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ABSTRACT  8 
 9 
In thermodynamics, there is a relation that connects the thermal expansion coefficient and the 
isothermal compressibility. It has been supposed that it was a universal identity. It is shown that it is 
often not an identity for condensed phases. Experimental measurements confirm this conclusion. This 
relation is used in the derivation of Mayer's relation and the heat capacity ratio; therefore Mayer's 
relation and the heat capacity ratio also produce the wrong results for condensed phases, which is 
confirmed experimentally. Another mistake in the derivation of Mayer's relation is found. 
 10 
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1. INTRODUCTION  16 
 17 
There is a relationship in thermodynamics [1]: 18 
 19 
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 21 
where  is the thermal expansion coefficient, V is volume, T is temperature, P is pressure, and  is 22 
the isothermal compressibility. It has been supposed that this is a universal identity. However, one 23 
can show that it often fails for condensed phases. The third Maxwell relation is: 24 
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 27 
where S is entropy. Often when the internal energy U varies, then T varies and vice versa; hence in 28 
these cases:  29 
 30 
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 32 
From Eqs. (1), (2), and (3) and the combination of the first and second laws of thermodynamics: 33 
 34 
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 36 
it follows that 37 
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 Let us check this equation. For Fe at room temperature and atmospheric pressure,  = 41 
3.6×105 K1 [2] and  = 0.594×1011 m2/N [3]. Hence / equals 6×106 m2/(NK), but P/T equals 336 42 
m2/(NK). For NaCl under the same conditions,  = 1.2×104 K1 [4],  = 0.42×1010 m2/ N [3] and / 43 
equals 2.9×106 m2/(NK). It is clear that P in Eq. (4) is not atmospheric pressure but the sum of 44 
atmospheric pressure and pressure due to surface tension, with the former being negligibly small 45 
compared to the latter. This pressure is not independent of temperature. It is evident that Eq. (1) does 46 
not describe the processes in this case precisely. One can show that it is often not an identity for 47 
condensed phases. As this equation is used in the derivation of Mayer's relation and the heat capacity 48 
ratio; they also produce the wrong results. 49 
 50 
2. THEORY 51 
 52 
Let us perform a process of heat exchange: we introduce a quantity of heat into a solid or liquid (Eq. 53 
(4)). Its temperature will increase, its volume will increase, and the surface tension pressure will 54 
increase. Therefore, the volume is a function of temperature, and temperature is a function of 55 
pressure: V = V(T(P)). The process will be described like this: 56 
 57 
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 59 
From that, one can obtain the following equation: 60 
 61 
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 63 
The thermal expansion coefficient here is the same as that in Eq. (1). The one in Eq. (1) is measured 64 
under a constant atmospheric pressure; however, the pressure in the system is not constant. The 65 
compressibility ' in Eq. (7) is not at a constant temperature and is not the coefficient of compression 66 
but that of expansivity, which differs noticeably from that of compression. One can see that Eq. (1) 67 
cannot describe the process because it is derived for a function of two independent arguments: 68 
V(T,P). It is instructional to present the derivation of Eq. (1). This equation follows from the triple 69 
product rule for three variables such that each variable is an implicit function of the other two [5,6]: 70 
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 73 
Let us perform a simplified derivation of it. Suppose that there is a function f(x, y, z) = 0 (in 74 
thermodynamics, three variables can frequently be related by a function of such a form). The total 75 
differential of z is 76 
 77 
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 79 
Consider a curve with dz = 0 that is parameterised by x. On this curve 80 
 81 
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 83 
Therefore, the equation for dz = 0 becomes 84 
 85 
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This is true for all dx; hence rearranging terms gives  88 
 89 
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 91 
Dividing this equation by its right hand side gives the triple product rule, Eq. (8). 92 
 In the present paper, Eq. (1) has been experimentally checked for a number of solid 93 
substances and liquid gallium. In Table 1, the physical values of these substances are presented, and 94 
in Table 2, the bulk moduli ratios and heat capacity ratios are presented. The bulk modulus is the 95 
inverse of the compressibility. Here the isothermal bulk modulus, B, and the isentropic one, BS, are 96 
considered. 97 
 Mayer’s relation is: 98 
 99 
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 101 
where CP and CV are the isobaric and isochoric heat capacities respectively, and  is density. The 102 
heat capacity ratio is: 103 
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 106 
where S is the isentropic compressibility. Equations (13) and (14) are derived using Eq. (1) without 107 
simplification, and therefore the heat capacity ratios in both equations must be equal. However, from 108 
Table 2 one can see that they differ greatly. 109 
 110 
 111 
 112 
 113 
 114 
 115 
 116 
 117 
 118 
 119 
 120 
 121 
 122 
 123 
 124 
 125 
 126 
 127 
 128 
 129 
 130 
 131 
 132 
 133 
 134 
 135 
 136 
 137 
 138 
 139 
 140 
 141 



 142 
Table 1. Physical values of some solids and a liquid at room temperature 143 

Substance , kg/m3 , 105 K1 CP, J/(kgK) 

Magnesiowüstite 

MgO 

3566 (5) [7] 

 

3.12 [7] 924 [2] 

Zr 6510.7 [2] 2.0 [8] 277.3 [2] 

Ga 

Liquid 

6094.8 [2] 5.5 [2] 373.9 [2] 

Fluorite 

CaF2 

3181.5 (7) [12] 5.7 (7) [12] 878.5a) [12] 

Diopside 

MgCaSi2O6 

3286 (5) [13] 1.88 [13] 384.7 [13] 

Forsterite 

Mg2SiO4 

3233 [15] 2.2599 [16] 844.3 [16] 

The standard deviation in the last digit is shown in parentheses. a) In [12], an erroneous value was 144 

reported: 87.85. 145 
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 162 
Table 2. Bulk moduli of substances from Table 1 and their ratios  163 

Substance B, GPa BS, GPa BS/B CP/CV,  

Eq. (13)  

Magnesiowüstite 

MgO 

135.0 (10)  

Eq. (15) 

163.5 (11) [9] 

167.1 (4)a) [9] 

1.21 1.012 

Zr 75.1 (32) [8] 95.3 [10] 1.27 1.005 

Ga 

Liquid 

23.6 (0.5) [11] 

12.1 (6) [24] 

50 (3) [11] 

50.4 (4) [25] 

2.12 

4.17 

1.009 

Fluorite 

CaF2 

74.6 (65) [12]

 

84.5 (5) [12] 1.13 1.027 

Diopside 

MgCaSi2O6 

88.3 (3) [14] 116.5 (9) [13] 1.32 1.007 

Forsterite 

Mg2SiO4 

63.6 [15] 

80.9 [17] 

128.32 [16] 

128.8 (5) [18] 

2.02 

1.59 

1.004 

For all substances except Ga, the isothermal bulk modulus was obtained in this work using the 164 

dependence of V on P in the cited literature. In [15] there are misprints: V/V0 for P = 0.7 GPa should 165 

be 0.989, and for P = 1.3 GPa it should be 0.986. The data for 0.7 and 1.3 GPa have been 166 

interchanged. The standard deviation in the last digit is shown in parentheses. a) Calculated from the 167 

speeds of sound at ambient pressure. 168 

 169 

 The authors of [7,9] report another value of B for MgO, but it is wrong because, at small 170 
deformations, solids obey Hooke’s law with very high accuracy [3,19], but the authors use a third-171 
order Birch-Murnaghan equation of state (which takes into account all points in the broad interval of 172 
pressures and deformations) in this linear region. For example, in [9] the deformation of MgO obeys 173 



Hooke’s law up to 1.92 GPa (figure 1). The dependence of the volume on pressure can be given by 174 
the following equation: 175 
 176 
 11.26 0.083434V P                (15) 177 
 178 
where the volume is in cubic centimetres per mole and the pressure is in gigapascals. From it, the 179 
isothermal bulk modulus at standard ambient temperature and pressure is equal to 135.0 ± 1.0 GPa. 180 
In this paper, the bulk modulus for all substances was calculated from the data that obeyed Hooke’s 181 
law. 182 
 183 
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Fig. 1. Dependence of the volume on pressure for MgO [9] 186 
 187 
 In [20], physical properties of ice VII were measured (Table 3). Its volume depends on 188 
pressure at room temperature like this: 189 
 190 
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 193 

It is evident that the ratio BS/B is significantly larger than CP/CV obtained from Eq. (13), particularly at 194 

higher pressures. It increases up to 2 at 42 GPa and then decreases drastically. 195 

 196 
 197 

Table 3. Compressibilities of ice VII and their ratios at room temperature  198 

Pressure, GPa 

[20] 

B, GPa,  

Eq. (16) 

BS, GPa 

[20] 

BS/B CP/CV,  

Eq. (13)  

34.4 (4) 192 (17) 233 (2)  1.21 1.00 

37.3 (1) 165 (24) 237 (3) 1.44 1.00 

38.7 (9) 155 (12) 245 (3) 1.58 1.00 



40.3 (5) 143 (9) 260 (3) 1.82 1.00 

42.0 (5) 133 (4) 261 (3) 1.96 1.00 

58.4 (9) 315 (21) 383 (3) 1.22 1.00 

59.7 (14) 315 (21) 395 (3) 1.25 1.00 

61.8 (14) 315 (21) 417 (3) 1.32 1.00 

The standard deviation in the last digit is shown in parentheses. 199 

 200 
3. DISCUSSION AND CONCLUSIONS 201 
 202 
One can see that the identity Eq. (1), Mayer’s relation, and the heat capacity ratio, Eqs. (13) and (14), 203 
cannot describe condensed matter correctly. The derivations of these relations can be found in [21]. 204 
In the derivation of Mayer’s relation and the heat capacity ratio, Eq. (1) is used. Also, one can show 205 
that the derivation of Mayer’s relation is not correct. Let us consider the key part of this derivation and 206 
expand S as a function of T and V: 207 
 208 
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whence 211 
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and 215 
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 218 
One can see that this consideration is equivalent to the following one. Let us take the following 219 
expansion: 220 
 221 
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 223 
and divide it by dT. The derivatives on the right hand side are equal to zero, and at a constant P the 224 
arguments V and T are not independent. Equation (1) is valid only in the ideal case where in V(T, P) 225 
temperature and pressure are independent parameters.  226 
 It is interesting to note that Eq. (1) was experimentally checked for rubber and the authors 227 
reported a value of 0.88 for the right hand side of Eq. (8) [22]. Nevertheless, even this value is not 228 
reliable. In [22,23] and references therein, the tension of a rubber band, F, as a function of 229 
temperature and length, L, was measured. The authors of [22] check the following equation: 230 
 231 
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The authors measure   0
L

F T   , where F is the tension of a rubber band, and assume that it 234 

equals  
1

L
T F


    , which means that both derivatives have the same sign. This is not true. It 235 

should be noted that the sign of  TF L 
 

differs from that of  TL F  . The former is the 236 

dependence of the tension on the length of expansion measured experimentally (the greater the 237 
expansion L the greater the tension F, and F/L > 0.) The latter can be obtained only 238 
theoretically: let us increase the force of attraction between the atoms (F > 0), and hence the rubber 239 

will contract (L < 0). The sign of  F
L T 

 

is negative because the rubber band contracts when 240 

heated under tension (the Gough–Joule effect) [22,23]. The derivative  L
T F 

 
will be negative. 241 

Let us increase the tension by increasing the force of attraction between the atoms. As a result, the 242 
rubber band will contract. To keep the band length constant, we have to decrease its temperature 243 
according to the Gough–Joule effect. So, the experiment produces the value +0.88 instead of 1. The 244 
signs of the partial derivatives of Eq. (1) obtained in [22] have been confirmed by many other papers 245 
[23]. One can see that Eqs. (1) and (8) are not reliable in the description of condensed phases 246 
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