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ABSTRACT: A new type of intermittency observed in an autostochastic dynamic 8 

system with a multicomponent chaotic attractor consisting of several Lorentz 9 

attractors is considered. It is shown that it is caused by the coexistence of two types 10 

of intermittency: "chaos – chaos" and "quasiperiodic motion – chaos". The main 11 

statistical characteristics of this movement are also given. 12 
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1. INTRODUCION 19 

 20 

The study of the unpredictable alternation of different types of motion 21 

observed in many physical systems is one of the important problems of nonlinear 22 

dynamics. This phenomenon is known as intermittency. It is associated with the 23 

coexistence of different types of interacting attractors in the dynamic system phase 24 

space and manifests itself, in particular, in the form of the intermittency "quasi-25 

regular motion-chaos" [1-4] and "chaos-chaos" [5-8]. 26 

The intermittency of "quasi-regular motion-chaos" is relatively well studied 27 

concerning discrete maps, in particular, in the contest of scenarios for the origin of 28 

stochastic motion processes, where strictly justified results were obtained [9-10]. 29 

This phenomenon is not fully investigated in continuous time systems. The dynamic 30 

systems with comparatively simple arranged areas of attraction, consisting of two 31 

attractors namely one chaotic and one regular [00], were mainly investigated. 32 

Outside the attention of researchers remained, in particular, the intermittency 33 

"quasiregular movement - chaos" at chaotic multiattractors described, for example, 34 

in [11-17] "scroll grid attractors" [11] and on composite (compound) chaotic 35 

multiattractors [8,18-25]. The motion on composite chaotic multiattractors, which is 36 

one of the most striking examples of the intermittency of “chaos-chaos”, however, 37 

may contain regular motion intervals – during transitions of phase trajectories 38 

between local chaotic attractors [8, 18-20]. Thus, they may have a new type of 39 

intermittency characterised by the coexistence of both types of intermittency: 40 

“chaos-chaos” and “quasi-regular movement-chaos”. 41 

As a rule, because of the short duration of the episodes of transition 42 

movements from one local attractor to another, the observation of the proper motion 43 

in such systems is difficult, resulting in their dynamics appears as a collection of 44 

chaotic fluctuations on a local attractors and chaotic hopping of movement from one 45 

of them to another. However, in some cases, a significant increase in the transition 46 

time is possible, resulting in a new type of intermittency is quite clear. 47 
 48 



2. INTERMITTENCY “QUASIREGULAR MOTION - CHAOS” IN THE DYNAMIC 49 

SYSTEM WITH MULTIPLE LORENZ ATTRACTORS 50 

 51 

 52 

For example, consider the following dynamic system with the amounts of the 53 

composite chaotic multiattractor consisting of attractors of Lorenz [8]: 54 

 55 
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 63 

– replicates (reduplicate) operator creates copies of the attractor of the original 64 

dynamical system, ordered by coordinate ξ=µx+y, where µ is a real constant, and 65 

their merger into a single multiattractor. It represents a nonlinear function consisting 66 

of 1+M+N line segments of unit slope, connected by more steep intermediate 67 

segments with slope -d. 68 

 The number of local attractors in the multiattractor of system (1), (2) is equal 69 

to the number of line sections with a single slope. Each of them is inside its region of 70 

phase space (phase cell), with a length of 2h in the coordinate ξ. The constant s 71 

accounts for the asymmetry of the local attractors relative to the centre of your cell. 72 

The coefficient d determines the width of the transition layer the phase space 73 

between adjacent cells (equal to 2h/d) [8]. 74 

Let A=10.5, B=33.2189, C=3/8, M=1, N=0, h=22, d=10, s=0. In this case, the 75 

replicate operator is a nonlinear function of the variable ξ containing two line 76 

segments with unit slope, connected by an intermediate segment with a slope -d 77 

(Fig.1), and the system (1) has the simplest composition multiattractor containing 78 

two local chaotic attractors (Fig.2).  79 

 80 



 81 

 82 

Let us consider the evolution of such multiattractor when we change the 83 

value of constantsµ. When µ < -0.2, transitions of the phase point between the local 84 

attractors occur along short smooth segments (Fig.2, a). In the result, the phases of 85 

regular movement look like a fast direct transition of the phase point from one of the 86 

local chaotic attractor on the other. 87 

 88 

 89 
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Fig.2,a. Example of the transition movement in the system (1), (2) 
from local chaotic attractor 1 on the local chaotic attractor 2 when 

µ = -0.2. 
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Fig.2,b. Example of the transition movement in the system (1), (2) 
from local chaotic attractor 1 on the local chaotic attractor 2 when 

µ = -0.15. 



However, if the value of this parameter is increased to -0.15 phase 90 

trajectories begin to twist around the unstable cycle, which owes its existence to 91 

nonlinearity of the replicate function. First, when µ≈ -0.15, trajectories manage to do 92 

a maximum of one turn before it gets into the region of attraction of one of the local 93 

attractors and is attracted to it (Fig.2, b).  94 

With the increase of this coefficient the maximum number of turns of the 95 

trajectories increases, accordingly, increases the average time of regular motion in 96 

the neighbourhood of this cycle. In the timing diagram long sections of quasiperiodic 97 

oscillations appear (Fig.3). When µ ≈ -0.1 cycle becomes stable. Now the phase 98 

trajectory, once finding itself in the region of its attraction cannot leave. That is, the 99 

case µ ≥ -0.1  corresponds to the global metastability of the system (1), (2). A 100 

movement, which begun on any of the local chaotic attractors, through the end time, 101 

will always reach a stable cycle corresponding to regular oscillations. 102 

Thus, in the interval of values of the coefficient µ  from about -0.15 to -0.1 for 103 

the chosen values of the other constants, the system (1) and (2) show a typical 104 

example of intermittent dynamics. If the value of µ is close to -0.1 long laminar 105 

phases of motion is observed, during which the number of revolutions of the phase 106 

trajectory around the unstable cycle can be very large (Fig.3). 107 

 108 

The same behavior of the system (1), (2) is observed in the General case of 109 

an arbitrary number of local attractors in the composition of multiattractor [8]. 110 

 111 
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Fig.3, b. An example of time dependencies of dynamic 

variable x of system (1), (2) when µ = -0.109. 

Fig.3, a. An example of time dependencies of dynamic 

variable y of system (1), (2) when µ = -0.109. 
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 112 

3. STATISTICAL CHARACTERISTICS 113 

 114 

Random variables that can be investigated by statistical methods to 115 

description of the phenomenon of intermittency in dynamical systems that have 116 

multiple chaotic multiattractor are the duration of individual episodes of motion on 117 

the chaotic attractors and in the vicinity of the regular attractors, part of 118 

multiattractor. 119 

In the present case, the most important are the dependence of the relative 120 

total time of the regular movements of the value of the constant µ and frequency 121 

distribution of durations of regular and chaotic motions. 122 

The relative total duration of regular motion is equal to 
Σ

∞→

∑
Σ

=
T

T

to i

ireg

T
reg lim , 123 

where TΣ  – total time of observation, Treg i   – duration of the i-th episode of a regular 124 

movement. 125 

The frequency distribution, in this case, represents the relationship "the 126 

number of episodes of movement on the selected attractor – the duration of these 127 

episodes" for the observation time TΣ  at TΣ →∞. 128 

The dependence toreg (µ) for three values of the slope of the intermediate 129 

segment of the replicate function (d=10, d=100, d=∞) is shown in Fig.4. A 130 

characteristic feature of this dependence is the existence of the limit of the 131 

maximum value of toreg when d<∞. For example, for d=10 and d=100 the percentage 132 

of time consumed on a regular traffic may not exceed approximately 0.55. In the 133 

case of discontinuous replicate function, the upper limit of toreg is equal to 1. 134 

Note that these dependences are satisfactorily approximated by functions of 135 

the form 136 

                                
( ) λδ

µβµ

α

−
=regto ,                                      (3) 137 

 138 

where – α, β, δ, λ –  are positive constants 139 

For the dependence corresponding to d=10 (Fig.4), these constants have 140 

the following values: α=1.6 .10
-8
, β=0.1005, δ=0.45, λ=6. For the dependence 141 

corresponding to d=100, these constants have the following values: α=3 .10
-6
, 142 

β=0.0993, δ=0.35, λ=4. For the dependence corresponding to d=∞ , they are equal 143 

α=1.5 .10
-4
, β=0.09975, δ=0.6, λ=1.8. 144 

Frequency distribution of durations of episodes of motion on the chaotic 145 

attractors is shown in Fig.5. They show that the duration of motion on the chaotic 146 

attractors are concentrated within a limited interval within which appreciable 147 

secondary concentration ravnodushie with each other the highs. The values of the 148 

maximums are approximately uniformly distributed throughout the interval. The 149 

equality of intervals between the peaks is due to the fact that the visit of the phase 150 

point of the intersection area of the chaotic attractor with the boundary of its phase 151 

cell is mostly quasi-periodic character. Any pronounced dependence of these 152 

distributions from µ  not observed. 153 

 154 



 155 

Fig.4. The dependence of the relative total time to the regular 

movements of the value of the constants µ at d=10 (����  - numerical data, 
dashed line – approximation by function (3)), d=100 (x - numerical data, 

small dashed line – approximation by function (3)), d=∞ (o - numerical 

data, solid line – approximation by function (3)). µ0 – limit constant value 

µ, above which the regular oscillations become stable (for d=10 µ0≈ -

0.10088, for d=100 µ0≈ -0.09966, for d=∞ µ0≈ -0.1002). 
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Fig.5, a. Frequency distribution of durations of episodes of 
movement on the local chaotic attractor 1. 
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Fig.5, b. Frequency distribution of durations of episodes of 
movement on the local chaotic attractor 2. 
 



Fig.6 shows the frequency distribution of durations of episodes of regular 156 

motion, including at least one rotation of the trajectory around the unstable cycle, 157 

with µ=0.1009, 0.109 and 0.125, which, according to Fig.4, corresponding to values 158 

of relative total duration of regular movement toрег approximately equal to 0.55, 0.1 159 

and 0.03. It is seen that these distributions have an exponential character. That is, 160 

the duration of episodes of regular movement, in general, are concentrated near the 161 

minimum value, which is equal to time of one rotation of the phase trajectory around 162 

the unstable cycle (τturn≈90). Also, it is seen that the distributions consist of 163 

significantly more highly expressed, compared to the distributions in Fig.6, the 164 

individual concentrations, separated by equal intervals of τturn /2, which is a direct 165 

consequence of the quasi-periodic nature of the regular movement. (The fact that 166 

neighbouring maxima separated by intervals of length exactly τturn /2, because for 167 

every revolution, the trajectory passes through the vicinity of two areas of contact of 168 

regular manifolds with chaotic attractors).  169 

 170 

Fig.6, b. 
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A comparison of these distributions corresponding to different values of the 171 

constant µ, shows their strong dependence on toreg. With the reduction in relative 172 

overall duration of regular motion, the distribution of the lengths of its intervals is 173 

substantially compressed by the ordinate. From Fig.6 it can be seen that when µ 174 

changes from -0.1009 to -0.125 (in this case toreg is reduced from 0.55 to 0.03 – see 175 

Fig.5) maximum observed length of intervals of regular motion is reduced four times 176 

– i.e. from 4000 to 1000. 177 

 178 

 179 

3. THE MECHANISM OF INTERMITTENCY 180 

 181 

The reason for the alternation between chaotic and laminar phases of the 182 

movement in the system (1), (2) is the coexistence of interacting attractors of two 183 

types (i.e. chaotic and regular) that are in a metastable state, and having such a 184 

mutual position that the phase trajectory, leaving the attractor of the same type 185 

always appears in the region of attraction of the attractor of another type. 186 

Metastability of regular motion due to instability of the corresponding limit 187 

cycle: Metastability of the local chaotic attractors induced by the choice of size of the 188 

containing cell of the phase space, so that each of them had crossed the boundaries 189 

of its cell, causing the phase trajectory gets the opportunity to leave a local attractor 190 

through the area of its intersection with the border of the cell [8,18-20]. 191 

Therefore, the mechanism for intermittent oscillations in dynamic systems 192 

that have composite chaotic multiattractors, can be described as follows. 193 

For example, the initial conditions are chosen in the domain of attraction of 194 

one of the local chaotic attractors. Then, the phase point coming on this attractor will 195 

have some time to make chaotic motion on it, until it leaves it through the 196 

intersection with the boundary of the phase cell. Getting off a chaotic attractor it gets 197 

into the region of attraction of the unstable limit cycle and starts a quasi-periodic 198 

motion in its surroundings. Because of the instability cycle, the magnitude of the 199 

momentum of the phase trajectory around it over time begins to grow (Fig.3,b) with 200 

simultaneous displacement of the region of rotation of the phase trajectories at the 201 

unstable manifold – until the phase trajectory crosses the border of the region of 202 

attraction of one of the local attractors and be attracted to it. Further, the movement 203 

continues on a chaotic attractor, while the phase trajectory will go beyond the 204 

boundaries of the containing its cell of the phase space and does into the region of 205 

attraction of the cycle, and again started to make momentum around it. The result is 206 

a typical pattern of intermittency "quasi-periodic motion – chaos" (Fig.3).   207 
 208 
 209 
 210 

4. CONCLUSION 211 

 212 

Thus, in a homogeneous multiattractor system based on the Lorenz 213 

attractors, it is possible to observe a new type of intermittency, characterized by the 214 

coexistence of two types of intermittency – intermittency of “chaos – chaos” and 215 

intermittency “quasiregular movement – chaos.” The manifestation and nature of 216 

intermittency “quasiregular traffic – chaos” are controlled by way of the introduction 217 

of the replicate operator in the Lorenz equations. That is, a set of those variables 218 

(replication variables [19]) relative to which it is set. 219 



From the conducted consideration it is seen that depending on the choice of 220 

the replication variable (in the case under consideration, the modification of this 221 

variable is carried out by changing the coefficient µ), the alternation of chaotic and 222 

quasi-regular behaviour of the system can be very clearly manifested. Therefore, 223 

the dynamic systems of the considered type can serve as a very convenient model 224 

for demonstrating and more detailed study of such, in many ways still mysterious 225 

phenomenon of dynamics as intermittency. 226 

In the context of the material of this article, it is advisable to further 227 

investigate, for example, the dependence of the properties of the phenomenon 228 

under consideration on the regime of chaotic oscillations on local chaotic attractors, 229 

on the parameters of the replicating function, as well as on the modification of the 230 

replication variable within a wider range. 231 

 232 
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