SCIENCEDOMAIN international

www.sciencedomain.org

SDI Review Form 1.6

Journal Name:	Physical Science International Journal
Manuscript Number:	Ms_PSIJ_42783
Title of the Manuscript:	An elastic-plastic finite element analysis of two interfering hemispheres sliding in frictionless contact
Type of the Article	Original Research Article

General guideline for Peer Review process:

This journal's peer review policy states that <u>NO</u> manuscript should be rejected only on the basis of '<u>lack of Novelty'</u>, provided the manuscript is scientifically robust and technically sound. To know the complete guideline for Peer Review process, reviewers are requested to visit this link:

(http://www.sciencedomain.org/page.php?id=sdi-general-editorial-policy#Peer-Review-Guideline)

Created by: EA Checked by: ME Approved by: CEO Version: 1.6 (10-04-2018)

SCIENCEDOMAIN international www.sciencedomain.org

SDI Review Form 1.6

PART 1: Review Comments

	Reviewer's comment	Author's comment (if agreed with reviewer, correct the manuscript and highlight that part in the manuscript. It is mandatory that authors should write his/her feedback here)
Compulsory REVISION comments	This work is an interesting work, however there are some issues to be clearly explained as following 1. page4 line9, tridimensional should be three-dimensional; 2. page 4 line 17 defined in [32], should be "defined in reference [32]". 3. page 5, R1=R2=1m, then equivalent radius R=0.5m as deduced from equation(3).	
	and then equation (8) can be deduced as $U_c=\frac{\pi(CS_y)^5}{480E^{'4}}$, is it? so why not deduce it to a simple formula	
	 4. in page 5, the equivalent modulus of elasticity E' = 0.5 * (E1/(1-ν²)) = 0.5*200/(1-0.32*0.32) = 111GPa(bulk elastic modulus), in page 7 E is E1 or E' in equation(4), it should be pointed out, or else it confuses the readers. 5. page 5, equation (2) is expressed as : 	
	$\frac{\sigma_e}{p_0} = \frac{1}{2} \sqrt{[(1 - 2\upsilon - 2\xi^2(1 + 2\upsilon) + 2(\xi + \xi^3)(1 + \upsilon)\operatorname{arccot}(\xi)]^2/(1 + \xi^2)^2} = \frac{1}{2} \frac{(1 - 2\upsilon - 2\xi^2(1 + 2\upsilon) + 2(\xi + \xi^3)(1 + \upsilon)\operatorname{arccot}(\xi)}{(1 + \xi^2)}, \text{ is it? you should make sure this equation.}$	
	 6. page 5 equation (3) R1 and R2 should be pointed by schematic figure. equation (4) is the same situation. 7. page 5, equation (5) and (6) are got from others or by empirical formula based 	
	on experimental data. 8. page 17, figure 3 b),the maximum Mises stress reaches 1.04E9Pa which is higher than yielding strength of the steel (915MPa), and Page 18 Figure 4b has the similar result of 378MPa > 310MPa of Al. Under such condition, the increment theory should be employed to explained this phenomenon, but in the article, I didn't find increment theory, can you explain why. In addition, in the model, you didn't introduce the stress-strain relationship during plasticity processing.	
	 page 23 Figure 7 shows us the plasticity deformation, however, in the previous page the plastic model and plasticity parameter doesn't be presented. page 29, the author should explain why the curve Fy/Pc is not a symmetrical figure, and what reason causes this displacement (in Figure 12 and Figure 13). Energy loss in equation (9) is only a two-dimensional model, and the energy loss in y direction can't be neglected in the model. page 44-50, in Figure 24-28, actually, the data used in SAW model were also obtained from Abaqus calculating, which has senseless meaning for comparison, isn't it. I suggest to delete these comparison. 	
Minor REVISION comments	denipariten, rementi reaggest a denote anote companies.	
Optional/General comments		

Reviewer Details:

Name:	Qiang Li
Department, University & Country	School of Vehicle Engineering, Weifang University of Science and Technology, China

Created by: EA Checked by: ME Approved by: CEO Version: 1.6 (10-04-2018)