SCIENCEDOMAIN international

www.sciencedomain.org

SDI Review Form 1.6

Journal Name:	Physical Science International Journal
Manuscript Number:	Ms_PSIJ_41391
Title of the Manuscript:	(Toy-model) A simple "digital" vacuum composed of space voxels with quantized energetic states
Type of the Article	Short Research Article

General guideline for Peer Review process:

This journal's peer review policy states that **NO** manuscript should be rejected only on the basis of 'lack of Novelty', provided the manuscript is scientifically robust and technically sound. To know the complete guideline for Peer Review process, reviewers are requested to visit this link:

(http://www.sciencedomain.org/page.php?id=sdi-general-editorial-policy#Peer-Review-Guideline)

Created by: EA Checked by: ME Approved by: CEO Version: 1.6 (10-04-2018)

SCIENCEDOMAIN international

www.sciencedomain.org

SDI Review Form 1.6

PART 1: Review Comments

	Reviewer's comment	Author's comment (if agreed with reviewer, correct the manuscript and
		highlight that part in the manuscript. It is mandatory that authors should write his/her feedback here)
Compulsory REVISION comments		Tils/fier reedback fiere)
Compulsory REVISION Comments	Quote	
	Statement (and definition). In DVTM, all SVs at	
	rest are stated to allow only fixed quantized	
	energetic states (min) 2i SV SV E i E with	
	positive integer $i \square 1$, $A \square$: a SV in any i-th	
	energetic state will be indexed as SV(i), so that	
	each SV(i) at rest (with A+1>i>1) will have the	
	doubled energy of SV(i-1) and each SV(i) at rest	
	(with A>i>0) has the half energy of SV(i+1) at rest. Note (1) . \square	
	SV SV E i DE was	
	chosen not only for being among the simplest	
	possible exponential functions, but also for the	
	reason that it has a unique property among the	
	sums of power series of integers so that	
	1	
	1	
	i SV SV	
	X	
	ExEi	
	_	
	□ □ □ □, which is equivalent to	
	$L \Box i \Box \Box 1$, with	
	i	
	SV SV	
	X Lieuei	
	LiExEi	
	□ □ □ □ i3 1 1/10 <i>i L i</i> − □ □ □ . Note (2) . Given this unique	
	This is the section of the paper which MUST be rigorously proved. If it is, I will recommend the	
	paper for acceptance.	
Minor REVISION comments		
Optional/General comments		

Created by: EA Checked by: ME Approved by: CEO Version: 1.6 (10-04-2018)

SCIENCEDOMAIN international www.sciencedomain.org

SDI Review Form 1.6

Reviewer Details:

Name:	Andrew Walcott Beckwith
Department, University & Country	Department of Physics, Chongqing University, China

Created by: EA Checked by: ME Approved by: CEO Version: 1.6 (10-04-2018)