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ABSTRACT  7 
 8 
Aims: Flow in annular regions encounters in many fields such as bio-medical, petroleum, aerospace 
and chemical industries and among them, the flow between two coaxial pipes has rather become 
interesting due to its asymmetry nature.  
Study design: Theoretical solution and numerical approximation and analysis. 
Place and Duration of Study: Department of mathematics, Faculty of Science, University of 
Peradeniya, Sri Lanka, between August 2017 and January 2018. 
Methodology: Yet it is particularly challenging to obtain theoretical solutions. In this paper, we carried 
out a comprehensive analysis for unsteady, unidirectional and incompressible Couette flow between 
annulus, when inner and outer pipes were brought to abrupt stop from constant velocities.  The 
velocity of the field is derived by applying the Laplace transformation method. The analytical work is 
supported by the numerical approximation using Finite Difference Method for the same fluid, which 
was implemented in MATLAB programming. We illustrate results varying radii of the outer and inner 
pipe captured by ratio (ߟ ൌ 0.1, 0.3, 0.5 ܽ݊݀ 0.7) and for different boundary conditions. Flow field was 
visualized using FDM approximation for selected parameter regime when the flow was suddenly 
stopped. 
Results: Asymmetry of the velocity profile was affected by different radius ratios 
ߟ) ൌ 0.1, 0.3, 0.5 ܽ݊݀ 0.7). Unsteadiness in the flow field was happened due to sudden changes in flow 
parameters. 
Conclusion: The results depicted that radii ratio and boundary condition has a strong impact on the 
role on changing the flow characteristics and flow parameters. 
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1. INTRODUCTION  13 
 14 
The study of flow through an annulus bounded by two coaxial pipes has attracted the attention of 15 
researches due to its peculiarity nature and the flow geometry is one which has found considerable 16 
practical application in the process industries. The concentric annulus also presents a flow system 17 
which is still amenable to analysis. Nevertheless, in this seemingly simple flow field some rather 18 
strange and puzzling phenomena occur. The most interesting of these are associated with the 19 
transition from laminar to non-laminar [1]. 20 
The unsteady laminar Couette flow in concentric annulus, where the geometry is shown in , is 21 
investigated to predict the surge or swab pressure encountered when running or pulling pipes in a 22 
liquid-filled borehole. The motion equations were analytically solved in [2] for power-law fluids by the 23 
perturbation method. During the drilling operation of oil and gas wells, the velocity field varies along 24 
the well length and the resulting flow model is three-dimensional. Lubrication theory has been used to 25 
simplify the governing equations into a two dimensional differential equation that describes the 26 
pressure field and velocity in each cross section was analysed for different cases in [3]. In [4], stability 27 
and transition to turbulence of wall-bounded unsteady velocity profiles with reverse flow was 28 
investigated. Experiment and theoretical investigations of instability and evolution of reverse flow that 29 
occurred in a decelerating flow has been performed where the flow is generated by the controlled 30 
piston motion. The procedure to obtain analytical solution for unsteady laminar flow in an infinitely 31 



long pipe with circular cross section and in an infinitely long two dimensional channel, created by an 32 
arbitrary but given volume flow rate with time was presented in [5].  33 

 34 
Fig. 1. Schematic description of annular space bounded by concentric pipes (radius of the 35 
inner pipe: ࢘ and radius of the outer pipe: 36 (࢘ 

Some properties of the time dependent Navier-Stokes equation for impulsively started from rest by 37 
sudden application of a constant pressure gradient or by the impulsive motion of a boundary was 38 
discussed in [6] and a satellite reaction control subsystem was explained in [7]. A flow channel 39 
network numerical scheme is used to determine the blow down pressure profile and the steady state 40 
pressure drops in the propellant lines. This study give the idea about damaged to the propulsion 41 
components or lines due to the sudden closure of fuel valves.  42 
Finite difference method was applied for fully developed flat plate flow, circular pipe flow and square 43 
duct flow [8]. Pressure drop characteristics of turbulent flow through 90 degree pipe bends were 44 
numerically investigated and pressure distribution for various Reynolds number and curvature ratio 45 
was analyzed [9].  46 
Moreover, an analytical solution to the flow through the pipe and the annular space between two 47 
concentric pipes has been obtained for the case of one-dimensional unsteady flow in [10]. However, 48 
the solution obtained were only when the volume flow rate is provided. Analytical solution of the 49 
unsteady laminar bi-directional flow between concentric pipes with known volume flow rate has been 50 
derived for various cases in [11]. A new analytical solution for unsteady bi-directional flow through an 51 
annulus between two concentric pipes with a prescribed time dependent volume flow rate has also 52 
been obtained in [12]. Analytically obtained velocity profiles are compared with experimental data and 53 
also numerical results [11] and they are used for determining the linear stability characteristics of such 54 
flows. Yet, the analysis when annular boundaries have abrupt changes is still scarce.  55 
In the present work, we carry out an analysis of suddenly stopped Couette flow. Initially the flow was 56 
considered as independent of time and subsequently, the pipes were brought to abrupt rest and the 57 
flow then depends on time. This sudden change in boundaries encounters in many industrial 58 
processes. Asymmetry, radii ratio and unsteadiness of the annular flow have significant but different 59 
role in flow instability and transition.  60 
The paper is organized as follows. In section 2, the unsteady and incompressible flow in a concentric 61 
annulus for abruptly stopped axial Couette flow is investigated. Exact analytical solution methodology 62 
for incompressible, unidirectional and unsteady flow is presented. In section 3, Finite Difference 63 
Method is discussed to approximate the flow characteristics in the annular region and the 64 
approximate values for axial Couette flow for various cases are presented. In section 5, the present 65 
work and the scope for future work were summarized. 66 
 67 
2. METHODOLOGY  68 
 69 
2.1 Theoretical Implementation 70 

 71 
An annular region between a long inner pipe of radius, ݎ

∗ and a coaxial outer pipe of radius, ݎ
∗ is 72 

considered in the study. The flow is taken to be at steady state in the annular region, before making 73 
the abrupt changes to the boundary. Cylindrical co-ordinates system (ݎ∗, ,ߠ  is employed due and, 74 (∗ݔ
 indicates the radial, azimuthal and axial directional co-ordinates respectively. 75 ∗ݔ and ,ߠ ,∗ݎ
Corresponding velocity components in axial, radial and azimuthal directions are defined as ݒ

ఏݒ ,∗
∗  and 76 



௫ݒ
∗ respectively. The superscript “*” is used to denote dimensional quantities. The simplified Navier-77 

Stokes equation was written as when the flow was assumed to be axisymmetric, incompressible, 78 
unidirectional, fully developed, entirely depend on the wall movement (no-slip boundary condition) and 79 
has no body force. Hence, simplified Navier-Stokes equations for steady and unsteady flow are as 80 
below in equations (1) and (2) respectively. 81 
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Dimensionless parameters introduced with special co-ordinates are normalized by ܴ݁ (Reynolds 82 
number), while velocity and time are made dimensionless by ܷ and 



ோ
, respectively; where, ܴ and ܷ 83 

were characteristic length and velocity respectively. Thus, the non-dimensional variables and 84 
parameters are written as, 85 
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 86 
2.1.1 Steady State Solution 87 
 88 
,ݎ௫ሺݒ  0ሻ ൌ ଵܥ  ଶܥ lnሺݎሻ (4) 
, ݎ௫ሺݒ  ሻݐ ൌ ܸ; ݎ௫ሺݒ , ሻݐ ൌ ܸ (5) 
Equations (4) and (5) were dimensionless initial and inner and outer boundary conditions respectively 89 
for steady governing equation. Where, initial condition was obtained from the literature study in [13] 90 
and boundary conditions were assumed as constant velocities. 91 
Hence, the solution for the steady state equation can be written as, 92 
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 And, ܦଵଶ ൌ ଵܦ െ  ଶ. Thus, the simplified steady state solution is written as, 94ܦ
௫ݒ  ൌ ଵଶܦ  ଷܦ ݈݊ሺݎሻ (8) 
 95 
2.1.2 Unsteady Solution 96 
 97 
,ݎ௫ሺݒ  0ሻ ൌ ଵଶܦ  ଷܦ ݈݊ሺݎሻ (9) 
, ݎ௫ሺݒ  ሻݐ ൌ ;ܨ ݎ௫ሺݒ , ሻݐ ൌ   (10)ܨ
The equations (9) and (10) are dimensionless initial and inner and outer boundary conditions 98 
respectively for unsteady governing equation. Initial condition for the unsteady equation is the solution 99 
of the steady state equation. 100 
Laplace transforms of dimensionless unsteady equation and boundary conditions are, 101 
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, ݎ௫ሺݒ̅  ሻݏ ൌ ;തܨ ݎ௫ሺݒ̅ , ሻݏ ൌ  ത (12)ܨ
Here, the over bar quantities were transformed variables. Hence, ݒ௫ሺݎ, 0ሻ ൌ ଵଶܦ   ሻ is due to 102ݎଷ ݈݊ሺܦ
the choice of initial condition. The equation (11) is a second order, non-homogeneous and ordinary 103 
differential equation. Since the governing equation and boundary conditions are known, the problem 104 
was well posed. 105 
 ݀ଶ̅ݒ௫ሺݎ, ሻݏ

ଶݎ݀

1

ݎ

,ݎ௫ሺݒ̅݀ ሻݏ

ݎ݀
െ ܴ݁ ݏ ,ݎ௫ሺݒ̅ ሻݏ ൌ െܴ݁ ሾܦଵଶ  ଷܦ ݈݊ሺݎሻሿ 

(13) 

Here, ܴ݁ ݏ ൌ  ଶ. In the equation (13), the homogeneous part is the modified Bessel equation of 106ݍ
highest order [13,14]. Homogeneous and non-homogeneous solutions are, 107 
௫௨௦ݒ̅  ൌ ߶ଵIሺݎݍሻ  ߶ଶKሺݎݍሻ (14) 

௫ି௨௦ݒ̅  ൌ െሾܦଵଶ  ଷܦ ݈݊ሺݎሻሿ (15) 

Thus, the complete solution is, 108 
௫ݒ̅  ൌ ߶ଵIሺݎݍሻ  ߶ଶKሺݎݍሻ െ ሾܦଵଶ  ଷܦ ݈݊ሺݎሻሿ (16) 
Here, I and K are highest order modified Bessel functions of first and second kind respectively. ߶ଵ 109 
and ߶ଶ were the arbitrary constants, determined by using boundary conditions (10) in equation (16). 110 
To find the non-homogeneous solution, Wronskian [15] is given as, 111 
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Thus, the non-homogeneous solution is written as, 113 
௫ି௨௦ݒ̅  ൌ ௫ଵି௨௦ݒ̅

  ௫ଶି௨௦ (20)ݒ̅

From equation (16), the solution in transformed domain is written as, 114 
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Applying the boundary conditions (12) in the equation (21), we can find the arbitrary constants ߶ଵ and 115 
 ߶ଶ. Then the equation (21) was written as, 116 
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If the boundary conditions are constants, then ܨത ൌ
ி

௦
 and ܨത ൌ

ி

௦
. 117 
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Here, ൌ ܤ ; ܴ݁√ݎ ൌ ܥ √ܴ݁ andݎ ൌ  118 .ܴ݁√ݎ
The flow velocity is, 119 
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 120 
Moreover, the solution in time domain ݒ௫ሺݎ,  ሻ was obtain by taking the inverse Laplace transform 121ݐ
of  ݒഥ௫ሺݎ ,  ሻ. The inverse transform of equation (24) can be obtained using the convolution theorem. 122ݏ
Applying convolution theorem to equation (24), we can obtain, 123 
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We can write the integrand in the form of  
శభ


, where, Γ is the radius of the Bromwich contour taken; 124 

such that all the poles lie in the left of the contour. The integrand diverges as Γ → ∞, preventing the 125 



application of the convolution theorem, Hence, we take the inverse Laplace transform [16] of equation 126 
(24) and obtain the solution in time domain. 127 
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Thus, the complete final solution was written as, 128 
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(28)

and 129 
௫ଷݒ  ൌ ଵଶܦ  ଷܦ ݈݊ሺݎሻ (29)
Thus, the velocity in time domain: 130 
ݎ௫ሺݒ  , ሻݐ ൌ ௫ଵݒ  ௫ଶݒ  ௫ଷ (30)ݒ
When ܨ and ܨ are assumed to be zero in the equation (30), the exact analytical solution is obtained 131 
for the abruptly stopped axial Couette flow. Note that, since the flow was entirely depend on the wall 132 
movement, the pressure difference throughout the annulus in axial direction was not considered.  A 133 
numerical implementation was carried out  to visualize the flow field for different  ratios. 134 
 135 
2.2 Numerical Implementation 136 
 137 
The numerical implementation, starts with the non-dimensional form of equation (2), where the 138 
dependent variable, ݒ௫ (velocity in axial direction) and the independent variables, ݎ (radius between 139 
inner and outer pipes) and ݐ (time). To approximate the solution of the unsteady equation using Finite 140 
Difference method, solution of the steady state equation was taken as initial condition (9). 141 
Using central space difference approximation the second order partial derivative with respect to radius 142 
and the first order partial derivative with respect to radius of the equations are approximated as, 143 
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Using the forward time difference approximation the first order partial derivative with respect to time is 144 
approximated as, 145 
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Thus, the discretized equation with ∆ݐ ൌ ݇ and  ∆ݎ ൌ ݄ is as, 146 
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Here, ݅ ൌ 0,1,2,3, … . ݆ and  ܯ, ൌ 0,1,2,3, … . , ܰ 147 

 148 
Fig. 2. Specifying initial and boundary conditions 149 

Figure (2) shows the discretization of the annular and the known initial boundary values of grid points. 150 
Using boundary conditions values are obtained at the grids of the inner wall and outer wall and the 151 
initial condition values are used for ݐ ൌ 0. Hence, subsequent values are approximated 152 
 153 
 154 
3. RESULTS AND DISCUSSION 155 
  156 
Finite difference method was programmed in MATLAB to visualize the suddenly stopped axial 157 
Couette flow for various cases between the inner pipe and outer pipe in the central symmetry plane 158 
(annular space). 159 

 160 
Fig. 3. Schematic description of annular space in axial direction. 161 

 162 
3.1 Case I 163 
 164 
In this case the outer pipe was fixed and the inner pipe was moving at a constant velocity in axial 165 
direction and the inner pipe was suddenly stopped. 166 



Figure (3) shows the streamlines at different radii ratios ሺ0.5 ,0.3 ,0.1 ,(ߟ and 0.7 when initially the 167 
inner pipe was moving and suddenly the inner pipe was brought to rest. With respect to the radius 168 
ratios there is a significant change in streamlines of the flow field. 169 

 170 
Fig. 4. Streamline for suddenly stopped axial Couette flow at different radius ratios for Case I 171 
when inner pipe moving at a constant velocity and outer pipe at rest (Time and annular space 172 
are non-dimensional) 173 

Figure (4) shows the points of discrete values of velocity profile at different time steps. Due to the 174 
viscosity of the fluid, near to inner boundary velocity was maximum and at the outer boundary the 175 
velocity was zero. Initially inner pipe was moving at a constant velocity and outer pipe was at rest. 176 
Then, the inner pipe was brought to rest suddenly. There was a decay in velocity profile was observed 177 
with respect to time. 178 



 179 
Fig. 5. Velocity profiles at different times for Case I when initially inner pipe moving at a 180 
constant velocity and outer pipe at rest at ࣁ ൌ . ૠૠ (Velocity and annular space are non-181 
dimensional) 182 

3.2 Case II 183 
 184 
When inner pipe and outer pipe were moving at a constant velocity and both pipes were suddenly 185 
stopped. 186 
For the different radius ratios ሺ0.5 ,0.3 ,0.1 ,(ߟ and 0.7, streamlines of the suddenly stopped Couette 187 
flow is obtained when initially inner pipe and outer pipe is moving at a constant velocity. Figure (5) 188 
shows the flow field at different radius ratios. With respect to the radius ratios notable difference in the 189 
streamlines of the flow field is noticed. 190 



 191 
Fig. 6. Streamline for suddenly stopped axial Couette flow at different radius ratios for Case II 192 
when initially inner and outer pipes moving at same constant velocity (Time and annular space 193 
are non-dimensional) 194 

Figure (6) represents the points of discrete values of velocity profile at different time steps. In this 195 
case inner and outer boundaries are moving at a constant velocity. Boundaries are moving with the 196 
same velocity and asymmetry in the velocity profiles are observed. 197 

 198 



Fig. 7. Velocity profiles at different times for Case II when initially inner and outer pipes 199 
moving at same constant velocity at ࣁ ൌ . ૠૠ (Velocity and annular space are non-200 
dimensional) 201 

3.3 Case III 202 
When inner pipe and outer pipe initially moving at different velocities ( ܸ and  ܸ) and both pipes are 203 
stopped suddenly. 204 
Figure (7) denotes the streamlines of the abruptly stopped axial Couette flow when inner boundary 205 
and outer boundary have different constant velocities. In the flow field the change in streamlines are 206 
significant. 207 

 208 
Fig. 8. Streamline of suddenly stopped axial Couette flow for Case III when inner and outer 209 
pipes in different constant velocities (Time and annular space are non-dimensional) 210 

Figure (8) shows the points of discrete values of velocity profile at different time steps when initially 211 
inner boundary moving faster than outer boundary and both are brought to rest suddenly. 212 

 213 
Fig. 9. Velocity profiles for abruptly stopped pipes at different times for Case III when ࢂ   214 ࢂ
at ࣁ ൌ . ૠૠ (Velocity and annular space are non-dimensional) 215 

Figure (9) represents the points of discrete values of velocity profile at different time steps when 216 
initially outer boundary moving faster than inner boundary and both are suddenly stopped. 217 



 218 
Fig. 10. Velocity profiles for abruptly stopped pipes at different times for Case III when ࢂ   219 ܸ
at ࣁ ൌ . ૠૠ (Velocity and annular space are non-dimensional) 220 

4. CONCLUSION 221 
 222 
In the work presented, the second order non-homogeneous partial differential equation was solved to 223 
obtain the solution for Couette flow. The numerical approximation for the unsteady abruptly stopped 224 
axial Couette flow was modelled using FDM. Three different cases were analysed in MATLAB 225 
programming, to visualize the flow field and streamline and velocity profiles at different time steps 226 
were obtained. 227 
In case I, initially the inner boundary was moving at a constant velocity and it was suddenly stopped. 228 
Streamlines for various radius ratios ሺ0.5 ,0.3 ,0.1 ,(ߟ and 0.7 were obtained in Figure (3). In case II, 229 
initially inner and outer boundaries were moving at same constant velocity and both boundaries were 230 
suddenly stopped. Streamlines for various radius ratios ሺ0.5 ,0.3 ,0.1 ,(ߟ and 0.7 were obtained in 231 
figure (5). In both cases significant differences in streamlines of the flow field were visualized. In case 232 
III, initially inner boundary and outer boundary had different velocities. Streamlines were visualized in 233 
figure (7). 234 
Different cases play different role in the flow characteristics of the annular flow. Flow characteristics 235 
were changed due to the asymmetry of velocity profiles and unsteadiness of flow field. The 236 
asymmetry of the velocity profile was affected by different radius ratios. Unsteadiness in the flow field 237 
was happened due to sudden changes in flow parameters. So, these sudden changes in the flow 238 
parameter and different radius ratios play important roles in the stability of the flow. 239 
This work presents the analytical and numerical solution and the approach for the solution for abruptly 240 
stopped axial Couette flow. The stability analysis can be carried out to analyse the stability of the flow 241 
when a small disturbance is introduced to the flow. Which may help to understand and predict the 242 
instability. The non-linear stability analysis could help in understanding the transition to turbulent 243 
process which is not addressed in this work. We plan to use MATCONT continuation software to 244 
perform a non-linear stability analysis [17]. Non-concentric annulus with bidirectional flow may give 245 
the solution for the real world applications with minimizing assumptions.  246 
 247 
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