituting equation (2) into (22) gives
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Equation (23) can only be solved analytically to obtain exact solution if the angular orbital momentum
number [/ =0. However, for /> (0equation (23) can only be solve by using some approximations to the

centrifugal term. Greene Aldrich approximation is best suitable for equation (23). Let’'s define Greene

Aldrich approximation as in reference [39]
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Substituting equation (24) into equation (23) with the transformation s = ¢ >*" gives
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Equation (25) can further be reduced to
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Comparing equation (27) to the parametric NU equation (4) then gives
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The parametric coefficient can be obtain as follows
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Using equation (15), the energy eigenvalue equation can be calculated analytically with simple

mathematical algebraic simplification as
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Substituting parameters of equation (27) into (30) gives the energy eigenvalue equation as
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The wave function expressed in terms of Jacobi polynomial is calculated using equation (21). Hence
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4. RADIAL SOLUTIONS OF KLEIN-GORDON EQUATIONS

One dimensional Klein-Gordon equation for equal scalar and vector potential is given as
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Substituting equation (2) into (33) gives
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Substituting the approximation to the centrifugal term of equation (24) into (34) gives
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However, from the transformation s = ¢ %" then
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Substituting equation (36) into (35) then gives
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Assuming that Ef; —m’(r) :Enl then with simple mathematical algebraic simplification, equation

(37) can be written as
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Comparing equation (38) to parametric NU equation (4) then the following parametric constants
are obtained.
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Energy eigen equation of Klein-Gordon equation can be calculated using equation (15) bearing
mind that for equal scalar and vector potential, ¥, =2V which then transform 2(E, +m)— 2?1_/; :
Substituting the parametric constants to equation (15) gives
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Equation (50) can be reduced to
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Recallthat £, =E;-m"=(E,—m)(E,+m) equation (52) finally reduces to
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Equation (53) is the energy eigen equation for Klein-Gordon equation.

The nonrelativistic limit usually abbreviated as NR limit, convert relativistic equation to
nonrelativistic equation.

2
Here m+ E, :h—él and m—-E,=-E, = FE,-m=FE ,, Hence
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Substituting equation (54) into (53) gives
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Equation (55) finally reduces to
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It can be observe that equation with high level of analytical mathematical accuracy, equation (56)
is exactly the same as equation (31). This affirms the fact that the relativistic equation (Klein-
Gordon) can be converted to nonrelativistic equation (Schrodinger) with application of
nonrelativistic limit.

5. NORMALISING THE WAVE FUNCTION OF THE POTENTIAL USING CONFLUENT
HYPERGEOMETRIC FUNCTION

The wave function for this system is given in equation (32). Basically to normalize a wave function we get

the integral of wave function and its complex conjugate to be equal to one. That is
j: W)Y (r)dr =1 (57)

In a situation where W (r) and its complex conjugate are real function, then equation (57) can be

expressed as
J-OOO|\P(I")|2 dr =1 (58)
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Considering the fact that s = e then when » =0,s =1 and when r =0,5 =0,
Hence the wave function will be physically valid for s [0,1] and r € (0,)

However from equation (32) let

K, =+J&" + 7, andk, = |1 +4y, +4l(I +1) (59)

Equation (32) can then be expressed as
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Substituting equation (60) into equation (58) gives
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Jacobi polynomial Pn(p’v)(ul) can be expressed in two different hypergeometric functions by
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Equations (62) and (63) are used simultaneously in evaluating the Jacobi polynomial.

Considering the Jacobi polynomial of equation (61)
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Using equation (62) then the Jacobi polynomial become
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The summation sign in equation (65) can be evaluated simultaneously for p=0 and p=0, n as a partial sum.
Evaluating it for p=0
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For p=0, n
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Substituting (66) and (67) into (65) gives
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Then the square of the Jacobi polynomial in equation (61) then become
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Equation (70) can be further simplified to
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Substituting equation (71) into (61) gives
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Confluent hypergeometric function can be define as follows:
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Substituting equation (77) into (72) gives
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(n+2+21)0(n+3+x,+2x )T (n+4+4K,+1,) T (25, +1) (—x,)

1
%,Z(;p (n=p)ri(n—r)(r+1+2K )T (P+3+x,+2K,) o, (2K, —k,-1) 78)
Let
(=) (n4 34k, + 20T (n 4 26+ 2)
Y 2al(n+ )T (n+3+ k&, +2, )T (4K, +x, +3)
1 T (n+2+2K)T(n+3+ kK, + 25T (n+4+4K, +x,) T (25, +1)T (—k,)
=2 pln—p)r(n—r)(r+1+2x)C(P+3+k, +2i) a0 (2x —x, 1) 79)
However,
NM, =1= N,(s) = 1 (80)
A

Hence, the normalized wave function then become

1 Sm (l_s)_%_% [vay, +410+1) P[(HZ &+ ),(2+2 14y, +41(I+1)+2) e +75 ﬂ (1_2S)

M, ”

Equation (81) is the normalized wave function for the proposed potential.

6. RESULTS AND DISCUSSION

In this section the numerical computation of energy eigenvalues of Schrodinger and Klein-Gordon equations
are presented. Using equation (31) we implemented MATLAB algorithm to calculate the numerical bound
state energies of Schrodinger equation with the proposed potential using the following real constants. In
tables 1, 2, 3, 4 and 5, the numerical values for the energy particles in Schrodinger equations for

satisfies bound state condition. However, the numerical bound state energies decreases with an increase

in quantum state.

The energy eigenvalues for the Klein-Gordon particles for o =0.1,0.2,0.3,0.4 and 0.5 are discussed and

presented in tables 6, 7, 8, 9 and 10 respectively. The bound state energies in this case increases with an

increase in quantum state with respect to orbital angular quantum number.



2 =0.1,
n =0.03,

2, =02,
B=2.0,

Table 1 Numerical bound state energy for Schrodinger Equation for o = 0.1

v, =0.01,
0.1<a<0.5

v, =0.02,

A=h=pu=10

E (eV) nl|E((eV) "IE (eV) E (eV)

-1.64465136 0 |1 |-1.46103113 0 | 2| -1.31165417 -1.22436776
-1.43664026 1 |1 ] -1.37624632 1|2 -1.31051024 -1.26269160
-1.38809186 2 | 1] -1.36818112 2 | 2| -1.33954161 -1.31527438
-1.39422175 3 | 1] -1.39398112 3 | 2] -1.38722481 -1.37995459
-1.42825952 4 |1 | -1.44039760 4 | 2| -1.44922720 -1.45578639
-1.48085112 5 | 1] -1.50224603 5 | 2| -1.52362416 -1.54230271
-1.54803903 6 |1 | -1.57715975 6 | 2| -1.60945488 -1.63925131
-1.62791544 7 |1 -1.66393353 7 | 2] -1.70619621 -1.74648628
-1.71946872 8 |1 -1.76190112 8 | 2| -1.81354355 -1.86391847

Table 2 Numerical bound state energy for Schrodinger Equation for ¢ = 0.2

E,(eV) [T E eb) T E(er) E,(eV)

-1.88975995 0 |1 |-1.69219460 0 | 2| -1.50811426 -1.39348029
-1.76400003 1 |1 ] -1.71576175 1| 2| -1.64352235 -1.58568452
-1.82462372 2 | 1| -1.83758627 2 | 2| -1.82954958 -1.81793731
-1.96900525 3 | 1] -2.02024911 3 | 2| -2.06013064 -2.09021402
-2.17092576 4 |1 | -2.25218191 4 | 2| -2.33298508 -2.40250386
-2.42122386 5 |1 | -2.52885771 5|2 -2.64709988 -2.75480151
-2.71602359 6 |1 | -2.84821002 6 | 2| -3.00196934 -3.14710408
-3.05345644 7 | 1| -3.20918647 7 | 2] -3.39731808 -3.57940992
-3.43253160 8 | 1| -3.61120532 8 | 2| -3.83298579 -4.05171801

Table 3 ~ Numerical bound state energy for Schrodinger Equation for o = 0.3




E,(eV) n [ 1] E,(er) "] B, (er) E,(eV)

-2.16930505 0 |1 |-1.96658237 0 | 2| -1.74992797 -1.60805107
-2.17896947 1 |1 ]| -2.16067328 1| 2] -2.09428411 -2.03462651
-2.42094736 2 |1 | -2.49470577 2 | 2| -2.53266378 -2.55388015
-2.79546643 3 |1 | -2.93660208 3 | 2| -3.06276886 -3.16445273
-3.27703681 4 |1 | -3.47644512 4 | 2| -3.68373531 -3.86574948
-3.85675185 5 | 1| -4.11035415 5 | 2| -4.39517931 -4.65747668
-4.53084335 6 |1 | -4.83655763 6 | 2| -5.19690924 -5.63947571
-5.29749476 7 | 1| -5.65415342 7 | 2| -6.08882077 -6.51165483
-6.15574282 8 |1 | -6.56264281 8 | 2| -7.07085315 -7.57395797

Table 4  Numerical bound state energy for Schrodinger Equation for o = 0.4

E,(eV) n 1] E,(er) " 1] B, (er) E,(eV)

-2.48761162 0 |1 |-2.28714049 0 | 2| -2.03898155 -1.86936584
-2.68405529 1 |1 ] -2.71299165 1|2 -2.66431826 -2.61069940
-3.17891352 2 | 1| -3.34115303 2 | 2| -3.45022542 -3.52422616
-3.87514745 3 | 1| -4.14444851 3 | 2] 439637721 -4.60375779
-4.74796553 4 |1 | -5.11447643 4 | 2| -550265113 -5.84658638
-5.78870515 5 | 1| -6.24794902 5 |2 -6.76899275 -7.25137470
-6.99370132 6 |1 | -7.54336546 6 | 2| -8.19537492 -8.81740064
-8.36118727 7 |1 | -8.99996145 7 | 2] -9.78178283 -10.5442465
-9.89022613 8 | 1| -10.6173145 8 | 2| -11.5282079 -12.4316569

Table 5 Numerical bound state energy for Schrodinger Equation for ¢ = 0.5
E (eV) n 1| E((eV) "IIE (eV) E (eV)
-2.84442445 0 |1 |-2.65370233 0 | 2| -2.37517286 -217735777




-3.27912704 1 |1 | -3.37261728 1| 2| -3.35355331 -3.31385034
-4.09843675 2 | 1| -4.37685692 2 | 2| 458217834 -4.72893041
-5.20798403 3 | 1| -5.64373199 3 | 2| -6.06090826 -6.40808912
-6.58365927 4 |1 | -7.16622796 4 | 2| -7.78969054 -8.34497772
-8.21703815 5 | 1| -8.94159987 5 | 2| -9.76850184 -10.5364610
-10.1045565 6 | 1| -10.9685947 6 | 2| -11.9973305 -12.9808459
-12.2444961 7 | 1| -13.2465743 7 | 2| -14.4761703 -15.6771531
-14.6359459 8 |1 | -15.7751860 8 | 2| -17.2050173 -18.6247840
Table 6 Numerical bound state energy for Klein-Gordon Equation for ¢ =0.1
E,(eV) n [ TTEer) " E,(er) E,(eV)
1.56078821 0 | 1| 1.44326494 0 | 2| 1.33976433 1.27530075
1.42800751 1 |1 | 1.38689113 1| 2| 1.34046127 1.30557436
1.39607455 2 | 1| 1.38260427 2 | 2] 1.36270848 1.34555806
1.40161936 3 | 1] 1.40192383 3 | 2] 1.39768515 1.39298392
1.42632300 4 |1 | 1.43509648 4 | 2| 1.44161928 1.44651644
1.46310089 5 | 1| 1.47783895 5 |2 1.49249815 1.50521768
1.50855790 6 |1 | 1.52786770 6 | 2| 1.54904970 1.56835886
1.56076465 7 | 1| 1.58376477 7 | 2] 1.61036844 1.63534336
1.61846900 8 |1 | 1.64454446 8 | 2| 1.67575880 1.70567016
Table 7 Numerical bound state energy for Klein-Gordon Equation for ¢ =0.2

E (eV) n 1| E((eV) "IIE (eV) E (eV)
1.71580710 0 | 1| 1.59890838 0 | 2| 1.48137321 1.40312221
1.64377856 1 |1 | 1.61503846 1| 2| 157060386 1.53402539
1.68127778 2 | 1| 168937796 2 | 2] 1.68511330 1.67862470
1.76552428 3 | 1| 1.79453470 3 |2 1.81692043 1.83367388




0 1.87664722 4 |1 | 1.91958870 4 | 2| 1.96142228 1.99673647
0 2.00572680 5 | 1| 2.05877449 5 | 2| 2.11555801 2.16600175
0 2.14776420 6 |1 | 2.20850914 6 | 2| 2.27715820 2.34012334
0 2.29956491 7 |1 | 2.36635705 7 | 2| 2.44463445 2.51809358
0 2.45892715 8 |1 | 253057604 8 | 2| 2.61679975 2.69915104
Table 8 Numerical bound state energy for Klein-Gordon Equation for a = 0.3

I 1 E (eV) n| L E/(el) "I E (eV) E, (eV)

0 | 1.87458509 0 | 1| 1.76427509 0 | 2| 1.63791262 1.54952699
0 1.88097630 1 |1 | 1.87163444 1 | 2| 1.83628236 1.80385290
0 2.00591970 2 | 1| 2.04254769 2 | 2| 2.06129168 2.07176828
0 2.18484443 3 | 1| 2.24861478 3 |2 2.30418430 2.34803420
0 2.39522883 4 |1 | 247714169 4 | 2| 255954690 2.62978880
0 2.62617888 5 |1 | 272107037 5 | 2| 2.82386668 2.91533798
0 2.87144056 6 |1 | 2.97602900 6 | 2| 3.09478934 3.20361654
0 3.12707408 7 | 1| 3.23913926 7 | 2| 3.37069308 3.49392204
0 3.39045330 8 |1 | 3.50842736 8 | 2| 3.65043249 3.78577306

Table 9: Numerical bound state energy for Klein-Gordon Equation for ¢ = 0.4

| E,(eV) n [ L] E,(er) "1 E,(er) E,(eV)

0 | 2.03895248 0 |1 |1.93867203 0 | 2| 1.80663818 1.71050135
0 2.13364352 1 |1 | 2.14735009 1 | 2| 2.12478201 2.09956567
0 2.35434749 2 | 1| 242236317 2 | 2| 2.46709439 2.49700964
0 2.63359008 3 | 1| 2.73397967 3 | 2| 2.82469151 2.89724245
0 2.94646222 4 |1 | 3.06835839 4 | 2| 3.19240423 3.29842395
0 3.28073839 5 | 1| 3.41787156 5 | 2| 3.56709096 3.69988218
0 3.62950666 6 |1 | 3.77792682 6 | 2| 3.94675932 4.10135887




3.98852690 7 | 1| 4.14559523 7 | 2| 4.33009584 4.50275580
4.35505052 8 | 1| 451892607 8 | 2| 471620439 4.90404021
Table 10 Numerical bound state energy for Klein-Gordon Equation for ¢ = 0.5

E,(eV) n [ L] E,(er) "1 E,(er) E,(eV)

2.20816652 0 | 1212020339 0 | 2| 1.98465271 1.88244936
2.39710542 1 | 1| 2.43585243 1 | 2| 2.42808346 2.41173156
2.71753379 2 |1 | 281815139 2 | 2| 2.89012636 2.94049721
3.09906517 3 | 1| 3.23663248 3 |2 3.36307673 3.46479270
3.51505640 4 |1 | 3.67706650 4 | 2| 3.84289558 3.98478741
3.95252064 5 | 1| 413177744 5 | 2| 4.32729326 4.50127459
4.40425729 6 |1 | 459625826 6 | 2| 4.81488555 5.01500002
4.86594077 7 |1 | 5.06769771 7 | 2| 5.30479040 5.52655647
5.33481885 8 |1 | 554425752 8 | 2| 5.79642084 6.03639613

With the help of origin software, we obtain numerical bound state energy diagrams plots for both
Schrodinger and Klein-Gordon equations using their respective numerical bound state energy values.
Figures 3, 4, 5, 6 and 7 show the variation of energy eigen values with quantum state (n) with various orbital

quantum number (/) for ¢ =0.1,0.2,0.3,0.4 and 0.5 respectively for Schrodinger particles. These graph

show unique quantization of the energy levels with respect to quantum state. Also, the same plots are
carried out for the Klein-Gordon particles and are discussed in figures 8, 9,10, 11 and 12 for

a=0.1,0.2,0.3,0.4 and 0.5 respectively.
It can be observed that this graph is direct opposite to that obtained from Schrodinger equation. This implies

that while the negatives energies from Schrodinger equations describe the particle constituting the state of
the system, that of the Klein-Gordon equation described both spinless particle and anti-particle state of the

system.
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Figure 4: Energy spectral diagram of Schrodinger equation for o =0.2
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Figure 9: Energy spectral diagram of Klein-Gordon equation for o =0.2
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Furthermore our novel potential could be deduced to some well known potentials by adjusting some
potential parameters.

(i) Hulthen potential

Setting A=B=c=n=V, =0 inequation (2) result to Hulthen potential given as



—2ar

Viry=—"——— (82)
( ) (l_e—Zar)
The energy of this potential is given as
2224fer
g ( 2;;21/02 +l(l+1))+(n +n+ )+(n+ )«/(4Z(Z+1)+1
E, =- (83)
’ 7 (1+2n+,/(41(1+1)+1))
However +/(4/(/+1)+1) =2/+1 , then equation (83) becomes
(]
0
N e 2]+(n+l)(n+l+2)+l
E _ e 2 (84)

" 2(n+1+1)

Equation (84) is in agreement to that obtained by Okon et.al, 2017

(ii) Yukawa potential
Setting ¥, =V, = B = C = 0in equation (2) then the potential reduced to Yukawa potential.

—ar

ne

Vir)=- (85)

By substituting those constants to energy eigen value equation (31), then, the corresponding energy
equation for Yukawa potential is given as

o 1 1 1]
2 2|l (" Hn+)+(m+)J@A(+1)+1 5
£ =_2ha 2 2 a (86)

" 7 (1+2n+J@ia+n+1))

However, Okon et. al, 2017 obtain the energy-eigen value equation for Yukawa potential as

_ 4 2 1 1 2
E :_2h2a2 ( hla j+(n +n+2)+(n+2) (4l +1)+1)
p 1 (1+2n+J@I@+D)+D)

- (87)
It can be observe that equation (86) is exactly the same as equation (87) which shows that the result

agrees to that of existing literature.



(iii) Exponential Mie-type potential

Setting ¥, =V, =0 in equation (2) then the potential reduced to exponential Mie-type potential.

(B_U)efar
r

=2 o e

Substituting the same constants to equation (31) gives the energy eigen equation for exponential Mie-

Type potential as

B—
(n2+n+lj+(n+lj\/l+8ﬂA+4l(l+l)+ﬂ(277)+l(Z+l)
2 2 h ah

2

E, =- +c (89)
# (2n+1)+\/1+82“4+4z(z+1)

2

7. CONCLUSION

In this paper, we have obtained an approximate analytical solutions of Schrodinger and Klein-Gordon
equations with a new proposed potential model called Hulthen plus inversely quadratic exponential Mie-
Type potential (HIQEMP) via parametric Nikiforov-Uvarov method . We obtained numerical solutions by
implementing MATLAB algorithm to obtain bound state energies for both Schrodinger and Klein-Gordon
equations. Numerical bound state energies increases with an increase in quantum state with respect to the
adjustable parameter. With application of nonrelativistic limit, the energy eigen equation of Klein-Gordon
equation is converted to that of Schrodinger equation. The proposed potential reduces to three potentials
namely: Hulthen, Yukawa and exponential Mie-Type potential. The results for some of deduced potential
are in agreement to that of existing literature. The bound state energy spectral diagram for both cases
shows quantization of distinct energy levels. The negative energies in Schrodinger equation ascertain
bound state condition describing the particle states (negative energy) of the system while the bound state
energies from Klein-Gordon equation described anti-particles (positive energy).

ACKNOWLEDGEMENTS

The authors are very grateful to Dr. A. N. Ikot of the Theoretical Physics Group, Department of Physics,
University of Portharcourt for spending out time in reading the manuscript, and provide useful suggestions
which have significantly help in improving on the quality of the article. We also grateful to reviewers for their
useful comments and suggestion which adds to quality of the article.

COMPETING INTERESTS
Authors have declared that no competing interests exist.



REFRENCES

[1] Okon IB, Popoola OO, Isonguyo CN. Approximate Solution to Schrodinger Equation with Some
Diatomic Molecular Interaction Using Nikiforov-Uvarov Method. Advances in High Energy Physics Hindawi,
2017Volume 2017, Article ID 9671816, 24 pages

https://doi.org/10.1155/2017/9671816..

[2] Ikhdair SM, Sever R. A perturbative treatment for the bound states of the Hellmann potential. Journal of
Molecular Structure. 2007; 809:103-113.

[3] Chun-Feng H, Zhong-Xiang Z, Yan LI. Bound states of the klein-gordon equation with vector and scalar
wood-saxon potentials. Acta Physica Sinica. 1999; 8: 561-564

[4] Seto JY, Roy JL. Direct potential fit analysis of the X' ZZ, state of Rb,. The Journal of Chemical
Physics. 2000;8:3067-3076.

[5] Fl"'ugge S. Practical Quantum Mechanics. vol. |, Springer, Berlin, Germany, 1994.

[6] Dong SH, Lemus R, Frank A. Ladder operators for the Morse potential. International Journal of
Quantum Chemistry. 2002;86(5): 433—439.

[7] Morse PM. Diatomic molecules according to the wave mechanics. Il. Vibrational levels. Physical
Review. 1929;34(1):57-64.

[8] Okon IB, Popoola OO, Ituen EE. Bound state solution to Schrodinger equation with Hulthen plus

exponential Coulombic potential with centrifugal potential barrier using

parametric Nikiforov-Uvarov method. International Journal of Recent Advances in Physics.
2016;5(2).D0i:10.14810/ijrap.2016.5101

[9] Chen G. Bound states for Dirac equation with Wood-Saxon potential. Acta Physica Sinica.
2004;53(3):680-683.

[10] Sever R, Tezcan C, Yesiltas O, Bucurgat M. Exact solution of effective mass Schrodinger equation for
the hulthen potential. International Journal of Theoretical Physics. 2008;47(9): 2243-2248.

[11] Okon IB, ltuen EE, Popoola OO, Antia AD. Analytical solutions of Schrodinger equation with Mie-
type potential using factorisation method. International Journal of Recent Advances in Physics. 2013;2(2)1-
7.

[12]Villalba VM, Rojas C. Bound states of the Klein-Gordon equation in the presence of short range
potentials. International Journal of Modern Physics A. 2006; 21(2): 313-325.

[13] Arda A, Aydogdu O, Sever R. Scattering and Bound solutions of the Asymmetric Hulthen potential.
Phys. Scr. 2011; 84: 025004.

[14] Tietz T. Negative Hydrogen ion J. Chem. Phys. 1961; 35: 1917-1961
[15] Hulthen L, Sugawara M, Flugge S. Handbuch der Physik (Springer-Verlag, Berlin). 1957

[16] Berezin A. Two exactly solvable models for the collapse of the particle to the centre in a nonrelativistic
quantum mechanics. Letter al Nuovo cimento. 1971; 40: 145-146.

[17] Pyykko P, Jokisaari J. Spectral density analysis of nuclear spin-spin coupling. I. A. Hulthen potential
LCAQO model for J, , in hydride XH ,.Chem. Phys.1975; 293:10.



[18] Quesne C. Higher-order Susy, Exactly Solvable potentials and exceptionally orthogonal polynominals.
Modern Physics Letters A. 2011;26(25): 1843-1852.

[19] Ikot A, Yazarloo B, Antia, A , H. Hassanabadi H. Relativistic treatment of spinless particle subject to
generalized Tiez-Wei oscillator. Indian J. Phys. 2013;5:12-14. Doi: 10.1007/512648-013-0306-4.

[20] Hassanabadi H, Rahimov H , Zarrinkamar S . Cornell and Coulomb interactions for the
D-dimensional Klein-Gordon equation. Ann. Phys. (Berlin) 2011;523: 566-575.

[21] Berkdemir C, Berkdemir A, Sever R. Systematical approach to the exact solution of the Dirac
equation for a deformed form of the Woods-Saxon potential. Journal of Physics. A. Mathematical and
General. 2006; 39(43): 13455-13463.

[22] Arda A, Sever R. Approximate {-state solutions of a spin-
0 particle for Woods-Saxon potential. International Journal of Modern Physics C. 2009;20(4): 651-665.

[23] Ikhdair SM, Sever R. An alternative simple solution of the sextic anharmonic oscillator and perturbed
coulomb problems. International Journal of Modern Physics C.2007;18(10): 1571-1581.

[24] Badalov VH, Ahmadov HI, Badalov SV. Any I-state analytical solutions of the Klein-Gordon equation for
the Woods-Saxon potential. International Journal of Modern Physics E. 2010;19(7): 1463—1475.

[25] Chen G. Chen, Z.-D, . Lou Z.-M . Exact bound state solutions
of the s-wave Klein-Gordon equation with the generalized Hulthen potential. Physics Letters.A. 2004;
331(6): 374-377.

[26] Dong SH. Factorization Method in Quantum Mechanics. vol. 150 of Fundamental Theories of Physics,
Springer, Berlin. Germany, 2007.

[27] Hassanabadi H, Zarrinkama S, Rajabi A . Exact solutions
of D-dimensional Schr'odinger equation for an energy dependent potential by NU method,”
Communications in Theoretical Physics. 2011; 55(4):541-544.

[28] Oyewumi KJ Akinpelu, FO, Agboola AD. Exactly complete solutions of the pseudoharmonic potential in
Ndimensions. International Journal of Theoretical Physics. 2008; 47(4):1039-1057.

[29] Hassanabadi H, Zarrinkamar , Hamzavi H, Rajabi A. Exact solution of D-dimensional Klein-Gordon
equation with an energy dependent potential using Nikiforov-Uvarov method Arabian Journal for
Science and Engineering. 2011; 37(1). Doi :10.1007/s13369-011-0168-z. 2011.

[30] Esteve JG , Falceto F, Garacia C. Generalization of the Hellmann-Feynman theorem. Physics Letters
A. 2010; 374(6): 819-822.

[31] Fakhri H, Sadeghi J. Supersymmetry approaches to the bound states of the generalized Woods-Saxon
potential. Modern Physics Letters A. 2004; 19(8): 615-625.

[32] Khounfais K, Boudjeda T, Chetouani L .Scattering matrix for Feshbach-Villars equation for spin 0 and
1/2:Woods- Saxon potential. Czechoslovak Journal of Physics. 2004;54(7):697-710.

[33] Arda A, Sever R. Approximate analytical solutions of a two-term diatomic molecular potential with
centrifugal barrier. Journal of Mathematical Chemistry. 2012; 50(7):1920-1930.

[34] Hamzavi M, Movahedi M,. Thylwe KE , Rajabi AA .Approximate analytical solution of the yukawa
potential with arbitrary angularmomenta. Chinese Physics Letters. 2012; 29(8), Article ID 080302.



[35] Okon 1B, Popoola OO, Isonguyo CN. Exact bound state solution of g-deformed woods-saxon plus
modified coulomb potential using conventional Nikiforov-Uvarov method. International Journal of Recent
advances in Physics. 2014; 3(4):29-38.

[36] Okon 1B, Popoola OO. Bound state solution of Schrodinger equation with Hulthen plus generalised
exponential Coulomb potential using Nikiforov-Uvarov method.
International Journal of Recent Advances in Physics. 2015;4(3). Doi:10.14810/ijrap.2015.4301.

[37] Isonguyo CN, Okon IB, Ikot AN. Semi-relativistic treatment of Hellmann potential using
Supersymmetric Quantum Mechanics. Journal of the Nigerian Association of Mathematical Physics. 2013;
25(2):121-126.

[38] Isonguyo CN, Okon IB, Ikot AN, Hassanabadi H. Solution of klein gordon equation for some diatomic
molecules with new generalized morse-like potential using SUSYQM. Bulletin of the Korean Chemical
Society. 2014; 35(12):3443-3446.

[39] Greene RL, Aldrich C. Variational wave functions for a screened Coulomb potential. Physical Review
A. 1976; 14(6) 2363-2366.

[40] Bera PK. The exact solutions for the interaction V' (r) = ar* ™ —ﬁ’rd_z by Nikiforov-Uvarov method.
Pramana Journal of Physics. 2012; 78(5): 667-677.









