SCIENCEDOMAIN international www.sciencedomain.org

SDI Review Form 1.6

Journal Name:	Physical Science International Journal		
Manuscript Number:	Ms_PSIJ_41102		
Title of the Manuscript:	Identity that Connects Thermal Expansion and Isothermal Compressibility is Not an Identity for Condensed Phases		
Type of the Article	Short Research Article		

General guideline for Peer Review process:

This journal's peer review policy states that <u>NO</u> manuscript should be rejected only on the basis of '<u>lack of Novelty'</u>, provided the manuscript is scientifically robust and technically sound.

To know the complete guideline for Peer Review process, reviewers are requested to visit this link:

(http://www.sciencedomain.org/page.php?id=sdi-general-editorial-policy#Peer-Review-Guideline)

Created by: EA

SDI Review Form 1.6

PART 1: Review Comments

	Reviewer's comment	Author's comment (if agreed with reviewer, correct the manuscript and
		highlight that part in the manuscript and mandatory that authors should write his/her feedback here)
Compulsory REVISION comments	The identity in Eq. (3) is not true. See demonstration Suppose the state equation	
	$S = S(U,V)$ (a); $dS = \left(\frac{\partial S}{\partial U}\right)_V dU + \left(\frac{\partial S}{\partial V}\right)_U dV$ (b)	
	Now consider the state equation (∂U) (∂U)	
	$U = U(T, V) \text{ (c) } ; \ dU = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV \text{ (d)}$	
	Combining (b) and (d) $\left(2g\right) \left(2U\right) = \left[\left(2g\right) \left(2U\right) - \left(2g\right)\right]$	
	$dS = \left(\frac{\partial S}{\partial U}\right)_{V} \left(\frac{\partial U}{\partial T}\right)_{V} dT + \left[\left(\frac{\partial S}{\partial U}\right)_{V} \left(\frac{\partial U}{\partial V}\right)_{T} + \left(\frac{\partial S}{\partial V}\right)_{U}\right] dV$	
	(e) Also consider the state equation	
	$S = S(T,V) \text{ (f) }; \ dS = \left(\frac{\partial S}{\partial T}\right)_{V} dT + \left(\frac{\partial S}{\partial V}\right)_{T} dV \text{ (g)}$	
	Comparing the equations (e) and (g) $\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial S}{\partial V}\right)_{U} + \left(\frac{\partial S}{\partial U}\right)_{V} \left(\frac{\partial U}{\partial V}\right)_{T} $ (h)	
	From the relation	
	$dS = \frac{1}{T}dU + \frac{p}{T}dV (i)$	
	Compared with equation (b) $\left(\frac{\partial S}{\partial U}\right)_{V} = \frac{1}{T}$ (j) and $\left(\frac{\partial S}{\partial V}\right)_{U} = \frac{p}{T}$ (k)	
	Putting the equation (j) in (h)	
	$\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial S}{\partial V}\right)_{U} + \frac{1}{T}\left(\frac{\partial U}{\partial V}\right)_{T} $ (1)	
	Also from (i) and the Maxwell relation	
	$\left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial S}{\partial V}\right)_T - p = T\left(\frac{\partial p}{\partial T}\right)_V - p$	
	Therefore, $\left(\frac{\partial S}{\partial V}\right)_T \neq \left(\frac{\partial S}{\partial V}\right)_U$. So the identity $\frac{\alpha}{\beta} = \frac{P}{T}$ is	
	derivate from a wrong assumption.	
	At line 104: $\frac{C_p}{C_V} = \frac{\beta}{\beta_s} = \frac{B_s}{B}$	
Minor REVISION comments	At line 33: From Eqs. (1), (2), and (3) and the combination of the first and the second laws of thermodynamics	
Optional/General comments		

Reviewer Details:

Name:	João Batista Campos Silva
Department, University & Country	Department of Mechanical Engineering, UNESP, Brazil