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NATURAL CONVECTIVEHEAT TRANSFER IN A LAMINAR 1 

FLOW OVER AN IMMERSED CURVED SURFACE 2 

 3 

ABSTRACT 4 

Numerical solutions of unsteady laminar free flow of a viscous fluid past an immersed curved 5 

surface were presented in this research study. The two-dimensional fluid flow in consideration 6 

was unsteady and incompressible. Flows of this nature are commonly encountered in engineering 7 

studies such as Aerodynamics and Hydrodynamics. In our study, the continuity, the momentum 8 

and thermal energy equations were non-dimensionalized and the solutions of the dimensionless 9 

governing equations approximated using finite-difference method. The velocity and temperature 10 

fields were studied by varying various parameters in the equations governing the fluid flow. The 11 

results obtained were presented graphically for comprehensive and easier interpretation. From 12 

the results, it was found out that the dissipation of heat within the boundary layer increases with 13 

increase in the length of the curvature i.e when the length of the curvature was increased, a 14 

consequence increase in the amount of heat dissipated within the boundary layer was noted.  15 

Also at large Reynolds number, minimal amount of heat dissipated within the boundary layer 16 

was recorded.These findings would assist Engineers in making appropriate designs and estimate 17 

improvements in equipment that require minimal resistance to the fluid in motion. 18 

1 BACKGROUND INFORMATION 19 

Natural Convective heat transfer over an immersed curved surface is receiving research attention 20 

due to its wide applications in designing of devices  such as  flying planes, submarines,  pumps,  21 

cooling  fans among many others.  22 

 23 
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In the study of laminar flows, Gupta  et  al  (2003)  investigated  heat transfer along the surface 24 

with a longitudinal  curvature and concluded that as the curvature changes from  concave to 25 

convex, the Nusselt  number  decreases for Eckert number being small and  increases if the 26 

Eckert number is increased to unity. 27 

Bradshaw et al (2006) extended the study on the use of the algebraic analogy to the curved shear 28 

layers and the effects of the curvature on the mixing length if the shear layer thickness exceeds 29 

1/300 of the radius of the curvature. In their study they concluded that large effects occurred in 30 

compressible fluid flows. 31 

From the investigations conducted by Khosheviset al (2007) on effects of the concave curvature 32 

on turbulent fluid flows, it was found that turbulent intensities as well as shear stresses are high 33 

on concave surfaces compared to a flat surface under similar conditions. In their study, they 34 

concluded that the de-stabilizing effects on the boundary layer of the concave surface leads to 35 

increase in turbulence between the fluid particles similar to the way concave curvature would 36 

cause the flow to be destabilized. 37 

Mugambi   et al (2008)  in their investigation on the forces produced  by  the  fluid  motion  on a 38 

sub-merged  finite  curved plates established the relationship between geometrical shape of the 39 

curvature and the variation of drag force of specific velocities of the viscous fluid. 40 

George   et al (2009) in their study on the convective heat transfer over curved surface 41 

established that as fluid flows over an immersed curved surface, some work is done against 42 

viscous effect and energy spent is convertedinto heat.  The vortices formed in the boundary layer 43 

due to high velocity gradient is swept outwards from the boundary layer. They established that 44 

the rate of heat transfer is considerably high at points close to the convex surface within the 45 

boundary layer thickness. This, as a result leads to a decrease in fluid viscosity.  46 

Kioiet al (2011) in their study noted that when the Reynolds number is high, the heat dissipation 47 

in the boundary layer also goes high. Their study concluded that when the Reynolds number is 48 

increased, the consequence is decrease in drag. When the Reynolds number decreased, the effect 49 

of drag goes high. At high Reynolds number the lift is increased and vise versa, hence a direct 50 

proportionality of the two quantities. 51 
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Mawiraet al(2014) investigated the convective transfer of heat in a laminar boundary layer over 52 

an immersed curved surface. In their study, concluded that when the surface area of the curvature 53 

was increased, the velocity and temperature of the fluid increased and vise versa.  54 

From the above discussed research investigations and findings, it is clear that limited or little 55 

attention has been paid on the extent to which varying the length of the curvature would affect 56 

the velocity and temperature profiles along the unsteady  laminar fluid flow. This was the 57 

motivation of this research work. 58 

 59 

3 DESCRIPTION OF THE FLOW MODEL 60 

In this research work, a two dimensional laminar unsteady flow of a fluid over an immersed 61 

curved surface is studied. Since the body had both convex and concave surfaces there existed 62 

two non- zero pressure gradients as shown in the schematic diagram below. 63 

    Edge of boundary layer 64 

                     
డ௉

 డ௫
<0    (Favourable pressure gradient)    

డ௉

డ௫
> 0(Adverse pressure gradient) 65 

 66 

                     U0 67 

 68 

  69 

                                                                                                   Flow reversal causing eddy 70 

Figure 1. Effects of pressure gradients          Fluid flowing over the curved surface 71 

4  EQUATIONS GOVERNING THE FLUID FLOW 72 

 4.1     Equation of continuity: 73 

The general continuity equation is given as: 74 
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డఘ

డ௧
൅   . ሺݑߩሻ ൌ  0                                                                               (1.0) 75 

For two-dimensional fluid flow with constant density,   equation (1.0) reduces to: 76 

   
డ௨

డ௫
൅

డ௩

డ௬
 ൌ 0                                                                                          (1.1) 77 

4.2 Momentum equation  .  78 

Along the x-axis; 79 
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Along the y- axis; 82 
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డ௫  
µ  

డ௨

డ௬
൅

డ௩

డ௫
     ൅ ρFy                                                                                                                                    84 

Since   
డ௨

డ௫
൅

డ௩

డ௬
 ൌ 0, equations the above equations reduces to:                                                                           85 

ρ
 డ௨

డ௧
൅ ρ ቂݑ
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൅ ݒ
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డ௫డ௬
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and  87 

ρ
 డ௩
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respectively. 89 

From the boundary layer approximations, equation (1.2a) reduces to:  90 
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డ௨

డ௧
= െ 

ଵ

ఘ

డ௉

డ௫
൅

ஜ

ఘ

 డమ௨

 డ௬మ
 + Fx 91 

But  
ஜ

ఘ
 and thus the above equation further reduces to: 92ݒ = 

           
డ௨

డ௧
= െ 

ଵ

ఘ

డ௉

డ௫
൅ ݒ 

డమ௨

   డ௬మ
 + Fx                                                                           (1.3a) 93 

 Also  , equation (1.2b) reduces to: 94 

              0 = െ 
1

ߩ

߲ܲ

ݕ߲
  + Fy                                                                                                   (1.3b) 95 

 From Bernoulli’s equations, we have 96 

       P + 
ଵ

ଶ
ρu2  = constant                                                                             (1.4) 97 

The  curved surfaces provides both adverse and favorable pressure gradients whose tangential 98 

components of the velocity of the outer flow reveals a power law dependence on the stream wise 99 

x measured along the curved surface boundary as; 100 

௨

௖
 = xm                                                                                                        (1.5) 101 

Differentiating partially equation (1.4) with respect to x, we obtain  102 

డ௉

డ௫
൅ ݑߩ

డ௨

డ௫
 ൌ 0                                                                                         (1.6) 103 

Which implied that; 104 

െ
ଵ

ఘ

డ௉

డ௫
 ൌ ݑ

డ௨

డ௫
                                                                                            (1.7) 105 

But from the power law dependence,  106 

ݑ
డ௨

డ௫
ൌmc2x2m-1                                                                                        (1.8) 107 

Hence equation (1.3a) reduces to; 108 
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డ௨

డ௧
= Pt + ݒ

డమ௨

   డ௬మ
 + Fx    where   Pt = m c2 x2m-1                                                                  (1.9) 109 

  110 

 Prandtl proposed to account for curvature effect by multiplying the length of the curvature by 111 

factor f given by:            f = - 
ଵ

ସ

௞ೝ ௨

ሺ
ങೠ

ങ೤
ሻ
 + 1                                                    (2.0) 112 

He also deduced that the boundary layer equation on the curved surface is written as ; 113 

ݑ ௥݇ߩ
ଶ = ݄ଵ

డ௉

డ௬
   , which is re-written as 114 

ଵ

ఘ

డ௉

డ௬
   =   

௞ೝ ௨
మ

௛భ
                                                                                               (2.1) 115 

Where kr and h1 are curvature parameters which are defined as 116 

Kr = -  
ଵ

  ௖ሺ௫ሻ
                                                             117 

h1  = 1 + kr y                                                                                              118 

Where c(x) is the radius of the curvature. 119 

 Body forces, Fx and Fy due to the gravitational pull are assumed to be a constant in both cases 120 

and thus the assumption: 121 

        Fx = Fy                                                                                                                                (2.2) 122 

 Hence the generalized equation of conservation of momentum for fluid flow over an immersed 123 

curved surface is derived as; 124 

డ௨

డ௧
=  Pt+ ݒ

డమ௨

   డ௬మ
 +  

௞ೝ ௨
మ

௛భ
                                                                               (2.3) 125 

Since h1 = 1+ kr y, the term 
௞ೝ ௨

మ

௛భ
   is written in Taylor  series as  126 

݇௥ ݑ
ଶ (1 +݇௥ ݕ)-1 = ݇௥ ݑ

ଶ (1- ݇௥ ݕ +   ݇௥
ଶ127                                                   (..…+ ݕ 

 And therefore, equation (2.3) yields 128 
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డ௨

డ௧
= Pt + ݒ

డమ௨

   డ௬మ
 +݇௥ ݑଶ (1-݇௥ ݕ +  ݇௥

ଶ129 (2.4)                                            (..…+ ݕ 

The flow is along the x- axis. This implies that y ≅ 0 and for every small value of ݇௥ we have (1-130 

݇௥ ݕ +  ݇௥
ଶ1 = (..…+ ݕ. Consequently, equation (2.4) reduces to  131 

డ௨

డ௧
=  Pt  + ݒ

డమ௨

   డ௬మ
 +݇௥ ݑଶ                                                                          (2.5) 132 

This is our momentum equation in consinderation 133 

4.3 The Energy equation 134 

The general equation  is given as 135 

    ρ ܥ௣
஽௛

஽௧
 = K2 T + µø,                                                                           (2.6) 136 

 Where 137 

ø = 2 ൤ቀ
డ௨

డ௫
ቁ
ଶ
൅ ቀ

డ௩

డ௬
ቁ
ଶ
൨൅ ቀ

డ௨

డ௬
൅

డ௩

డ௫
ቁ
ଶ
                                                           (2.7) 138 

By considering unsteady incompressible flow in a control volume, the standard thermal energy 139 

equation for the thermal boundary layer is given by 140 

ݒߩ
డ௛

డ௬
 ൅ρ

డ௛

డ௧
൅ ݑߩ

డ௛

డ௫
  ൌ ሺµø+ q) + 

డ

డ௫
ቀ݇

డ்

డ௫
ቁ ൅ 

డ

డ௬
ቀ݇

డ்

డ௬
ቁ ൅ቀݑ

డ௉

డ௫
൅ ݒ

డ௉

డ௬
ቁ                (2.8) 141 

where h was the enthalpy and q was  the rate of heat dissipation. 142 

Now the enthalpy h is given by: 143 

݄  ൌ  ܧ  ൅  ܲ ቀ
ଵ

஡
ቁ                                                                                 (2.9) 144 

then, the first order derivative of enthalpy becomes 145 

݄݀  ൌ ቀ+ܧ݀ 
ଵ

஡
ቁ  ݀݌ + ܲ݀ ቀ

ଵ

஡
ቁ                                                              (3.0) 146 

But  ݀ܳ ൌ  ܧ݀ ൅  ܹ݀ ൌ  ݀݌ + ܧ݀  ቀ
ଵ

஡
ቁ and for a unit mass and a single species fluid, 147 
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݀ܳ ൌ  Therefore we have 148  .ݏ݀ܶ 

dE = Tds - pdቀ
ଵ

஡
ቁ                                                                            (3.1) 149 

In view of (3.1), equation (3.0)  yields: 150 

݄݀  ൌ ቀ + ݏ݀ܶ 
ଵ

஡
ቁ  ݀݌ + ܲ݀ ቀ

ଵ

஡
ቁ - ݀݌ ቀ

ଵ

஡
ቁ                                      (3.2) 151 

hence  152 

݄݀  ൌ ቀ + ݏ݀ܶ 
ଵ

஡
ቁ ݀ܲ                                                                    (3.3) 153 

Assuming that ݑ
డ௉

డ௫
 and ݒ

డ௉

డ௬
 were negligible and ݄݀  ൌ  equation (2.8) reduces to  154 ,ܶ݀݌ܥ 

ߩ௣ܥ
డ்

డ௧
  ൅ ܥ௣ߩ ቀݑ 

డ்

డ௫
൅ ݒ

డ்

డ௬
ቁൌ ݇

డమ்

   డ௬మ
൅μ ቀ

డ௨

డ௬
ቁ
ଶ
 155 (3.4)                   ݍ +

Now, the convection equation is expressed as: 156 

 ݍ ൌ  157 (3.5)                                                                                  ܶ݀ܣܭ 

where  ݀ܶ = ( ஶܶ - ௦ܶሻ is the difference in temperature between the body surface and the bulk 158 

fluid.  A is the area of the surface. 159 

In this case, the area of the surface was the length of the curved surface and for this concave 160 

surface which had a destabilizing effect, the effect of the curved surface was taken into account 161 

by  multiplying the area, A by a dimensionless factor earlier defined. This resulted to: 162 

ݍ                 ൌ  163 (3.6)                                                                  ܶ݀ ܭ݂ܣ

Where ݍ is the heat transferred per unit time. 164 

On replacing f, equation (3.6) reduces to 165 

ݍ ൌ ݇ ቆ1  െ 
ଵ

ସ

௞ೝ ௨

ሺ
ങೠ

ങ೤
ሻ
ቇܣ( ஶܶ - ௦ܶሻ                                                      (3.7) 166 

From Newton’s law of cooling, the local heat flux is given by 167 
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௦ݍ
,,=  ݄( ஶܶ - ௦ܶሻ                                                                               (3.8) 168 

Where h is the local convection coefficient. 169 

Since the flow conditions varied from one point to another on the curved surface, both ݍ௦
,, and h 170 

also varied along the curved surface. 171 

For any particular distance x from the edge of the curved surface, ݍ௦
,, was found by applying the 172 

Fourier’s Law to the fluid. This was done at y = 0 and was given as: 173 

௦ݍ -      
ᇱᇱ=  ݇

డ்

డ௬
   , which can be re-written as: 174 

௦ݍ           
ᇱᇱ= - ݇

డ்

డ௬
                                                                                                        (3.9) 175 

The local convection heat transfer is expressed as  176 

             h =െ ݇
డ்

డ௬
ሺ  ஶܶ  െ   ௦ܶሻ

ିଵ                                                                             (4.0) 177 

At the thermal boundary layer, the rate of heat conduction along the y- direction was larger than 178 

that along the  x- axis i.e  
డ்

డ௬
>>

డ்

డ௫
 179 

Then thwe have: 180 

ߩ௣ܥ ቀݑ 
డ்

డ௫
൅ ݒ

డ்

డ௬
ቁ൅ܥ௣ߩ

డ்

డ௧
  ൌ ݍ ൅ ݇

డమ்

   డ௬మ
൅μ ቀ

డ௨

డ௬
ቁ
ଶ
                                          (4.1) 181 

From the above approximations, equation (4.1) reduces to 182 

ߩ௣ܥ   
డ்

డ௧
   ൌ ݇

డమ்

   డ௬మ
൅μ ቀ

డ௨

డ௬
ቁ
ଶ
 183 (4.2)                                                                        ݍ +

But the value of q is replaced with equation (3.7) in order to take care of the curvature effects 184 

and hence on substituting equation (3.7) in equation (4.2) we have: 185 

ߩ௣ܥ   
డ்

డ௧
   ൌ ݇

డమ்

   డ௬మ
൅ μ ቀ

డ௨

డ௬
ቁ
ଶ
൅ ݇ ቆ1  െ 

ଵ

ସ

௞ೝ ௨

ሺ
ങೠ

ങ೤
ሻ
ቇܣ( ஶܶ - ௦ܶሻ                            (4.3) 186 
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Equation (4.3) gives the equation of energy for convective heat transfer over an immersed curved 187 

surface. 188 

5 NON-DIMENSIONALIZING THE EQUATIONS GOVERNING THE FLOW 189 

In our research work, we let L, V, P and T to be the characteristic length, velocity, pressure and 190 

temperature respectively. The following transformations were used to reduce our equations in a 191 

dimensionless form; 192 

௫

௫∗
ൌ      ,ܮ

௬

௬∗
ൌ       ,ܮ

௨

௨∗
ൌ ܸ,       

௩

௩∗
ൌ ܸ,     

௣

௣∗
ൌ ܲ,    ܶ∗ሺ ஶܶ  െ  ௦ܶሻ

-1 = ܶ  െ  ௦ܶ 193 

 ܮ∗ݐ ൌ  ݐorܸݐ  ൌ  
௧∗ܸ

L
  194 

5.1   Equation of Continuity 195 

For this particular fluid flow, the equation of continuity is given by  196 

 
డ௨

డ௫
൅

డ௩

డ௬
 ൌ 0                                                                                    (4.4) 197 

On non-dimensionalizing, the equation of continuity becomes 198 

 
డሺ௨∗௏ሻ

డሺ௫∗௅ሻ
൅

డሺ௩∗௏ሻ

డሺ௬∗௅ሻ
 ൌ 0                                                                        (4.5) 199 

 200 

Or     
௏

௅
ቀ
డ௨∗

డ௫∗
൅

డ௩∗

డ௬∗
ቁ ൌ 0                                                                             (4.6) 201 

 202 

Or     ቀ
డ௨∗

డ௫∗
൅

డ௩∗

డ௬∗
ቁ ൌ 0                                                                               (4.7) 203 

5.2   TheMomentum  Equation 204 

The equation of conservation of momentum for this flow problem is given by 205 

డ௨

డ௧
= Pt  + ݒ

డమ௨

   డ௬మ
 +݇௥ ݑଶ                                                                      (4.8) 206 
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On non-dimensionalizing, the equation becomes: 207 

డሺ௨∗௏ሻ

డሺ
೟∗ಽ

౒
ሻ
=P* Pt +ݒ

డమሺ௨∗௏ሻ

   డሺ௬∗௅ሻమ
+ ݇௥ ሺݑ

∗ܸሻଶ                                               (4.9) 208 

On re-arrangement, the equation becomes 209 

௏మ

௅

డ௨∗

డ௧∗
= PPt

* +
௩௏

௅మ
డమ௨∗

   డ௬∗మ
+ ݇௥ ܸ

ଶݑ∗ଶ                                                      (5.0) 210 

Multiplying both sides by   
௅

௏మ
we have 211 

డ௨∗

డ௧∗
= 
௉௅

௏మ
Pt

* +
௩

௅௏

డమ௨∗

   డ௬∗మ
+ ݇௥ ݑܮ

∗ଶ                                                           (5.1) 212 

This is the equation of momentum in non-dimensional form 213 

5.3 TheEnergy Equation 214 

The equation of conservation of energy is given by 215 

డ்

డ௧
  ൅ ݑ

డ்

డ௫
  ൅ ݒ

డ்

డ௬
  ൌ

௞

   ஼೛ఘ

డమ்

   డ௬మ
 ൅ 

ஜ

   ஼೛ఘ
ቀ
డ௨

డ௬
ቁ
ଶ
൅  

௞஺

   ஼೛ఘ
( ஶܶ - ௦ܶሻ ቆ1  െ 

ଵ

ସ

௞ೝ ௨

ሺ
ങೠ

ങ೤
ሻ
ቇ                          (5.2) 

216 

From the boundary approximations the above equation reduces to 217 

డ்

డ௧
   ൌ

௞

   ஼೛ఘ

డమ்

   డ௬మ
 ൅ 

ஜ

   ஼೛ఘ
ቀ
డ௨

డ௬
ቁ
ଶ
൅  

௞஺

   ஼೛ఘ
( ஶܶ - ௦ܶሻ ቆ1  െ 

ଵ

ସ

௞ೝ ௨

ሺ
ങೠ

ങ೤
ሻ
ቇ                                                 (5.3) 218 

From the non-dimensional form of T, we have: 219 

ܶ∗ =   
் ି  ೞ்

ሺ  ಮ் ି  ೞ்ሻ
 , which on making T the subject of the formulae yields 220 

         ܶ ൌ ܶ∗( ஶܶ  െ   ௦ܶሻ  + ௦ܶ    and thus the equation of energy becomes 221 

డ ሾ்∗ሺ ಮ் ି  ೞ்ሻ  ା  ೞ்ሿ

డሺ
೟∗ಽ

౒
ሻ

ൌ
௞

   ஼೛ఘ

డమ ሾ்∗ሺ ಮ் ି  ೞ்ሻ  ା  ೞ்ሿ

   డሺ௬∗௅ሻమ
൅

ஜ

   ஼೛ఘ
ቀ
డሺ௨∗௏ሻ

డሺ௬∗௅ሻ
ቁ
ଶ

൅
௞஺

   ஼೛ఘ
( ஶܶ- ௦ܶሻ ቆ1  െ 

ଵ

ସ

௞ೝ ሺ௨
∗௏ሻ

ቀ
ങሺೠ∗ೇሻ

ങሺ೤∗ಽሻ
ቁ
ቇ 

222 

                                                                                                                                            (5.4) 223 
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On further simplification, the above equation yields 224 

௏ሺ ಮ் ି  ೞ்ሻ  

௅

డ்∗

డ௧∗
ൌ

௞

   ஼೛ఘ

ሺ ಮ் ି  ೞ்ሻ 

௅మ
డమ ்∗

   డ௬∗మ
൅

ஜ௏మ

   ஼೛ఘ௅
మ ቀ

డ௨∗

డ௬∗
ቁ
ଶ

൅
௞஺

   ஼೛ఘ
( ஶܶ- ௦ܶሻ ቆ1  െ 

ଵ

ସ

௞ೝ ௨
∗௅

ቀ
ങೠ∗

ങ೤∗
ቁ
ቇ          (5.5) 225 

Diving all through by the term 
௏ሺ ಮ் ି  ೞ்ሻ

௅
, we obtain 226 

డ்∗

డ௧∗
ൌ
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Multiplying the term
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 by V  in the numerator and the denominator, we obtain 228 
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The equation (5.7) represent the equation of conservation of energy in non-dimensional form 230 

6 VALIDATION OF THE FLOW MODEL 231 

In order to validate our flow model, we assume the initial boundary conditions as per each of the 232 

equations as in below; 233 

6.1 Equation of momentum 234 

Our  momentum equation is solved subject to the following boundary and initial conditions in 235 

non-dimensional form 236 

u*( t*, 0) = 0 237 

u*( t*, ∞) = 1 238 

u*( 0, y*) = y 239 

6.2 Energy equation 240 

The energy equation is solved subject to the following boundary and initial conditions in the 241 

non-dimensional form 242 
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         T*( t*, 0) = 0 243 

         T*( t*,  ∞) = 1 244 

         T*(0,  y*) = y  245 

 246 

 247 

     6   REPRESENTATION OF THE RESULTS 248 

We solved our governing equations and obtained the results which were presented graphically 249 

using MATLAB software as below 250 

 251 

Figure 2: Velocity profiles for Re = 1.3,  Pe = 1, V=1, Kr = 1, Ec = 2, A = 2, Pt = 1 252 

From figure 2, when the length of the curvature is increased form L= 0.5 to L= 1.0 , the free 253 

stream velocity is accompanied by a considerable increase from 0.275501 to 0.360971 as shown 254 

on the graph. 255 
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This is because as the length of the curvature increases, the velocity gradient also increases. 256 

Increase in velocity gradient increases the velocity of the fluid flow in considerationi.e. when the 257 

length of the curvature is increased, the velocity gradient also increases and a consequence 258 

increase in free stream velocity is recorded. 259 

More so, when the velocity gradient is increased, the kinetic energy of the fluid particles in 260 

motion increases at the boundary layer which implies that the fluid particles are at high velocities 261 

 262 

 263 

   264 

 Figure 3: velocity profiles for Re=1.3, Pe=1, V=1, Kr = 1, Ec = 2, A = 2, Pt = 1 265 

DISCUSSION 266 

From Figure 3, we note that when the length of the curvature is increased from L = 0.5 to L = 267 

1.0, the heat dissipation in the boundary layer increases from 0.392678 to 0.572599. 268 

This is because increase in the length of the curvature increases the velocity gradient which leads 269 

to increase in shear stresses. The friction between the fluid particles and the surface in 270 

consideration is brought about by these shear stresses. In return, this friction force causes the 271 

dissipation of heat in the boundary layer. This is due to the fact that the shear stress is directly 272 
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proportional to velocity gradient.  i.e   τ = µ
డ௨

డ௬ 
.when the velocity gradient is increased, the shear 273 

stress increases which brings about friction between the fluid particles leading to increase in heat 274 

dissipation. 275 

 276 

 277 

 278 

Figure 4:  Velocity Profile for L=1,Pe=1, V= 1, Kr= 1,Ec= 2, A = 2,  Pt= 1 279 

DISCUSSION 280 

From Figure 4, we note that as the Reynolds number increases from 0.7 to 1.3, a direct 281 

consequence of the increase in inertia forces occurred leading to increase in velocity from 282 

0.297405 to 0.367155. When the Reynolds number is large, the inertia forces tend to dominated 283 

over the viscous force and consequently, the friction of the fluid particles and the surface in 284 

consideration is very minimal resulting to increase in velocity of the fluid flow. At large inertia 285 



16 
 

forces, the velocity of the fluid is high since low viscous forces implies that little or minimal 286 

friction exists between the fluid particles and the surface in consideration. 287 

 288 

 289 

 290 

 Figure 5:  Temperature profile for L=1, Pe = 1, V = 1, Kr= 1, Ec= 2, A = 2, Pt= 1  291 

DISCUSSION 292 

From Figure 5, we note that when the Reynolds number is increased from  0.8 to 1.3, the heat 293 

dissipation in the boundary layer reduces from 0.613144 to 0.508381. 294 

This is because when the value of the Reynolds number is low, the inertia forces are minimal. 295 

The viscosity of the fluid thus dominate over the inertia forces and consequently, the friction of 296 

the fluid particles with surface increases resulting to increase in heat dissipation within the 297 

boundary layer. When Reynolds number is large, the viscous forces are very minimal since 298 

inertia forces dominate in the fluid flow. Consequently, the friction of the fluid particles with the 299 

surface is minimal and this results to minimal dissipation of heat within the boundary. 300 
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 301 

 302 

 303 

 304 

6 CONCLUSION AND RECOMMENDATIONS 305 

Numerical investigations of the convective heat transfer in a laminar boundary layerover an 306 

immersed curved surface has been carried out. The variations of the length of the curvature as 307 

well as the Reynolds number affect  the velocity and temperature profiles in the laminar 308 

boundary layer. 309 

When the length of the curvature was increased, this led to velocity and temperature rise. This 310 

matched the theoretical explanation since increase in velocity gradient increases the velocity of 311 

the fluid flow. Also at high velocity gradients, the shear stresses are high which brings about the 312 

friction between the fluid particles and the surface. Consequently, heat is dissipated. It thus 313 

follows that the length of the curvature is directly proportional to the velocity and temperature 314 

distribution. 315 

It isalso observed that at large Reynolds number, the inertia forces are large compared to the 316 

viscous effect of the fluid and consequently, the fluid velocity increases. This is in line with 317 

theoretical explanation, since at low viscosity, minimal shear stresses exist between the fluid 318 

particles and the surface and thus the velocity of the fluid is favored. At low Reynolds number, 319 

the viscosity of the fluid is high since there are minimal inertia forces. Consequently, the fluid 320 

velocity goes down. At large Reynolds number, the amount of heat dissipated at the boundary 321 

layer is  minimal due to minimal friction between the fluid particles and the surface. 322 

It therefore follows that Reynolds number is directly proportional to the velocity distribution and 323 

inversely proportional to the temperature distribution in the boundary layer. 324 

It is recommended that further investigations be done in the following areas: 325 

1. Compressible fluid over immersed surface 326 
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2. Convective heat transfers on turbulent fluid flows over immersed curved surface 327 

3. Study of the same orientation but in three-dimension 328 
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