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ABSTRACT 
 

Numerical solutions of unsteady laminar free flow of a viscous fluid past an immersed curved 
surface were presented in this research study. The two-dimensional fluid flow in consideration was 
unsteady and incompressible. Flows of this nature are commonly encountered in engineering 
studies such as Aerodynamics and Hydrodynamics. In our study, the continuity, the momentum 
and thermal energy equations were non-dimensionalized and the solutions of the dimensionless 
governing equations approximated using finite-difference method. The velocity and temperature 
fields were studied by varying various parameters in the equations governing the fluid flow. The 
results obtained were presented graphically for comprehensive and easier interpretation. From the 
results, it was found out that the dissipation of heat within the boundary layer increases with 
increase in the length of the curvature i.e. when the length of the curvature was increased, a 
consequence increase in the amount of heat dissipated within the boundary layer was noted.  Also 
at large Reynolds number, minimal amount of heat dissipated within the boundary layer was 
recorded. These findings would assist Engineers in making appropriate designs and estimate 
improvements in equipment that require minimal resistance to the fluid in motion. 

Keywords: Incompressible viscous fluid; Velocity field; Temperature field.  
 
1. BACKGROUND INFORMATION 
 
Natural Convective heat transfer over an 
immersed curved surface is receiving research 
attention due to its wide applications in designing 
of devices such as flying planes, submarines,  
pumps, cooling fans among many others. [8]   
  
In the study of laminar flows, Gupta et  al  [3]  
investigated  heat transfer along the surface with 
a longitudinal curvature and concluded that as 
the curvature changes from concave to convex, 
the Nusselt  number  decreases for Eckert 
number being small and  increases if the Eckert 
number is increased to unity.  
 
Bradshaw et al [4] and Gordon et al [7] extended 
the study on the use of the algebraic analogy to 

the curved shear layers and the effects of the 
curvature on the mixing length if the shear layer 
thickness exceeds 1/300 of the radius of the 
curvature. In their study they concluded that 
large effects occurred in compressible fluid flows. 
 
Mugambi, et al [5] in their investigation on the 
forces produced by the fluid motion on a sub-
merged finite curved plates established the 
relationship between geometrical shape of the 
curvature and the variation of drag force of 
specific velocities of the viscous fluid. 
 
George, et al [6] and Barenblatt et al [1] in their 
study on the convective heat transfer over curved 
surface established that as fluid flows over an 
immersed curved surface, some work is done 
against viscous effect and energy spent is 
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converted into heat.  The vortices formed in the 
boundary layer due to high velocity gradient is 
swept outwards from the boundary layer. They 
established that the rate of heat transfer is 
considerably high at points close to the convex 
surface within the boundary layer thickness. This, 
as a result, leads to a decrease in fluid viscosity.   
 
Gathungu [8] and Fukagata et al [2] in their study 
noted that when the Reynolds number is high, 
the heat dissipation in the boundary layer also 
goes high. Their study concluded that when the 
Reynolds number is increased, the consequence 
is decreased in drag. When the Reynolds 
number decreased, the effect of drag goes high. 
At high Reynolds number the lift is increased and 
vise versa, hence a direct proportionality of the 
two quantities. 

From the above- discussed research 
investigations and findings, it is clear that limited 
or little attention has been paid on the extent to 
which varying the length of the curvature would 
affect the velocity and temperature profiles along 
the unsteady laminar fluid flow. This is the 
motivation of this research work. 
 
2. MATHEMATICAL FORMULATION 
 
In this research work, a two-dimensional laminar 
unsteady flow of a fluid over an immersed curved 
surface is studied. Since the body had both 
convex and concave surfaces there existed two 
non- zero pressure gradients as shown in the 
schematic diagram below. 

 

 
 

Fig. 1. Schematic model for the flow geometry 
2.1 Equation of Continuity 
 
The general continuity equation is given as: 
 
డఘ

డ௧
൅ 		. ሺݑߩሻ ൌ  0                                                                                                                                  (1) 

 
For two-dimensional fluid flow with constant density,   equation (1.0) reduces to: 
 
డ௨

డ௫
൅

డ௩

డ௬
	ൌ 0                                                                                                                                        (1.1) 

 
2.2 Momentum Equation  
 .  
Along the x-axis; 
 

ρ 	డ௨
డ௧
൅ ρ ቂݑ డ௨

డ௫
൅ ݒ డ௨

డ௬
ቃ ൌ െడ௉

డ௫
൅	 డ

డ௫
		μ			2 డ௨

డ௫
െ ଶ

ଷ

డ௨

డ௫
൅ డ௩

డ௬
									൅ 
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డ

డ௬
	μ			 డ௨

డ௬
൅ డ௩

డ௫
				൅	ρFx                                                                                                                    

 
Along the y- axis; 
 

ρ
	డ௩

డ௧
൅ ρ ቂݑ

డ௩

డ௫
൅ ݒ

డ௩

డ௬
ቃ ൌ െ

డ௉

డ௬
൅	

డ

డ௬
		μ			2

డ௩

డ௬
െ

ଶ			

ଷ				

డ௨

డ௫
൅

డ௩

డ௬
									൅ 

 
డ

డ௫		
μ		

డ௨

డ௬
൅

డ௩

డ௫
					൅	ρFy                                                                                                      

 

Since   
డ௨

డ௫
൅

డ௩

డ௬
	ൌ 0, equations the above equations reduces to:   

                                                                                    

ρ
	డ௨

డ௧
൅ ρ ቂݑ

డ௨

డ௫
൅ ݒ

డ௨

డ௬
ቃ ൌ െ

డ௉

డ௫
൅ 2μ

డమ௨

			డ௫మ
൅ μ		

డమ௨

			డ௬మ
	൅

డమ௩

డ௫డ௬
	൅	ρFx                     (1.2a) 

 
and  
 

ρ
	డ௩

డ௧
൅ ρ ቂݑ

డ௩

డ௫
൅ ݒ

డ௩

డ௬
ቃ ൌ െ

డ௉

డ௬
൅ 2μ

డమ௩

			డ௫మ
൅ μ	

డమ௨

డ௬డ௫
	൅

డమ௩

			డ௬మ
	൅	ρFy                       (1.2b) 

respectively. 
 
From the boundary layer approximations, 
equation (1.2a) reduces to:  
 
డ௨

డ௧
=	െ	

ଵ

ఘ

డ௉

డ௫
൅

ஜ

ఘ

	డమ௨

	డ௬మ
 + Fx 

 

But  
ஜ

ఘ
 and thus the above equation furtherݒ = 

reduces to: 
 

		
డ௨

డ௧
=	െ	

ଵ

ఘ

డ௉

డ௫
൅ ݒ	

డమ௨

			డ௬మ
 + Fx                                             (1.3a) 

 
 Also  , equation (1.2b) reduces to: 

0 = െ	
ଵ

ఘ

డ௉

డ௬
  + Fy                                                                     (1.3b) 

 
 
From Bernoulli’s equations, we have 
 

P + 
ଵ

ଶ
ρu2  = constant                                       (1.4) 

 
The  curved surfaces provide both adverse and 
favourable pressure gradients whose tangential 
components of the velocity of the outer flow 
reveals a power law dependence on the stream 
wise x measured along the curved surface 
boundary as; 
 
௨

௖
 = xm                                                            (1.5) 

 
Differentiating partially equation (1.4) with 
respect to x, we obtain  
 
డ௉

డ௫
൅ ݑߩ

డ௨

డ௫
	ൌ 0                                               (1.6) 

 
Which implied that; 
 

െ
ଵ

ఘ

డ௉

డ௫
	ൌ ݑ

డ௨

డ௫
                                                (1.7) 

 
But from the power law dependence,  
 

ݑ
డ௨

డ௫
ൌmc2x2m-1                                               (1.8) 

 
Hence equation (1.3a) reduces to; 
 
డ௨

డ௧
= Pt +	ݒ

డమ௨

			డ௬మ
 + Fx    where   Pt = m c2 x2m-1     (1.9) 

  
Prandtl proposed to account for curvature effect 
by multiplying the length of the curvature by 
factor f given by:     
 

  f = - 
ଵ

ସ

௞ೝ	௨

ሺ
ങೠ
ങ೤
ሻ
 + 1                                                   (2) 

 
He also deduced that the boundary layer 
equation on the curved surface is written as; 
 

ଶ = ݄ଵݑ	௥݇ߩ
డ௉

డ௬
   , which is re-written as 

 
ଵ

ఘ

డ௉

డ௬
   =   

௞ೝ	௨మ

௛భ
                                                   (2.1) 

 
Where kr and h1 are curvature parameters which 
are defined as 
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Kr = -  
ଵ

		௖ሺ௫ሻ
  

 
h1  = 1 + kr y     
 
Where c(x) is the radius of the curvature. 
 
Body forces, Fx and Fy due to the gravitational 
pull are assumed to be a constant in both cases 
and thus the assumption: 
 
Fx = Fy                                                                                             (2.2) 
 
 Hence the generalized equation of conservation 
of momentum for fluid flow over an immersed 
curved surface is derived as; 
 
డ௨

డ௧
=  Pt+	ݒ

డమ௨

			డ௬మ
 +  

௞ೝ	௨మ

௛భ
                                     (2.3) 

 

Since h1 = 1+ kr y, the term 
௞ೝ	௨మ

௛భ
   is written in 

Taylor series as  
 
݇௥	ݑଶ (1 +݇௥	ݕ)-1 = ݇௥	ݑଶ (1- ݇௥	ݕ +   ݇௥ଶݕ +…..)    
 
And therefore, equation (2.3) yields 
 
డ௨

డ௧
= Pt +	ݒ

డమ௨

			డ௬మ
 +݇௥	ݑଶ (1-݇௥	ݕ +  ݇௥ଶݕ +…..)     (2.4) 

 
The flow is along the x- axis. This implies that 
y	≅ 0 and for every small value of ݇௥	we have (1-
݇௥	ݕ  +  ݇௥ଶݕ  +…..) = 1. Consequently, equation 
(2.4) reduces to  
 
డ௨

డ௧
=  Pt  +	ݒ

డమ௨

			డ௬మ
 +݇௥	ݑଶ                                  (2.5) 

 
This is our momentum equation in consideration 
 
2.3 The Energy Equation 
 
The general equation is given as 
 

ρ ܥ௣
஽௛

஽௧
 = K2 T + µø,                                     (2.6) 

 
Where 
 

ø = 2 ൤ቀ
డ௨

డ௫
ቁ
ଶ
൅ ቀ

డ௩

డ௬
ቁ
ଶ
൨൅ ቀ

డ௨

డ௬
൅

డ௩

డ௫
ቁ
ଶ
                (2.7) 

 
 
By considering unsteady incompressible flow in a 
control volume, the standard thermal energy 
equation for the thermal boundary layer is given 
by 
 

ݒߩ
డ௛

డ௬
 +ρ

డ௛

డ௧
൅ ݑߩ

డ௛

డ௫
  = (µø+ q) + 

డ

డ௫
ቀ݇

డ்

డ௫
ቁ  + 

డ

డ௬
ቀ݇

డ்

డ௬
ቁ +ቀݑ

డ௉

డ௫
൅ ݒ

డ௉

డ௬
ቁ                                   (2.8) 

 
where h was the enthalpy and q was  the rate of 
heat dissipation. 
 
Now the enthalpy h is given by: 
 

݄	 ൌ 	ܧ	 ൅ 	ܲ ቀ
ଵ

஡
ቁ                                              (2.9) 

 
then, the first order derivative of enthalpy 
becomes 
 

݄݀	 ൌ ቀ+ܧ݀	
ଵ

஡
ቁ 	݀݌ + ܲ݀ ቀ

ଵ

஡
ቁ                               (3) 

 

But  ݀ܳ ൌ 	ܧ݀ ൅ 	ܹ݀ ൌ ܧ݀	 	݀݌ +  ቀ
ଵ

஡
ቁ  and for a 

unit mass and a single species fluid, 
 
݀ܳ ൌ  Therefore we have  .ݏ݀ܶ	
 

dE = Tds - pdቀ
ଵ

஡
ቁ                                            (3.1) 

 
In view of (3.1), equation (3.0) yields: 
 

݄݀	 ൌ ቀ + ݏ݀ܶ	
ଵ

஡
ቁ 	݀݌ + ܲ݀ ቀ

ଵ

஡
ቁ - ݀݌ ቀ

ଵ

஡
ቁ           (3.2) 

 
hence  
 

݄݀	 ൌ ቀ + ݏ݀ܶ	
ଵ

஡
ቁ ݀ܲ                                        (3.3) 

 

Assuming that ݑ
డ௉

డ௫
 and ݒ

డ௉

డ௬
 were negligible 

and	݄݀	 ൌ   equation (2.8) reduces to ,ܶ݀݌ܥ	
 

ߩ௣ܥ
డ்

డ௧
ߩ௣ܥ +   ቀݑ	

డ்

డ௫
൅ ݒ

డ்

డ௬
ቁ= ݇

డమ்

			డ௬మ
൅μ ቀ

డ௨

డ௬
ቁ
ଶ
 ݍ +

(3.4) 
 
Now, the convection equation is expressed as: 
 
	ݍ ൌ  (3.5)                                                     ܶ݀ܣܭ	
 
where 		݀ܶ  = ( ஶܶ  - ௦ܶሻ	 is the difference in 
temperature between the body surface and the 
bulk fluid.  A is the area of the surface. 
 
In this case, the area of the surface was the 
length of the curved surface and for this concave 
surface which had a destabilizing effect, the 
effect of the curved surface was taken into 
account by  multiplying the area, A by a 
dimensionless factor earlier defined. This 
resulted to: 
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ݍ	 ൌ  (3.6)                                                  ܶ݀	ܭ݂ܣ
 
Where ݍ is the heat transferred per unit time. 
 
On replacing f, equation (3.6) reduces to 
 

ݍ ൌ ݇ ቆ1	 െ	
ଵ

ସ

௞ೝ	௨

ሺ
ങೠ
ങ೤
ሻ
ቇܣ( ஶܶ - ௦ܶሻ                        (3.7) 

 
From Newton’s law of cooling, the local heat flux 
is given by 
 
௦ݍ
,,=		݄( ஶܶ - ௦ܶሻ                                                (3.8) 

 
Where h is the local convection coefficient. 
 
Since the flow conditions varied from one point to 
another on the curved surface, both ݍ௦

,,  and h 
also varied along the curved surface. 
For any particular distance x from the edge of the 
curved surface, ݍ௦

,,  was found by applying the 
Fourier’s Law to the fluid. This was done at y = 0 
and was given as: 
 

݇  =௦ᇱᇱݍ -
డ்

డ௬
   , which can be re-written as: 

 

݇ - =௦ᇱᇱݍ	
డ்

డ௬
                                                       (3.9) 

 
The local convection heat transfer is expressed 
as  
 

 h =െ	݇
డ்

డ௬
ሺ	 ஶܶ 	െ	 ௦ܶሻିଵ                                     (4) 

 
At the thermal boundary layer, the rate of heat 
conduction along the y- direction was larger than 

that along the  x- axis i.e		
డ்

డ௬
>>

డ்

డ௫
 

 
Then we have: 
 

ߩ௣ܥ ቀݑ	
డ்

డ௫
൅ ݒ

డ்

డ௬
ቁ+ܥ௣ߩ

డ்

డ௧
ݍ =   ൅ ݇

డమ்

			డ௬మ
൅μ ቀ

డ௨

డ௬
ቁ
ଶ
  

(4.1) 
 
From the above approximations, equation (4.1) 
reduces to 
 

ߩ௣ܥ	
డ்

డ௧
   = ݇

డమ்

			డ௬మ
൅μ ቀ

డ௨

డ௬
ቁ
ଶ
 (4.2)                         ݍ +

 
But the value of q is replaced with equation (3.7) 
in order to take care of the curvature effects and 
hence on substituting equation (3.7) in equation 
(4.2) we have: 
 

ߩ௣ܥ			
డ்

డ௧
   = ݇

డమ்

			డ௬మ
൅	μ ቀ

డ௨

డ௬
ቁ
ଶ
൅ ݇ ቆ1	 െ	

ଵ

ସ

௞ೝ	௨

ሺ
ങೠ
ങ೤
ሻ
ቇܣ( ஶܶ 

- ௦ܶሻ                                                                (4.3) 
 
Equation (4.3) gives the equation of energy for 
convective heat transfer over an immersed 
curved surface. 
 
3. NON-DIMENSIONALIZING THE 

EQUATIONS GOVERNING THE FLOW 
 
In our research work, we let L, V, P and T to be 
the characteristic length, velocity, pressure and 
temperature respectively. The following 
transformations are used to reduce our equations 
in a dimensionless form; 
 
௫

௫∗
ൌ      ,ܮ

௬

௬∗
ൌ       ,ܮ

௨

௨∗
ൌ ܸ,       

௩

௩∗
ൌ ܸ,     

௣

௣∗
ൌ ܲ,  

 
ܶ∗ሺ ஶܶ 	െ	 ௦ܶሻ

 =	ܶ	 െ	 ௦ܶ 
 

	ܮ∗ݐ ൌ 	ݐ		Or 	ܸݐ	 ൌ 	
௧∗௏

୐
  

 
3.1   Equation of Continuity 
 
For this particular fluid flow, the equation of 
continuity is given by  
 
డ௨

డ௫
൅

డ௩

డ௬
	ൌ 0			                                                  (4.4) 

 
On non-dimensionalizing, the equation of 
continuity becomes 
 
డሺ௨∗௏ሻ

డሺ௫∗௅ሻ
൅

డሺ௩∗௏ሻ

డሺ௬∗௅ሻ
	ൌ 0                                           (4.5) 

 

Or     
௏

௅
ቀ
డ௨∗

డ௫∗
൅

డ௩∗

డ௬∗
ቁ ൌ 0                                    (4.6) 

 

Or     ቀ
డ௨∗

డ௫∗
൅

డ௩∗

డ௬∗
ቁ ൌ 0                                      (4.7) 

 

3.2 The Momentum Equation 
 
The equation of conservation of momentum for 
this flow problem is given by 
 
డ௨

డ௧
= Pt  +	ݒ

డమ௨

			డ௬మ
 +݇௥	ݑଶ                                     (4.8) 

 
On non-dimensionalizing, the equation becomes: 
 
డሺ௨∗௏ሻ

డሺ
೟∗ಽ
౒
ሻ
=P* Pt +ݒ

డమሺ௨∗௏ሻ

			డሺ௬∗௅ሻమ
+ ݇௥	ሺݑ∗ܸሻଶ                   (4.9) 

 
On re-arrangement, the equation becomes 
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௏మ

௅

డ௨∗

డ௧∗
= PPt

* +
௩௏

௅మ
డమ௨∗

			డ௬∗మ
+ ݇௥	ܸଶݑ∗ଶ							                     (5) 

 

Multiplying both sides by   
௅

௏మ
we have 

 

డ௨∗

డ௧∗
= 

௉௅

௏మ
Pt

* +
௩

௅௏

డమ௨∗

			డ௬∗మ
+ ݇௥	ݑܮ∗ଶ							                        (5.1) 

 
This is the equation of momentum in non-
dimensional form 

3.3 The Energy Equation 
 
The equation of conservation of energy is given by 
 
డ்

డ௧
ݑ +  

డ்

డ௫
ݒ +  

డ்

డ௬
  =

௞

			஼೛ఘ

డమ்

			డ௬మ
 + 

ஜ

			஼೛ఘ
ቀ
డ௨

డ௬
ቁ
ଶ
+  

௞஺

			஼೛ఘ
( ஶܶ - ௦ܶሻ ቆ1	 െ	

ଵ

ସ

௞ೝ	௨

ሺ
ങೠ
ങ೤
ሻ
ቇ	                                               (5.2) 

 
From the boundary approximations the above equation reduces to 
 
డ்

డ௧
   =

௞

			஼೛ఘ

డమ்

			డ௬మ
 + 

ஜ

			஼೛ఘ
ቀ
డ௨

డ௬
ቁ
ଶ
+  

௞஺

			஼೛ఘ
( ஶܶ - ௦ܶሻ ቆ1	 െ	

ଵ

ସ

௞ೝ	௨

ሺ
ങೠ
ങ೤
ሻ
ቇ                                                                    (5.3) 

 
From the non-dimensional form of T, we have: 
 

ܶ∗ =   
்	ି	 ೞ்

ሺ	 ಮ்	ି	 ೞ்ሻ
 , which on making T the subject of the formulae yields 

 
	ܶ ൌ ܶ∗( ஶܶ 	െ	 ௦ܶሻ		+ ௦ܶ    and thus the equation of energy becomes 
డ	ሾ்∗ሺ ಮ்	ି	 ೞ்ሻ		ା	 ೞ்ሿ

డሺ
೟∗ಽ
౒
ሻ

=
௞

			஼೛ఘ

డమ	ሾ்∗ሺ ಮ்	ି	 ೞ்ሻ		ା	 ೞ்ሿ

			డሺ௬∗௅ሻమ
+

ஜ

			஼೛ఘ
ቀ
డሺ௨∗௏ሻ

డሺ௬∗௅ሻ
ቁ
ଶ
+

௞஺

			஼೛ఘ
( ஶܶ- ௦ܶሻ ቆ1	 െ	

ଵ

ସ

௞ೝ	ሺ௨∗௏ሻ

ቀ
ങሺೠ∗ೇሻ
ങሺ೤∗ಽሻቁ

ቇ                              (5.4) 

 
On further simplification, the above equation yields 
 
௏ሺ ಮ்	ି	 ೞ்ሻ		

௅

డ்∗

డ௧∗
=

௞

			஼೛ఘ

ሺ ಮ்	ି	 ೞ்ሻ	

௅మ
డమ	்∗

			డ௬∗మ
+

ஜ௏మ

			஼೛ఘ௅మ
ቀ
డ௨∗

డ௬∗
ቁ
ଶ
+

௞஺

			஼೛ఘ
( ஶܶ- ௦ܶሻ ቆ1	 െ	

ଵ

ସ

௞ೝ	௨∗௅

ቀ
ങೠ∗

ങ೤∗ቁ
ቇ																																																							 (5.5) 

Diving all through by the term 
௏ሺ ಮ்	ି	 ೞ்ሻ

௅
, we obtain 

 
డ்∗

డ௧∗
=

௞

			஼೛ఘ௅௏

డమ	்∗

			డ௬∗మ
+

ஜ௏

			஼೛ఘ௅ሺ ಮ்	ି	 ೞ்ሻ
ቀ
డ௨∗

డ௬∗
ቁ
ଶ
+

௞௅஺

			஼೛ఘ௏
ቆ1	 െ	

ଵ

ସ

௞ೝ	௨∗௅

ቀ
ങೠ∗

ങ೤∗ቁ
ቇ                                                                 (5.6)   

 
 

Multiplying the term
ஜ௏

			஼೛ఘ௅ሺ ಮ்	ି	 ೞ்ሻ
ቀ
డ௨∗

డ௬∗
ቁ
ଶ
 by V in the numerator and the denominator, we obtain 

 
డ்∗

డ௧∗
=

௞

			஼೛ఘ௅௏

డమ	்∗

			డ௬∗మ
+

ஜ௏.௏

			஼೛ఘ௅.௏ሺ ಮ்	ି	 ೞ்ሻ
ቀ
డ௨∗

డ௬∗
ቁ
ଶ
+

௞௅஺

			஼೛ఘ௏
ቆ1	 െ	

ଵ

ସ

௞ೝ	௨∗௅

ቀ
ങೠ∗

ങ೤∗ቁ
ቇ                                                           (5.7)   

 
The equation (5.7) represent the equation of conservation of energy in non-dimensional form 
 
4. NUMERICAL METHOD OF SOLUTION 
 
In carrying out this study, the governing equations are solved using the finite difference method. We 
chose the step values ∆ݕ ൌ	0.09 and ∆ݐ	0.2 =, in order to bring convergence and consistency in the 
values to be obtained.  
 
The derivatives in the governing equations are replaced by numerical difference approximations to 
obtain the equations in finite difference form, written as: 
 

     	 ௜ܷାଵ,௝
∗ 	=  

൥௉೟೔
∗ ቀ

∆೟ಽ೛
ೡమ

ቁ	ା		∆୲ሺୖୣሻషభ	൭
ቀ	ೠ೔శభ,ೕశభ

∗ శ	ೠ೔శభ,ೕషభ
∗ 			ೠ೔,ೕశభ

∗ ష	మೠ೔,ೕ
∗ శ	ೠ೔,ೕషభ

∗ ቁ

మሺ∆౯ሻమ
൱	ା		௨೔,ೕ

∗ 	ା	∆୲୐୩୰	௨೔,ೕ
∗మ൩

൬ଵା
∆౪

ೃ೐ሺ∆౯ሻమ
൰
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 Subject to the boundary conditions: 
 
u*( t*, 0) = 0 
 

u*( t*,	∞) = 1 
 
u*( 0, y*) = y* 
 
and 
 

 ௜ܶାଵ,௝
∗ 			=     ௜ܶ,௝

∗ ൅ ∆tሺPeሻିଵ ൤
	 ೔்శభ,ೕశభ
∗ ା	 ೔்శభ,ೕషభ

∗ ା	 ೔்,ೕశభ
∗ ି	ଶ ೔்,ೕ

∗ ା	 ೔்,ೕషభ
∗

ଶሺ∆୷ሻమ
൨   

 

+ 
∆୲୉ୡ

	ୖୣ	
ቈ
ቀ	௨೔శభ,ೕశభ

∗ ି	௨೔శభ,ೕ
∗ ା	௨೔,ೕశభ

∗ ି	௨೔,ೕ
∗ ቁ

మ

ሾଶሺ∆୷ሻሿమ
቉ + 

஺௅మ∆୲

		୔ୣ
 -   ቎

ሺସ௣௘ሻషభ	∆୲஺୐య	௄ೝ௨೔,ೕ
∗

	ቆ
	ೠ೔శభ,ೕశభ
∗ ష	ೠ೔శభ,ೕ

∗ శ	ೠ೔,ೕశభ
∗ ష	ೠ೔,ೕ

∗

మ∆౯ ቇ
	቏ 				ൊ 	ቀ1 ൅

∆୲

௉௘ሺ∆୷ሻమ
ቁ 

 

Subject to boundary conditions as in below: 
 

T*( t*, 0)  = 0 
 

T*( t*,  ∞) = 1 
 

T*(0,  y*) =  y* 
 

5. RESULTS AND DISCUSSION 
 
5.1 RESULTS 
 

We solved our governing equations and obtained 
the results which were presented graphically 
using MATLAB software. 
5.2 DISCUSSION 
 
 
From Fig. 2, when the length of the curvature is 
increased form L= 0.5 to L= 1.0, the free stream 
velocity is accompanied by a considerable 
increase from 0.275501 to 0.360971 as shown 
on the graph. 
 
This is because as the length of the                     
curvature increases, the velocity gradient                  
also increases. Increase in velocity                        
gradient increases the velocity of the fluid flow                 
in consideration i.e. when the length                            

of the curvature is increased, the                         
velocity gradient also increases and a 
consequent increase in free stream velocity is 
recorded. 
More so, when the velocity gradient is increased, 
the kinetic energy of the fluid particles in motion 
increases at the boundary layer which implies 
that the fluid particles are at high velocities 
 

From Fig. 3, we note that when the length of the 
curvature is increased from L = 0.5 to L = 1.0, the 
heat dissipation in the boundary layer increases 
from 0.392678 to 0.572599. 
This is because the increase in the length of the 
curvature increases the velocity gradient which 
leads to increase in shear stresses. The friction 
between the fluid particles and the surface in 
consideration is brought about by these shear 
stresses. In return, this friction force causes the 
dissipation of heat in the boundary layer. This is 
due to the fact that the shear stress is directly 
proportional to velocity gradient.  i.e   τ = 

µ
డ௨

డ௬	
.when the velocity gradient is increased, the 

shear stress increases which brings about friction 
between the fluid particles leading to increase in 
heat dissipation. 
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Fig. 2. Velocity profiles for Re = 1.3,  Pe = 1, V=1, Kr = 1, Ec = 2, A = 2, Pt = 1 
 
 
 
 
 
 

 
 

Fig. 3. velocity profiles for Re=1.3, Pe=1, V=1, Kr = 1, Ec = 2, A = 2, Pt = 1 
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Fig. 4.  Velocity Profile for L=1, Pe=1, V= 1, Kr= 1,Ec= 2, A = 2,  Pt= 1 
 
From Fig. 4, we note that as the Reynolds 
number increases from 0.7 to 1.3, a direct 
consequence of the increase in inertia forces 
occurred leading to an increase in velocity from 
0.297405 to 0.367155. When the Reynolds 
number is large, the inertia forces tend to 
dominated over the viscous force and 

consequently, the friction of the fluid particles 
and the surface in consideration is very minimal 
resulting to increase in velocity of the fluid flow. 
At large inertia forces, the velocity of the fluid is 
high since low viscous forces implies that little or 
minimal friction exists between the fluid particles 
and the surface in consideration. 
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Fig. 5.  Temperature profile for L=1, Pe = 1, V = 1, Kr= 1, Ec= 2, A = 2, Pt= 1 
From Fig. 5, we note that when the Reynolds 
number is increased from 0.8 to 1.3, the heat 
dissipation in the boundary layer reduces from 
0.613144 to 0.508381. 
 

This is because when the value of the Reynolds 
number is low, the inertia forces are minimal. The 
viscosity of the fluid thus dominate over the 
inertia forces and consequently, the friction of the 
fluid particles with surface increases resulting to 
increase in heat dissipation within the boundary 
layer. When Reynolds number is large, the 
viscous forces are very minimal since inertia 
forces dominate in the fluid flow.                    
Consequently, the friction of the fluid                   
particles with the surface is minimal and this 
results to the minimal dissipation of heat within 
the boundary.  
 

6. CONCLUSION AND RECOMMENDA-
TIONS 

 

When the length of the curvature was increased, 
this led to velocity and temperature rise. This 
matched the theoretical explanation since the 
increase in velocity gradient increases the 
velocity of the fluid flow. Also at high velocity 
gradients, the shear stresses are high which 
brings about the friction between the fluid 
particles and the surface. Consequently, heat is 
dissipated. It thus follows that the length of the 
curvature is directly proportional to the velocity 
and temperature distribution. 
 
It is also observed that at large Reynolds 
number, the inertia forces are large                   

compared to the viscous effect of the                   
fluid and consequently, the fluid                         
velocity increases. This is in line                         
with a theoretical explanation since                         
at low viscosity, minimal shear stresses exist 
between the fluid particles and the surface and 
thus the velocity of the fluid is favoured. At low 
Reynolds number, the viscosity of the fluid is 
high since there are minimal inertia forces. 
Consequently, the fluid velocity goes down. At 
large Reynolds number, the amount of heat 
dissipated at the boundary layer is  minimal due 
to minimal friction between the fluid particles and 
the surface. 
 
It, therefore, follows that Reynolds number is 
directly proportional to the velocity distribution 
and inversely proportional to the temperature 
distribution in the boundary layer. 
 

 
It is recommended that further investigations be 
done in the following areas: 
 

1. Compressible fluid over immersed surface 
2. Convective heat transfers on turbulent fluid 

flows over the immersed curved surface 
3. Study of the same orientation but in three-

dimension 
 
COMPETING INTERESTS 
 
Authors have declared that no competing 
interests exist. 
 



 
 
 
 
 

 
11 

 

REFERENCES 
 
1. Barenblatt  G.T., Chorin, A.J. and 

Protokishin, V.M.,  A model of a turbulent 
boundary layer with a non-zero pressure 
gradient,   Proceedings of National 
academy of science U.S.A. 2002; 5772-
5776 

2. Fukagata, K ,Iwamoto, K., and Kasagi, N., 
Contribution of the Reynolds stress 
distribution to the skin friction in wall 
bounded flows, Journal of physics of fluids 
2002;14: 73-76 

3. Gupta B.K., Effects of longitudinal surface 
curvature on heat transfer with 
dissipation,Journal of heat and mass 
transfer. 2003;14: 1575-1588  

4. Bradshaw P.,The analogy between 
streamline curvature and buoyancy in 
turbulent shearflow, Journal of fluid 

mechanics.2006; 36:177-191 
5. Mugambi  K.E., An investigation forces 

produced by fluid motion on a submerged 
finite plate. An unpublished Msc. Thesis; 
jomo Kenyatta University of Agriculture 
and Technology, Nairobi, Kenya. 2008;1-9 

6. George O.O.,  A study on convective heat 
transfer in a fluid flow over an immersed 
curved surface.   An unpublished Msc. 
Thesis; Jomo Kenyatta University of 
Science and Technology, Nairobi, 
Kenya.2009;1-33 

7. Gordon C.E., Numerical solutions of partial 
differencial equations Gaithersburg, 
Maryland. 2010 

8. Gathungu D.K.,  Analysis of convective 
heat transfer in a fluid flow over an 
immersed axi-symmetrical body with 
curved surfaces; Journal of Engineering 
and applied Science. 2011 

 
_ Appendix 1 

Computer code 
% solution of both velocity and momentum equation is described here. where 
% u1 is the solution for velocity equation and u2 is the solution to 
% momentum equation. the varying parameters are also described here. 
p(1) = 1.0; % Reynolds number 
p(2) = 1; % peclet number 
p(3) = 1; % pressure 
p(4) = 1; % length 
p(5) = 1; % velocity 
p(6) = 1; %kr radius of curvature 
p(7) = 2; % eckert number 
p(8) = 2; % surface area of the curvature 
p(9) = 1; % pt 
m = 0; 
x = linspace(0,1,11); 
t = linspace(0,1,5); 
sol = pdepe(m,@pdex2pde,@pdex2ic,@pdex2bc,x,t,[],p); 
u1 = sol(:,:,1); 
u2 = sol(:,:,2); 
figure(1) 
hold on 
%surf(x,t,u1); 
hold on 
plot(u1(4,1:10)) 
figure(2) 
hold on 
%surf(x,t,u2); 
plot(u2(2,1:9)) 
 
 
 function [ c,f,s ] = pdex2pde( x,t,u,DuDx,p ) 
%   PARTIAL DIFFERENTIAL EQUATION 
%   Both velocity and momentum equation are described here. u(1) 
%  representing the velocity equation values while u(2) will be representing momentum equation 
values 
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global Re Pe P L V Kr Ec A Pt 
Re = p(1); Pe = p(2); P = p(3); L = p(4); V = p(5); Kr = p(6); Ec = p(7); A = p(8); Pt = p(9); 
c = [1; 1]; 
f = [1/Re; 1/Pe].*DuDx; 
s = [(P*L/V^2)*Pt+Kr*L*u(1); (Ec/Re)*(DuDx(1))^2+(L^2*A/Pe)*(1-1/4*((Kr*u(1)*L*DuDx(1)^(-1))))]; 
end 
 
function [ u0 ] = pdex2ic( x,p ) 
% INITIAL CONDITION 
%   U0 represents the initial condition for both velocity and momentum 
%   equation. The intial condition is dependent on distance x 
u0 = [x; x]; 
end 
 
function [ pl,ql,pr,qr ] = pdex2bc( xl,ul,xr,ur,t,p ) 
%BOUNDARY CONDITION 
%   Boundary conditions for both velocity and momentum equations are 
%   described here 
pl = [ul(1); ul(2)]; 
ql = [0; 0]; 
pr = [ur(1)-1; ur(2)-1;]; 
qr = [0; 0]; 
end 


