

SDI Review Form 1.6

Journal Name:	Physical Science International Journal
Manuscript Number:	Ms_PSIJ_41825
Title of the Manuscript:	MEASUREMENT OF ELECTRIC FIELD RADIATION FROM HIGH TENSION (11 KVA) POWER LINE AND ITS ENVIRONMEN NIGERIA
Type of the Article	ORIGINAL RESEARCH

General guideline for Peer Review process:

This journal's peer review policy states that <u>NO</u> manuscript should be rejected only on the basis of '<u>lack of Novelty'</u>, provided the manuscript is scientifically robust and technically sound. To know the complete guideline for Peer Review process, reviewers are requested to visit this link:

(http://www.sciencedomain.org/page.php?id=sdi-general-editorial-policy#Peer-Review-Guideline)

ENTAL EFFECTS IN CALABAR METROPOLIS:

SDI Review Form 1.6

PART 1: Review Comments

	Reviewer's comment	Author's comme manuscript and hi mandatory that au
Compulsory REVISION comments	MEASUREMENT OF ELECTRIC FIELD STRENGTH FROM HIGH TENSION POWER LINES (11 KVA) AND ITS ENVIRONMENTAL EFFECTS IN CALABAR METROPOLIS, CROSS RIVER STATE, NIGERIA	
	ABSTRACT The study measured the electric field strength from high tension power lines (11 KVA) by varying the distance between 5 m to 30 m using Electrosmog meter: ED78S CORNET. The measurement was carried out within the period of [state the date and duration of the time taken]. Based from the measurement the computed mean extremum values of the mean electric field strength at the 5 m and 30 m are 0.331 ± 0.084 and 1.254 ± 0.370 V/m respectively within the sampled locations in Calabar Metropolis. In all scenario, the measured electric field strength were all below the limit of 5 kV/m for public exposure set by the International Commission on Non- Ionizing Radiation Protection (ICNIRP,2010). Result from the finding reveals that individuals living at a distance greater than 30m will experience little or no adverse health effects, while those living close to the source of high tension power lines (11 KVA) generating electric field may suffer from mild to serious health implications on the long run.	
	Keywords: Calabar Metropolis, Exposure, Non-ionizing radiation, Electric field intensity, High tension power lines	
	Keywords: Calabar Metropolis, Exposure, Non-ionizing radiation, Electric field intensity, High tension power lines	
	1. INTRODUCTION Radiation is a form of energy that moves in the form of particles or waves and humans have always been exposed to radiation from divers sources [1]. However with the development of technology, particularly in relation to working environment, this exposure has drastically increased. Electric and magnetic field occurs during the, production, transmission, distribution and use of electricity. Electricity as a form of energy is important in so many aspects such as, communication, source of heating, source of light and other electrical applications. Electricity, though very useful to man has its own harmful effects due to the electromagnetic field (EMF) radiation emitted from the high tension power lines. In compliance with exposure limits recommended from international guidelines, it creates an awareness to control the risks of exposure [2]. The radiation of low frequency falls under non-ionizing radiation. Non-ionizing radiation refers to any type of electromagnetic radiation that does not carry enough energy to ionize atoms or molecules, that is, to completely remove an electron from the interacting atom or molecule [3]. Instead of producing charged ions when passing through matter, the electromagnetic radiation has sufficient energy only for excitation, the movement of an electron to a higher energy state [4]. Studies carried out [5;6] described the scientific evidence suggesting that electromagnetic field exposures constitute a health risk such as; cancer, leukemia, neuropsychological disorders, reproductive outcome etc.	
	There has been concern over high tension power lines radiation and its effect on human health for past decades. Especially high-voltage overhead power lines conduct electricity from power generating stations to power source substations which are located close to where the energy is actually used. These power lines produce two types of energy: electrical energy and magnetic energy which are given of in a field that expands in all directions around the distributing high tension power lines [7]. The health effects of exposure from extremely low frequency (ELF) will be dependent upon; The duration of	
	exposure to the radiation, the strength of the electric field from the power line and the distance from the power line. The European and International Commission on Non-Ionizing Radiation Protection (ICNIRP) standards, have a reference standard to 5kV/m for public area and 10kV/m for occupational area exposure [8]. The scientific evidence does not firmly establish that exposure to 50 Hz electric and magnetic fields found in ; home, office or near power lines is hazardous to human health. In view of the epidemiological studies, however, the possibility remains that intense and prolonged exposures to electric fields may increase the risk of leukaemia in children [9]. [10] cited the relationship between electromagnetic fields (EMFs) and adverse health effects such as; childhood and adult leukemia, adult brain cancer, breast cancer, depression, electrical stability symptoms, certain	

ent (if agreed with reviewer, correct the
ighlight that part in the manuscript. It is
uthors should write his/her feedback here)

types of heart diseases, and miscarriage.

The permittivity of biological tissues is to a large extent determined by water and electrolyte contents. Thus, tissues such as; blood, muscle, liver and kidneys, which have higher water content than tissues such as; fats and lungs, that have higher dielectric constants and conductivities. Both the permittivity and conductivity vary with frequency and exhibit relaxation phenomena. The physical phenomenon responsible for the dispersion at low frequencies is counter ion polarization [11].

The exposure of conductors to time varying electric and magnetic field leads to current being induced in conductors. The distribution of currents in terms of its pattern induced by electric and magnetic field differ from each other. Electric field when exposed to a human body standing uprightly, the flow of field and current induced are vertical, while for a magnetic field, current flow in a perpendicular direction to form a closed loop [12]. There is perturbation of the peripheral electric field by biological bodies, due to the fact that the tissue conductivity is at low frequencies. Due to the use of wireless technologies and electricity from man-made sources, electromagnetic field has increased progressively apart from the electromagnetic fields at different frequencies [13]. Health effects result from biological effects that cause deficiency in the health or wellbeing of exposed individuals when the energy of the fields is absorbed and transformed into movement of molecules [14].

Using the standard of ICNIRP classification that weighs up human, animal and laboratory evidence, ELF fields were classified as possibly carcinogenic to humans based on epidemiological studies of childhood leukemia. This classification is used to represent an agent for which there is limited evidence of carcinogenicity in humans and less than sufficient evidence for experimental animals [15]. Children, pregnant women and those with poor health conditions are especially at risk for a long time exposure [16]. The amount of "absorbed" vs. "exposed" radiation has to be considered since the absorption depends on the; nature, amount and duration of radiation as well as the individual body condition. It is worth mentioning, that research and studies alerting from hazards are much more than those denying the effects. Studies have not been carried out due to exposure of electric field strength in Calabar metropolis from high tension power lines. Hence, this study will evaluate the measurement and the health risk of exposure to electric field strength from high tension power lines within some sample locations within the Calabar metropolis.

2. MATERIALS AND METHODS

2.1 Materials

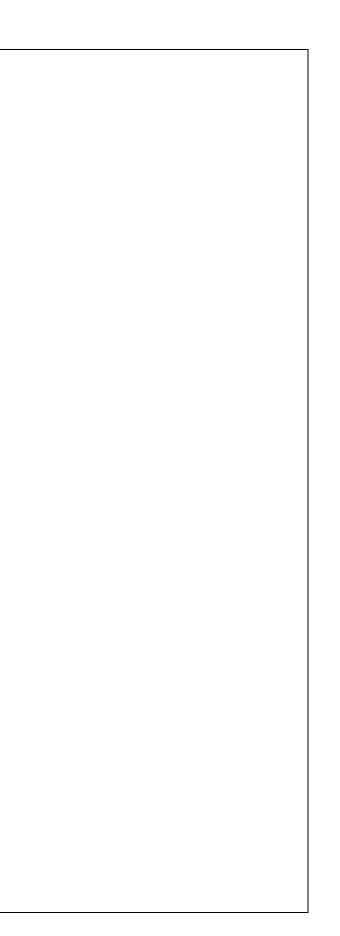
The material used for the research is an electrosmog meter model: ED78S CORNET having dual operation mode radio frequency and gauss function. The RF meter has frequency range of 100 MHz to 8 GHz with a sensitivity of 14 V/m to 26.2 V/m and gauss meter frequency range from 50 Hz to 10 KHz with a sensitivity of 0.1 mG to 600 mG respectively. The equipment has a sampling time rate of 3500 per second and display update rate of 2 per second. A measuring tape of range 0-100 m was used in the measurement.

2.1.1 Study location

The study area is located in Calabar, the capital of Cross River State, Nigeria. Administratively the city is divided into Calabar municipal and Calabar South Local Government Areas (LGAs). It has an area of 406 square kilometer and a population of 371,022 at the 2006 census. The city is adjacent to the great Kwa Rivers and creeks of the Cross River (from inland delta). The study area is located between longitude N4⁰55/ to N5000/ and latitude E8018/ to E8021/. The sampled locations include; Palm Street, State housing estate, Ekorinim, Watt Market road, Akai Effa, Ikot Ansa and Port Harcourt Electricity Distribution (PHED) Calabar Road, all located within Calabar metropolis. The control was taken 10km away from the sample location in a forest where the effect of electric field from High tension was reduced to the barest minimum.

2.2 METHODS

The electric field measurement was taken within the seven locations using electrosmog meter within Calabar metropolis, by varying the distances from 5 m, 10 m, 15 m, 20 m, 25 m and 30 m and the control was measured at a distance of 10 km away from the 11 KVA high tension in a forest were the effect was completely null. For all data, measurements were repeated for at least three times and the average taken in order to ascertain the accuracy of results.


3. RESULTS AND DISCUSSION

The results showing variation of the electric field strength with distances at the different sampled locations and the mean values are presented in Table 1.

SDI Review Form 1.6

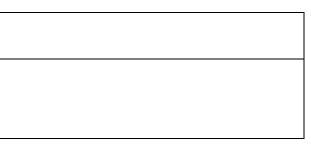
S/N	I <u>: Electric fiel</u> Distance (m)	Palm street	State housing	Ekorinim	Watt Market	Ákai Effa	lkot Ansa	PHED	Mean value of electric field strength (V/m)
1	5	1.238	0.579	1.568	0.996	1.451	1.345	1.601	1.254 ± 0.370
2	10	1.055	0.267	1.347	0.788	1.312	1.203	1.434	1.058 ± 0.155
3	15	0.969	0.136	1.128	0.605	1.104	1.044	1.207	0.885 ± 0.145
4	20	0.785	0.097	1.007	0.514	0.987	0.968	0.936	0.756 ± 0.128
5	25	0.515	0.079	0.898	0.306	0.755	0.659	0.738	0.578 ± 0.111
6	30	0.338	0.058	0.639	0.037	0.307	0.435	0.505	0.331 ± 0.084
reque	y distance, th ncy meter (el ine as shown	lectrosmo	g meter). Th	ne electric fie					stance away from t
Figure	1: Variation of	of electric	field <mark>intensit</mark>	<mark>y </mark> with distan	ce at vario	us <mark>sampl</mark> e	ed locatio	ns	
						a horizor	ital distan	ce of 5 m	from the power lin
	s slightly to 0.					hase of t	ha nowar	ling The	values of the elec
									stance of 10 km av
									w the set standard
									vith the fact that ot
									of emitting radiation
	ally present,								of 5 m from the ba
									stance of 20 m and
									ough this increase
a0010a	field might								V antennas etc.
lectric							and of E	<mark>V/m [8].</mark> S	tate housing is hig
ectric posu									
electric exposu populat	ted it is a resi	dential are	a with work	ing class citi	zens. The	people sp	ent most	of their tin	ne at home after w
electric exposu populat with the	ted it is a resi eir families w	dential are	ea with work ase the use	ing class citi e of these R	zens. The F emission	people sp gadgets	ent most . Althoug	of their tin	ne at home after w ses are well plann
electric exposu populat with the power l	ted it is a resi eir families w lines are four	dential are hich incre	ea with work ase the use to most of th	ing class citi e of these R ne buildings.	zens. The F emission The differe	people sp gadgets ence betv	ent most . Althougl veen the i	of their tin h the hous results obt	ne at home after w ses are well plann tained and the con
electric exposu populat with the power l result c	ted it is a resi eir families w lines are four of 0.048 V/m	dential are hich incre nd closed is high. Th	ea with work ase the use to most of th	ing class citi e of these R ne buildings.	zens. The F emission The differe	people sp gadgets ence betv	ent most . Althougl veen the i	of their tin h the hous results obt	ne at home after w ses are well plann tained and the con
electric exposu populat with the power l result o emitted	ted it is a resi eir families w lines are four of 0.048 V/m I from the pov	dential are hich incre nd closed is high. Th wer line <mark>s</mark> .	ea with work ase the use to most of th nis implies th	ing class citi of these R ne buildings. hat there is a	zens. The F emission The differe a possible	people sp gadgets ence betv health ris	ent most . Althougl veen the i k in future	of their tin h the hous results obt e from the	ne at home after w ses are well plann tained and the con electric field stren
electric exposu populat with the power I result o emitted At a ho V/m wa	ted it is a resi eir families w lines are four of 0.048 V/m I from the pov orizontal dista as recorded a	dential are which incre nd closed t is high. Th wer line <mark>s</mark> . ance of 5 at Ekorinim	ea with work ase the use to most of th his implies th m from the h. The value	ing class citi of these R he buildings. hat there is a base of the of the elect	zens. The F emission The differe a possible <mark>high tensio</mark> ric field inte	people sp gadgets ence betw health ris on power ensity dec	ent most . Although veen the r k in future lines, the creases to	of their tin the house results obtores from the electric for 0 1.007 V/	ne at home after we ses are well plann tained and the cont electric field strend ield intensity of 1.5 m at a distance of
electric exposu populat with the power I result o emitted At a ho V/m wa m from	ted it is a resi eir families w lines are four of 0.048 V/m I from the pow orizontal dista as recorded a the base of the base	dential are which incre nd closed to is high. The wer line <mark>s</mark> . ance of 5 at Ekorinim the power	ea with work ase the use to most of th his implies th m from the h. The value line and the	ing class citi e of these R ne buildings. hat there is a base of the of the elect en to 0.639	zens. The F emission The differe a possible high tensio ric field inte //m at a ho	people sp gadgets ence betw health ris on power ensity dec prizontal c	vent most Although veen the in k in future lines, the creases to distance c	of their tin the house results obtores from the electric for 0 1.007 V/	ne at home after w ses are well plann tained and the con electric field stren ield intensity of 1.5 m at a distance of
electric exposu populat with the power I result o emitted At a he V/m wa m from distanc	ted it is a resi eir families w lines are four of 0.048 V/m I from the pov orizontal dista as recorded a	dential are which incre nd closed to is high. The wer lines. ance of 5 at Ekorinim the power nt be influe	ea with work ase the use to most of the his implies the m from the h. The value line and the enced by ne	ing class citi e of these R he buildings. hat there is a base of the of the elect en to 0.639 V ighbouring R	zens. The F emission The differe a possible high tension ric field inte //m at a ho F emission	people sp gadgets ence betw health ris on power ensity dec prizontal on gadgets	eent most . Althougl veen the i k in future lines, the creases to distance c	of their tin h the hous results obt from the electric f o 1.007 V/ of 30 m. T	ne at home after w ses are well plann tained and the con electric field stren ield intensity of 1.5 m at a distance of
electric exposu populat with the power I result o emitted At a ho V/m wa m from distanc But the Ekorinii	ted it is a resi eir families w lines are four of 0.048 V/m I from the pow orizontal dista as recorded a the base of t e of 5 m migh exposure lev m is a fast de	dential are which incre nd closed to is high. The wer lines. ance of 5 at Ekorinim the power the power of be influe vel is below eveloping r	ea with work ase the use to most of the his implies the m from the line and the enced by ne w the ICNIR esidential a	ing class citi e of these R he buildings. hat there is a base of the of the elect of the elect of the elect aghbouring R P set standa rea with an in	zens. The F emission The differe a possible I high tensic ric field inte V/m at a ho F emission rd of 5 <mark>k</mark> V/m ncrease po	people sp gadgets ence betw health ris on power ensity dec prizontal on gadgets m[8], for t pulation.	eent most . Althougl veen the i k in future lines, the creases to distance c he electri Most of th	of their tin the house results obt from the electric f o 1.007 V/ of 30 m. The c field.	ne at home after w ses are well plann tained and the com electric field stren ield <mark>intensity</mark> of 1.5 m at a distance of his high increase a
electric exposu populat with the power I result o emitted At a ho V/m wa m from distanc But the Ekorinii houses	ted it is a resi eir families w lines are four of 0.048 V/m I from the pow orizontal dista as recorded a the base of t e of 5 m migh exposure lew m is a fast de s are situated	dential are which incre nd closed to is high. The wer lines ance of 5 at Ekorinim the power nt be influe vel is below eveloping r some me	ea with work ase the use to most of the his implies the m from the line and the enced by ne w the ICNIR esidential a uters away fi	ing class citi e of these R he buildings. hat there is a base of the of the elect en to 0.639 V ighbouring R P set standa rea with an in rom the high	zens. The F emission The differe a possible f high tensio ric field inte //m at a ho F emission rd of 5 k//in hcrease po tension po	people sp gadgets ence betw health ris on power ensity dec prizontal on gadgets m[8], for t pulation.	eent most . Although veen the i k in future lines, the creases to distance c he electri Most of th . The con	of their tin the house results obter from the electric f of 1.007 V/ of 30 m. The c field. ne ttrol result	ne at home after w ses are well plann tained and the con electric field stren ield intensity of 1.5 m at a distance of

SCIENCEDOMAIN international www.sciencedomain.org

SDI Review Form 1.6

risk in future. Watt market recorded its maximum electric field of 0.996 V/m at a distance of 5 m from the high tension power lines. There is a gradual decrease in the electric field intensity to 0.514 V/m at a horizontal distance of 20 m and then a further decrease of 0.037 V/m for the electric field[8]. Watt market is strictly for commercial purpose and not for residential. RF emission gadgets are very few so most of the radiations are from the power lines. The results at this location when compared to the control result of 0.048 V/m, obtained 10 km from a high forest is high. This implies that long term effects will be observe on those traders that stays either directly under the high tension power lines or 20m away from it. Akai Effa recorded a value of 1.451 V/m electric field intensity at a horizontal distance of 5 m from the base of power line to 0.968 V/m at a distance of 20 m away from the base and finally 0.435 V/m at a horizontal distance of 30 m from the power line. The electric field obtained is minimal below the ICNIRP set standard of 5 V/m for electric field [8]. Akai Effa recorded a value of 1.451 V/m electric field obtained is minimal below the ICNIRP set standard of 5 V/m for electric gield [8]. Akai Effa is a fast growing area in Calabar municipal. It is a residential area with houses springing up almost on a daily basis. This will lead to an increase in population and a high demand for other RF emission gadgets such as satellite dishes, TV antennas, telephone masts etc. capable of increasing electric field strength. It was observed that the electric field from neaby RF emission gadgets. Ikot Ansa recorded its highest electric field intensity of 1.345 V/m at a horizontal distance of 5 m from the base of the power lines. The electric field decreases to 0.968 V/m at a horizontal distance of 5 m from the base of the power line and with a further decrease of 0.435 V/m at a distance of 30m. This increase might be influenced by other radio frequency gadgets such as radio transmitters, TV antennas,
 horizontal distance of 30 m respectively. The emission level is below the set standard by ICNIRP of 5kV/m for the electric field [8]. It is a commercial area, comprises of banks and other corporate organizations. Other RF gadgets capable of emitting radiations were observed. The result of this experiment is high compared with the control result of 0.048 V/m. These pose a health risk in the future. 4. CONCLUSIONS The results revealed that decrease in distance results to increase to the amount of electric field strength exposure which conforms to the fact that electric force field strength is inversely proportional to the square of its distance.
REFERENCES [8] International Commission on Non-ionizing Radiation Protection, (ICNIRP Guidelines) for limiting exposure to time- varying electric, magnetic fields and electromagnetic fields (1Hz - 100kHz), Health Physics ; 2010:(99)6:818 - 836

SCIENCEDOMAIN international www.sciencedomain.org



SDI Review Form 1.6

Minor REVISION comments		
Optional/General comments	Try and add the coordinates of the sampled locations (optional)	

Reviewer Details:

Name:	Sokari, Sylvester Akinbie
Department, University & Country	Department of Science Laboratory Technology, Captain Elechi Amadi Polytechnic, Nigeria

