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Abstract

The discrete phase space representation of quantum mechanics involving a characteristic length is
investigated. The continuous (1+1)-dimensional phase space is first discussed for the sake of simplicity.
It is discretized into denumerable infinite number of concentric circles. These circles, endowed with
“unit area”, are degenerate phase cells resembling closed strings.

Next, Schrödinger wave equation for one particle in the three dimensional space under the influence
of a static potential is studied in the discrete phase space representation of wave mechanics. The
Schrödinger equation in the arena of discrete phase space is a partial difference equation. The energy
eigenvalue problem for a three dimensional oscillator is exactly solved.

Next, relativistic wave equations in the scenario of three dimensional discrete phase space and
continuous time are explored. Specially, the partial finite difference-differential equation for a scalar
field is investigated for the sake of simplicity. The exact relativistic invariance of the partial finite
difference-differential version of the Klein-Gordon equation is rigorously proved. Moreover, it is shown
that all nine important Green’s functions of the partial finite difference-differential wave equation for
the scalar field are non-singular.

In the appendix, a possible physical interpretation for the discrete orbits in the phase space as
degenerate, string-like phase cells is provided in a mathematically rigorous way.
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§ 1. Introduction

In 1960, the quantum field theory of interacting fields was proposed1 in the arena of a discrete space-
time involving a characteristic length. The corresponding Green’s functions of the partial difference-
equations representing wave fields in discrete space-time were all non-singular. Moreover, divergence
difficulties of the usual S-matrix theory were eliminated. However, all the invariance and covariance
of the continuous Poincaré group were lost !

In 1994, a new representation of quantum mechanics (or wave mechanics) in the setting of the
discrete phase space (involving a characteristic length) was formulated.2,3 The corresponding classical
wave equations were expressed as partial difference equations. Every Green’s function of these partial
difference equations is non-singular. Furthermore, every partial difference wave equation turned out
to be invariant or covariant under the continuous Poincaré group !

In 2010, quantum mechanics was explored under the mixed representation involving the background
of three dimensional discrete phase space and one dimensional continuous time.4–6 The resulting wave
equations were expressed as partial finite difference-differential equations. (It is interesting to note
that Hamilton used7 a partial finite difference-differential equation for the light propagation through
ether-lattice !)

It was rigorously proved that every partial finite difference-differential equation (corresponding
to the usual relativistic partial differential wave equation in continuous space-time) remains exactly
invariant or covariant under the continuous Poincaré group. Moreover, every Green’s function turned
out to be non-singular. Finally, quantum electrodynamics was investigated in the background of
discrete phase space and continuous time.6 The corresponding S-matrix elements in every order
turned out to be divergence-free.

In the present paper, physical interpretation of discrete concentric circles as degenerate phase
cells is enunciated. However, a phase cell respecting the uncertainty principle of quantum mechanics
must be of an area |∆p ·∆q| ≥ ~ . Then, the puzzling situation arises of a circular orbit in a phase
plane possessing an area ! Fortunately, in pure mathematics, there are examples of continuous Peano
curves covering completely a unit area already exit.8 In the appendix, a particular example of Peano
curves which covers an annular phase cell of unit area is explained. In fact a sequence of such annular
phase cells is constructed such that in the limiting case, the sequence of annular cells collapse into
one circular orbit in the (1 + 1)-dimensional continuous phase space. Such an orbit resembles a closed
string9 which with passage of time creates a two dimensional world sheet9 in the three dimensional
space of a phase plane and continuous time.

Next, in the (3 + 3)-dimensional continuous phase space, three dimensional discrete orbits S1 ×
S1 × S1 are considered. These are the closed string-like degenerate phase cells applicable to the
real physical phenomena. The arena of wave equations considered is the three discrete variables
together with one continuous time variable. The scalar wave equation comprises of one partial finite
difference-differential equation.4,5 The relativistic invariance of such an equation is rigorously proved.
Furthermore, corresponding Green’s functions are investigated. All of the nine important Green’s
functions of the partial finite difference-differential equation are shown to be non-singular.
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§ 2. Notations and preliminary definitions

There is a characteristic length l > 0 implicit in this paper. We choose physical units such that c = ~ =
l = 1. All physical quantities are expressed as dimensionless numbers. Greek indices take values from
{1, 2, 3, 4}, whereas roman indices take (special) values from {1, 2, 3}. Einstein’s summation convention
is followed in both cases. We denote the flat space-time metric of signature +2 by ηµν and the diagonal
matrix [ηµν ] := diag[1, 1, 1,−1]. We denote the set of all non-negative integers by N := {0, 1, 2, 3}. An
element n ≡

(
n1, n2, n3, n4

)
∈ N4 and an element

(
n, x4

)
≡
(
n1, n2, n3; t

)
∈ N3 × R.

Let a function f be defined by

f : N3 × R −→ R
(
or, f : N3 × R −→ C

)
. (1)

The right partial difference-differential equation and the left partial difference operations are defined
by4,10

∆jf (n; t) := f
(
. . . , nj + 1, . . . ; t

)
− f

(
. . . , nj , . . . ; t

)
, (2a)

∆′jf (n; t) := f
(
. . . , nj , . . . ; t

)
− f

(
. . . , nj − 1, . . . ; t

)
, (2b)

We define f (n; t) ≡ 0 for the cases where any of the nj < 0 .
Note that [

∆j∆
′
k −∆′k∆j

]
f (n; t) ≡ 0 . (3)

We also assume that ∂2t f (n; t) := ∂2

∂t2
f (n; t) is a continuous function of t .
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§ 3. Quantum mechanics in (1 + 1)-dimensional phase space

This simple toy model of the time-independent quantum mechanics is discussed to introduce discrete
phase space and relativistic quantum mechanics in the section § 5 later on.

The mathematics of such a model comprises of state vectors
−→
ψ belonging to a Hilbert space and

linear operators F (P ,Q) involving the momentum operator P and the position operator Q . In the
usual Schrödinger representation of quantum mechanics, these mathematical objects are identified as :

−→
ψ := ψ(q) , q ∈ R ; (4a)

P
−→
ψ := −i d

dq
ψ(q) , (4b)

Q
−→
ψ := qψ(q) , (4c)

[P ,Q]
−→
ψ := [PQ−QP ]

−→
ψ = −i

−→
ψ = −iψ(q) . (4d)

In the separable sector of the Hilbert space,11 it is assumed that
〈−→
ψ |
−→
ψ
〉

:=
∫
R ψ(q)ψ(q) dq <∞ .

On the other hand, in the non-separable sector,2

lim
L→∞

{
(1/2L)

∫ L

−L
ψ(q)ψ(q) dq

}
<∞

In the discrete phase space representation of quantum mechanics, we can try difference operators

P := c1∆ + c2∆
′ and Q := c3∆ + c4∆

′ , where
−→
ψ := f(n) , n ∈ N . Such a representation fails by the

equation (3).
We define two new difference operators in the following :

∆#f(n) :=
(

1/
√

2
) [√

n+ 1 f(n+ 1)−
√
n f(n− 1)

]
, (5a)

◦
∆ f(n) :=

(
1/
√

2
) [√

n+ 1 f(n+ 1) +
√
n f(n− 1)

]
. (5b)

One possible discrete phase space representation of the quantum mechanics is furnished by :

−→
ψ := φ(n) , n ∈ N ; (6a)

P
−→
ψ := −i∆#φ(n) , (6b)

Q
−→
ψ :=

◦
∆ φ(n) , (6c)

A
−→
ψ :=

(
1/
√

2
)

(Q− iP )
−→
ψ =

√
nφ(n− 1) , (6d)

A†
−→
ψ :=

(
1/
√

2
)

(Q+ iP )
−→
ψ =

√
n+ 1φ(n+ 1) , (6e)[

A†,A
]−→
ψ := φ(n) =

−→
ψ . (6f)

The mathematics in (6d, 6e, 6f) are analogous to the creation and annihilation operators in the
standard quantum field theory.12

We shall now solve the energy eigenvalue problem for a one dimensional (idealized) harmonic
oscillator by the finite difference representation in (6a, 6b, 6c).

(1/2)
[
(P )2 + (Q)2

]−→
ψ (N) = λ(N)

−→
ψ (N) , (7a)

or,

[
−
(

∆#
)2

+
( ◦

∆
)2]

φ(N)(n) = 2λ(N)φ(n) , (7b)

or,

[(
n+

1

2

)
− λ(N)

]
φ(N)(n) = 0 . (7c)
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Clearly, the eigenvalues and the real-valued normalized eigen functions are provided by :

λ(N) = N +

(
1

2

)
≥ 1

2
, N ∈ N , (8a)

φ(N)(n) = δ(N)n , (8b)∥∥∥−→ψ (N)

∥∥∥2 :=
∞∑
n=0

∣∣φ(N)(n)
∣∣2 ≡ 1 . (8c)

Consider the simple harmonic oscillator orbits in the (1 + 1)-dimensional phase plane with quantized
energy levels :

(1/2)
(
p2 + q2

)
= N +

(
1

2

)
, N ∈ N = {0, 1, 2, 3, . . .} . (9)

The equation above yields concentric circles4 of radii
√

2N + 1 as depicted in fig. 1.

Figure-1 : Discrete orbits for possible occupation of the oscillating particle.

In the corresponding (2 + 1)-dimensional state space13 R2 × R , one possible discrete orbit in the
phase plane traces a vertical, 2-dimensional circular cylinder as the world sheet.9 (See fig. 2.)

In case the oscillator absorbs extra energy through an external interaction, the world sheet suddenly
jumps into a larger size. (See fig. 3.)

In the fig. 1 , discrete orbits in (1+1)-dimensional phase space resemble closed strings of the string
theory.9 Moreover, hollow circular cylinders in (2 + 1)-dimensional state space of fig. 2 resemble world
sheets of the string theory.9 We shall briefly compare and contrast discrete phase space orbits and
circular cylinders in the state space with closed strings and world sheets of the string theory.
(1) Discrete circular orbits in phase space may or may not be occupied by a particle (or a quanta).
However, a closed string has always a mass density and a tension.9

(2) Vertical hollow cylinders in the state space may or may not contain a world line of a particle. But
a world sheet in string theory9 has always a mass density associated with it.
(3) A particle or a quanta can jump from one vertical circular cylinder to another by interaction with
an external agent. However, in string theory, one world sheet can bend or rupture into several world
sheets.9
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Figure-2 : The two-dimensional cylindrical world sheet.

Figure-3 : World sheet associated with the oscillator jumping from one orbit to another.

We shall interpret in the appendix, the discrete orbits in phase space as depicted in fig. 1 , as
degenerate phase cells.

We shall now discuss the transformation of the Schrödinger representation of quantum mechanics
into the discrete phase representation of the same. The Schrödinger representation is provided in
equations (4a, . . . , 4d). For the discrete phase space representation, we need to introduce the Hermite
polynomials14 and the following equations :

Hn(q) := (−1)neq
2 dn

(dq)n

(
e−q

2
)
, (10a)

fn(q) :=
e−(q

2/2)Hn(q)

π1/4 · 2n/2 ·
√
n!

, (10b)∫ ∞
−∞

fn(q)fm(q) dq = δnm . (10c)

The transformation from the Schrödinger representation to the discrete phase space representation
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is furnished by the following :

−→
ψ := φ(n) , (11a)

φ(n) :=

∫ ∞
−∞

ψ(q)fn(q) dq , (11b)

P
−→
ψ =

∫ ∞
−∞

[
−idψ(q)

dq

]
fn(q) dq = −i∆#φ(n) , (11c)

Q
−→
ψ =

∫ ∞
−∞

[qψ(q)] fn(q) dq =
◦
∆ φ(n) . (11d)

Here, we have assumed that lim
|q|→∞

|ψ(q)| = 0 .

For the derivation of (11c), we have utilized dHn(q)
dq = 2nHn−1(q) . Furthermore, to deduce (11d), we

have used Hn+1(q) = 2qHn(q)− 2nHn−1(q) . Thus, we have recovered equations (6a, 6b, 6c) .
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§ 4. Finite difference – differential version of the Schrödinger equation

The wave function, position operators, and momentum operators in discrete phase space and contin-
uous time are represented by2,3 :

−→
ψ := φ(n1, n2, n3; t) ≡ φ (n; t) , (12a)

Qk−→ψ := δkj
◦
∆j φ (n; t) , (12b)

Pj
−→
ψ := −i∆#

j φ (n; t) . (12c)
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The time-dependent partial difference-differential version of the Schrödinger wave equation is rep-
resented2 by :

1

2m
δjk∆#

j ∆#
k φ (n; t)−

[
V
( ◦

∆1,
◦
∆2,

◦
∆3 ; t

)]
φ (n; t) = −i∂tφ (n; t) . (13)

In case of a conservative physical system, the wave function φ (n; t) and the Schrödinger equation
(13) reduce to

φ (n; t) = χ (n) · exp(−iEt) , (14a)

δjk∆#
j ∆#

k χ (n) + 2m
[
E − V

( ◦
∆1,

◦
∆2,

◦
∆3

)]
χ (n) = 0 . (14b)

Here, the constant E stands for the eigenvalue of energy.

Consider an idealized three dimensional oscillator in the Hamiltonian mechanics13 characterized
by :

H
(
p1, p2, p3 ; q1, q2, q3

)
:=

(
1

2

)[
δjkpjpk + δjkqjqk

]
= E > 0 . (15)

The corresponding Schrödinger equation (14b) drastically reduces to the algebraic equation[
E −

(
n1 + n2 + n3 +

3

2

)]
χ (n) = 0 . (16)

(Compare the equation above with (7c).)

Therefore, the energy eigenvalues and the corresponding normalized eigenfunctions are furnished by :

E(N1,N2,N3) = N1 +N2 +N3 +

(
3

2

)
≥ 3

2
, (17a)

χ(N1,N2,N3)

(
n1, n2, n3

)
= δ(N1)n1 · δ(N2)n2 · δ(N3)n3 , (17b)∥∥∥−→ψ∥∥∥2 :=

∞∑
n1=0

∞∑
n2=0

∞∑
n3=0

χ(N1,N2,N3)

(
n1, n2, n3

)
≡ 1 . (17c)

§ 5. Discrete phase space, continuous time, and relativistic Klein-
Gordon equation

The abstract operator form of the Klein-Gordon equation is given by :[
ηµνPµPν +m2I

]−→
ψ =

−→
0 , (18a)

or,
[
δjkPjPk − (P4)

2 +m2I
]−→
ψ =

−→
0 . (18b)

It is clear that the abstract Hilbert-vector equations (18a,18b) are relativistic invariant equations for
any mass parameter m ≥ 0 . Therefore, the Klein-Gordon equations (18a,18b), in every representation
of quantum mechanics must be relativistic. But we need to prove the last assertion in a mathematically
rigorous way. We choose the mixed finite difference-differential representation5,6 of the equation (18b)
as [

δjk∆#
j ∆#

k − (∂t)
2 −m2

]
φ (n ; t) = 0 . (19)

The main reason for such a choice is to maintain micro-causality relations15 in the corresponding
second quantization5 of the scalar field φ (n ; t) .
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The relativistic invariance and covariance are governed by the ten-parameter, continuous, Poincaré
group12,16 I O(3; 1) provided by :

q̂ µ = cµ + lµνq
ν , (20a)

ηµν l
µ
αi
ν
β = ηαβ , (20b)

aµβl
β
ν = lµβa

β
ν = δµν . (20c)

The four parameter Abelian subgroup of space-time translation is characterized by :

lµν = δµν = aµν , (21a)

q̂ µ = cµ + qµ , (21b)

q µ = −cµ + q̂ µ . (21c)

A scalar field φ
(
q1, q2, q3, q4

)
transforms tensorially18 as

φ̂
(
q̂ 1, q̂ 2, q̂ 3, q̂ 4

)
= φ

(
q1, q2, q3, q4

)
, (22a)

or, φ̂
(
q1, q2, q3, q4

)
= φ

(
q1 − c1, q2 − c2, q3 − c3, q4 − c4

)
. (22b)

Assuming that the function φ
(
q1, q2, q3, q4

)
admits a Taylor series expansion19 in a star-shaped do-

main, we obtain from (22b),

φ̂
(
q1, q2, q3, q4

)
= φ

(
q1, q2, q3, q4

)
+
∞∑
j=1

(−1)j

j !


4∑

i1=1

· · ·
4∑

ij=1

(i1+···+ij=j)

(
ci1 . . . cij

)
· ∂j

∂qi1 · · · ∂qij
φ
(
q1, q2, q3, q4

)
 , (23a)

or, φ̂
(
q1, q2, q3, q4

)
= exp [−cµ∂qµ]φ

(
q1, q2, q3, q4

)
, (23b)

or, ηαβ∂qα∂qβφ̂
(
q1, q2, q3, q4

)
−m2φ̂

(
q1, q2, q3, q4

)
= exp [−cµ∂qµ] ·

[
ηαβφ

(
q1, q2, q3, q4

)
−m2φ

(
q1, q2, q3, q4

)]
= 0 . (23c)
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Thus, the invariance of the Klein-Gordon equation under the four parameter subgroup of space-
time translation is proved in an unusual way. There is a quantum mechanical aspect to this proof.
The Schrödinger representation of relativistic quantum mechanics is characterized by :

−→
ψ := ψ

(
q1, q2, q3, q4

)
≡ ψ

(
q1, q2, q3 ; t

)
, (24a)

Pj
−→
ψ := −i ∂qjψ

(
q1, q2, q3, q4

)
, (24b)

P4
−→
ψ := i ∂q4ψ

(
q1, q2, q3, q4

)
, (24c)

Qν−→ψ := qνψ
(
q1, q2, q3, q4

)
= ηνµqµψ

(
q1, q2, q3, q4

)
. (24d)

The equation (23b) can be expressed as

−̂→
ψ = exp [−icµPµ]

−→
ψ := U

(
c1, c2, c3, c4

)−→
ψ . (25)

Here, U
(
c1, c2, c3, c4

)
is a unitary transformation involving four real parameters cµ .

In relativistic quantum mechanics and relativistic quantum field theories4–6 , the generalization of
the equation (25) to the ten parameter Poincaré group I O(3, 1) is furnished by :

−̂→
ψ = U

[
cµ, lαβ

]
·
−→
ψ

:= exp

[
−icµPµ +

(
i

4

)
ωαβ (QαPβ −QβPα + PβQα − PαQβ)

]
·
−→
ψ , (26a)

ωβα = −ωαβ . (26b)

The six parameters ωαβ are related to parameters lαβ of the equations (20a, 20b).
The Schrödinger type of covariance is characterized by :

P̂µ = Pµ , Q̂µ = Qµ , (27a)

−̂→
ψ = U

[
cµ, lαβ

]
·
−→
ψ . (27b)

It is well known15,19 that the operator ηµνPµPν , which is one of the Casimir operators4 of the Poincaré
group I O(3, 1), commutes with all ten generators Pµ and [QαPβQβPα + PβQα − PαQβ]. Therefore,
we obtain from (18a,18b), (26a,26b), and (27a,27b) that[

ηµνP̂µP̂ν +m2I
] −̂→
ψ =

[
ηµνP̂µP̂ν +m2I

]
U [. . .] ·

−→
ψ

= U [. . .] ·
[
ηµνP̂µP̂ν +m2I

]−→
ψ =

−→
O . (28)

Therefore, the above Hilbert-vector equation demonstrates the exact proof for the invariance of the
Klein-Gordon Hilbert-vector equations (18a,18b).

Now, every representation of quantum mechanics satisfies every operator and Hilbert-vector equa-
tions in (18a,18b) , (26a,26b) , and (27a,27b) . Thus, we can conclude that the transformed scalar
field is given by :

φ̂ (n ; t) = U [. . .]φ (n ; t)

:= exp

[
−cj∆#

j + c4∂t +

(
1

4

)
ωjk

(
∆◦j∆

#
k −∆◦k∆

#
j + ∆#

k ∆◦j −∆#
j ∆◦k

)
+ωj4

(
t∆#

j −∆◦j∂t

)]
φ (n ; t) (29)

The transformed function φ̂ (n ; t) in (29) must satisfy the Klein-Gordon equation (19) , namely[
δjk∆#

j ∆#
k − (∂t)

2 −m2
]
φ (n ; t) = 0 . (30)
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The above equation concludes the proof for the exact relativistic invariance of the finite difference-
differential version of the Klein-Gordon equation as expressed in (19) .

In the Schrödinger representation of quantum mechanics, the usual Klein-Gordon equation is given
by :

δjk∂qj∂qkψ
(
q1, q2, q3; t

)
− (∂t)

2ψ
(
q1, q2, q3; t

)
−m2ψ

(
q1, q2, q3; t

)
= 0 . (31)

On the other hand, the mixed partial difference-differential version of the Klein-Gordon equation
from the equation (19) is provided by :

δjk∆#
j ∆#

k φ
(
n1, n2, n3; t

)
− (∂t)

2φ
(
n1, n2, n3; t

)
−m2φ

(
n1, n2, n3; t

)
= 0 . (32)

Now, we shall compare and contrast various Green’s functions arising out of (31) and (32) .

The relevant Green’s functions of the Klein-Gordon equations (31) in the continuous space-time
are expressed as one of the integral representations.20

∆(a)

(
q, q4; q̂, q̂ 4;m

)
:=

1

(2π)4
·
∫
R3

{∫
C(a)

exp [ipµ (qµ − q̂ µ)]

[ηαβpαpβ +m2]
· dp4

}
· dp1dp2dp3 . (33)

Here, q4 = t , p4 = −p4 , and C(a) is a contour in the complex p4-plane. The integrand in (33) has
two simple poles on the real line at

p4 = ±ω := ±
√

(p1)2 + (p2)2 + (p3)2 +m2 . (34)

We shall restrict contour integration to the four contours C+, C−, C and C(R) as depicted in the fig. 4.

Figure-4 : The complex p4-plane and contour C(a) .
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We define

s := −ηµν (qµ − q̂µ) (qν − q̂ν)

=
(
q4 − q̂4

)2 − δjk (qj − q̂j) (qk − q̂k) . (35)

Note that s < 0 for a spacelike separation and s > 0 for a timelike separation.
We also recall step functions by :

θ(x) :=

{
1 for x > 0 ,
0 for x < 0 .

(36a)

ε(x) :=

(
x

|x|

)
for x 6= 0 . (36b)

Now, we shall provide explicitly four of the Green’s functions (33) and contours exhibited in the fig. 4.
Denoting the Dirac delta function by δ(s) , the explicit expressions are furnished in the following15,20

:

∆+

(
q, q4;0, 0;m

)
=

1

4π
ε(q4)δ(s)− m

8π

ε(q4)θ(s)√
s

J1

(
m
√

(s)
)

+
im

8π

θ(s)√
s
N1

(
m
√

(s)
)

+
im

4π2
θ(−s)√
−s

K1

(
m
√

(−s)
)
, (37a)

∆−
(
q, q4;0, 0;m

)
=

1

4π
ε(q4)δ(s)− m

8π

ε(q4)θ(s)√
s

J1

(
m
√

(s)
)
− im

8π

θ(s)√
s
N1

(
m
√

(s)
)

− im

4π2
θ(−s)√
−s

K1

(
m
√

(−s)
)
, (37b)

∆(. . .) = ∆+(. . .) + ∆−(. . .) =
1

2π
ε(q4)δ(s)− m

4π

ε(q4)θ(s)√
s

J1(m
√

(s)) , (37c)

∆(R)(. . .) = θ(q4)∆+(. . .)− θ(−q4)∆−(. . .)

=
1

4π
δ(s)− m

8π

θ(s)√
s

[
J1

(
m
√

(s)
)
− iN1

(
m
√

(s)
)]

+
im

4π2
θ(−s)√
−s

K1

(
m
√

(−s)
)
.

(37d)

Here, J1(· · · ) , N1(· · · ) and K1(· · · ) are various Bessel functions.21,22 Every Green’s function ∆(a)(. . .)
has singularity on the light cone s = 0 and contributes to divergence difficulties of the S-matrix. (The
Green’s function ∆(R)(. . .) =

(
i
2

)
∆(F)(. . .) of the Feynman-Dyson notation.)

Now, we shall investigate the corresponding Green’s functions of the finite difference-differential
version of the Klein-Gordon equation (31,32). The required Green’s functions5 are furnished by the
improper integrals :

∆#
(a)

(
n, t; n̂, t̂;m

)
:=

1

(2π)

∫
R3

{[
3
Π
j=1

ξnj (pj) · ξn̂j (pj)

]
·

[∫
C(a)

exp
[
−ip4(t− t̂)

]
[δklpkpl − (p4)2 +m2]

dp4

]}
dp1dp2dp3 , (38a)

ξnj (pj) := (i)n
j · fnj (pj) =

(i)n
j · e−(pj/2) ·Hnj (pj)

π1/4 · 2nj/2 ·
√

(nj)!
, (38b)

Here, Hnj (pj) are Hermite polynomials as mentioned in the equation (10a). The contours C(a) are
identical to those given in the fig. 4. We introduce spherical polar coordinates by

p1 = p sin θ cosφ , p2 = p sin θ sinφ , p3 = p cos θ . (39)
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Using the above equation (39) , we obtain from (38a, 38b) ,

∆#
(a)

(
n, t; n̂, t̂;m

)
:=

(i)n
1+n2+n3

(2π) · π3/2 · 2(n1+n2+n3)/2 ·
√

(n1)!(n2)!(n3)!
·

·
∫ ∞
0

∫ π

0

∫ π

−π

{[
e−p

2 ·Hn1(p sin θ cosφ) ·Hn2(p sin θ sinφ) ·Hn3(p cos θ)
]

·

[∫
C(a)

exp [−ip4t]
[p2 − (p4)2 +m2]

dp4

]}
p2 sin θdpdθdφ . (40)

There exist nine distinct contours C(a) in the fig. 4. In case Green’s function ∆#
+(. . .) and ∆#

−(. . .) are

investigated, the seven other Green’s functions out of ∆#
(a)(. . .) can be dealt with linear combinations20

of ∆#
+(. . .) and ∆#

−(. . .) . Therefore, we carry out the contour integration C+ and C− from the equation
(40). In that case, we derive that

∆#
+

(
n, t; 0, 0;m

)
=

(i)n
1+n2+n3+1

2π3/2 · 2(n1+n2+n3)/2 ·
√

(n1)!(n2)!(n3)!
·∫ ∞

0

∫ π

0

∫ π

−π

{
e−p

2 ·Hn1(· · · ) ·Hn2(· · · ) ·Hn3(· · · ) ·
[
e−iωt

ω

]}
p2 sin θ dp dθ dφ , (41a)

∆#
−
(
n, t; 0, 0;m

)
=

(i)n
1+n2+n3−1

2π3/2 · 2(n1+n2+n3)/2 ·
√

(n1)!(n2)!(n3)!
·∫ ∞

0

∫ π

0

∫ π

−π

{
e−p

2 ·Hn1(· · · ) ·Hn2(· · · ) ·Hn3(· · · ) ·
[
eiωt

ω

]}
p2 sin θ dp dθ dφ . (41b)

Therefore, we deduce that

lim
t→0

[
∆#(· · · )

]
= lim

t→0

[
∆#

+(· · · ) + ∆#
−(· · · )

]
= lim

t→0

{
· · ·
∫ ∞
0

∫ π

0

∫ π

−π

{
· · ·
[

sinωt

ω

]}
p2 sin θ dp dθ dφ

}
= 0 . (42)

Thus, in the second quantization5 of a scalar field φ (n), the semblance of microcausality is still
preserved !

Now, we shall investigate the convergence of improper integrals contained in the equation (40)
defining Green’s functions. The task is considerably simpler if we set the constant m = 0 . Thus, we
obtain from (41a, 41b) the following :

∆#
±
(
n, t; 0, 0; 0

)
=

(i)n
1+n2+n3±1

2π3/2 · 2(n1+n2+n3)/2 ·
√

(n1)!(n2)!(n3)!
·

∫ ∞
0

∫ π

0

∫ π

−π

{
e−p

2 ·Hn1(p sin θ cosφ) ·Hn2(p sin θ sinφ) ·Hn3(p cos θ) ·
[
e∓ipt

]}
· p sin θ dp dθ dφ . (43)

Now, we consider the two dimensional integral :

I(0) :=

∫ π

0

∫ π

−π

{
e−p

2 · p ·Hn1(p sin θ cosφ) ·Hn2(p sin θ sinφ) ·Hn3(p cos θ)

·[cos pt]} sin θ dθ dφ . (44)
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By the mean value theorem of integration23 , there exists a point (θ0, φ0) such that

I(0) = (2π2) · e−p2 · p · [cos pt] ·Hn1(p sin θ0 cosφ0) ·Hn2(p sin θ0 sinφ0) ·Hn3(p cos θ0) sin θ0 . (45)

Similarly, the integral

I(1) =

∫ π

0

∫ π

−π

{
e−p

2 · p ·Hn1(p sin θ cosφ) ·Hn2(p sin θ sinφ) ·Hn3(p cos θ) · [sin pt]
}

· sin θ dθ dφ

= (2π2) · e−p2 · p · [sin pt] ·Hn1(p sin θ1 cosφ1) ·Hn2(p sin θ1 sinφ1) ·Hn3(p cos θ1) · sin θ1 . (46)
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Therefore, improper integrals∫ ∞
0

∫ π

0

∫ π

−π

{
e−p

2 ·Hn1(p sin θ cosφ) ·Hn2(p sin θ sinφ) ·Hn3(p cos θ) ·
[
e∓ipt

]}
p sin θ dp dθ dφ

= (2π2)

∫ ∞
0

{
·e−p2 · p · [cos pt] ·Hn1(p sin θ0 cosφ0) ·Hn2(p sin θ0 sinφ0) ·Hn3(p cos θ0)

sin θ0} dp

∓i(2π2) ·
∫ ∞
0

{
e−p

2 · p · [sin pt] ·Hn1(p sin θ1 cosφ1) ·Hn2(p sin θ1 sinφ1) ·Hn3(p cos θ1)

· sin θ1} dp . (47)

Since Hnj (· · · ) are polynomial functions, the improper integrals in (47) converge.

Therefore, from the equation (43), Green’s functions ∆#
± (n, t;0, 0; 0) are non-singular. By the

linear combinations20 of ∆#
+(· · · ) and ∆#

−(· · · ) , other seven Green’s functions obtainable from the
fig. 4 are also non-singular.24

Divergence-free Green’s functions are necessary (but not sufficient) to remove divergence difficulties
of the S-matrix theory. Thus, non-singular Green’s functions in (38a, 38b) are obviously important.5,6

Now we evaluate explicitly some important Green’s functions in the equation (40) at the coincident
points. These are provided by

∆#
+ (0, 0;0, 0; 0) =

(
i√
π

)
, (48a)

∆#
− (0, 0;0, 0; 0) = −

(
i√
π

)
, (48b)

∆ (0, 0;0, 0; 0) = 0 , (48c)

lim
t→0+

[
∆#

R (0, t;0, 0; 0)
]

=

(
i√
π

)
. (48d)
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§ 6. Conclusion Section

An exact representation of the quantum mechanics, involving a characteristic length has been devel-
oped in papers 2 and 3 of the bibliography. This formulation is exactly relativistic ! In the second
quantization of interacting electromagnetic and Dirac fields, we have proved the convergence of the
S-matrix elements. We are now investigating possible experimental verification of the divergence-free
Quantum-Electrodynamics involving a characteristic length.
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§Appendix : Peano curves and degenerate string-like phase cells

The purpose of this appendix is to elaborate the meaning of circular orbits in fig. 1 as degenerate phase
cells and also one possible random movement of a particle inside such a cell.

Consider a parametrized curve f1 into a plane as depicted in the fig. A1.

Figure-A1 : The graph of the curve f1 .

Here, f1 represents a continuous, piecewise linear curve defined over nine closed intervals
[
j−1
9 , j9

]
of R , with j ∈ {1, 2, . . . , 9} . The image of the function f1 is exhibited in the continuous, piecewise
zigzag oriented curve inside a square of unit area of x-y plane.
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The continuous, piecewise linear parametrized curve f2 has 92 = 81 linear segments as shown in
the fig. A2 below.

Figure-A2 : The graph of the curve f2 .

The continuous, piecewise linear parametrized curve fn has 3n oriented line segments. The sequence
of functions {fn}∞1 possesses the limiting function f := lim

n→∞
fn . It can be rigorously proved that the

graph of the limiting function f fully covers8 the area of the square D with Area (D) = 1 . Such an
example of f constitutes an example for Peano curves.8

Now, we define a sequence of functions {h1, h2, . . . , hM , . . .} from the domain D into the sequence
of closed co-domains {D1, D2, . . . , DM , . . .} such that each of DM is a subset inside R2 . (Consult the
fig. A3 .)

The linear transformation hM is explicitly specified by :

ρ =

(
1

2Mπ

)
x+

(
1

2

)
, (49a)

φ = (2Mπ)y −Mπ ; M ∈ {1, 2, . . .} . (49b)

The Jacobian of each of the transformations hM is furnished by :

∂(ρ, φ)

∂(x, y)
≡ 1. (50)

Therefore, the area of DM is provided by the double integral :

Area (DM ) =

∫ 1/2+1/2Mπ

1/2

∫ Mπ

−Mπ
dρdφ ≡ 1 . (51)

We can physically interpret both the x-y plane R2 and ρ-φ plane R2 as two dimensional phase planes.13

Thus, the closed regions D and DM can both be physically interpreted as phase cells. Each of D
and DM is endowed with area Area(DM ) =Area(D) = 1 permitted by the uncertainty principle
|∆x ·∆y| = |∆ρ ·∆φ| = 1 . Moreover, the mapping hM is a canonical mapping of the Hamiltonian

mechanics13 and quantum mechanics. In the limiting case lim
M→∞

Area(DM ) = 1 . In the same limiting
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Figure-A3 : The graph of the function hM .

case, the sequence of closed co-domains {DM}∞1 collapses into the infinite straight line given by ρ = 1
2

and φ ∈ (−∞,∞) . Thus, the limiting infinite straight line (with unit area) in the ρ-φ phase plane
represents an open string-like phase cell.

Now, we shall introduce another canonical transformation gM from the phase space region DM

into the annular phase space region AM as depicted in the following fig. A4 .

The canonical transformation gM is furnished by :

q =
√

2ρ cosφ , (52a)

p =
√

2ρ sinφ , (52b)

∂(q, p)

∂(ρ, φ)
≡ 1 , (52c)

Area (AM ) ≡ 1 . (52d)

In the limiting case of M →∞ , the outer circular boundary of the annular region AM collapses into
the inner circular boundary of the unit radius. However, in this limiting process, the unit area of AM
is still preserved by the equation (52d) . This collapsed inner circle of unit area, possessing infinite
winding number, is now identified with the smallest of closed, circular string-like phase cells depicted
in the fig. 1.

In case of a closed, circular phase cell of radius
√

2N + 1 in the fig. 1, the function g
(N)
M and the

closed domain D
(N)
M have to be defined as follows :

D
(N)
M :=

{
(ρ, φ) : N +

1

2
≤ ρ ≤ N +

1

2
+

1

2Mπ
, −Mπ ≤ φ ≤Mπ

}
. (53)

The mapping g
(N)
M is exactly the same as given in (52a, 52b, 52c) . The corresponding closed co-domain

A
(N)
M is an annular region in the q-p phase plane R2 .



22

Figure-A4 : The canonical transformation gM .

Now, we shall discuss the physical meaning of a Peano curve exemplified in fig. A1, fig. A2, and
fig. A4 . In fig. A1, fig. A2, and fig. A3, the region D of unit area is interpreted as a phase cell inside
the x-y phase plane R2 . Graphs of the mapping {fn}∞1 yield continuous zig-zag tracks of a particle

hidden from external observations. Specially, the graph of the limiting mapping f := lim
n→∞

fn covers

completely the phase cell D . therefore, the graph of the mapping g
(N)
M ◦ h(N)

M ◦ f from R into R2 is

a continuous zig-zag curve completely covering the annular region A
(N)
M in the q-p phase plane. This

Peano curve represents a possible particle trajectory inside a phase cell of unit area. Moreover, in the

limit M → ∞ , the annular region A
(N)
M , containing the Peano curve,8 completely collapses to the

circle of radius
√

2N + 1 as shown in the fig. 1.
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