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NATURAL CONVECTIVE HEAT TRANSFER IN A LAMINAR 1 

FLOW OVER AN IMMERSED CURVED SURFACE 2 

 3 

ABSTRACT 4 

Numerical solutions of unsteady laminar free flow of a viscous fluid past an immersed curved 5 

surface were presented in this research study. The two-dimensional fluid flow in consideration 6 

was incompressible. Flows of this nature are commonly encountered in engineering studies such 7 

as Aerodynamics e.g. aero planes and Hydrodynamics e.g. ships. The continuity, the momentum 8 

and thermal energy equations were non-dimensionalised and the solutions of the dimensionless 9 

governing equations approximated using finite-difference method, since these equations were 10 

non-linear and hence could not be solved using analytical methods. The velocity and temperature 11 

fields were studied by varying various parameters in the equations governing the fluid flow. The 12 

results obtained in tabular form were presented graphically for comprehensive and easier 13 

interpretation. From the results, it was found out that the dissipation of heat increases with 14 

increase in the length of the curvature within the boundary layer. As the length of the curvature is 15 

increased, the amount of heat dissipated within the boundary layer also goes high.  Also when 16 

the Reynolds number was increased, this led to decrease in heat dissipation within the boundary 17 

layer. These findings would assist Engineers in making appropriate designs and estimate 18 

improvements in equipment that require  minimal resistance to the fluid motion. 19 

1 BACKGROUND INFORMATION 20 

Natural Convective heat transfer over an immersed curved surface is receiving research attention 21 

due to its wide applications in designing of devices  such as  flying planes, submarines,  pumps,  22 

cooling  fans among many others.  23 
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In the study of models of the turbulent boundary layer with pressure gradient, Barenblatt et al 24 

(2002), posted that at large Reynolds number, the turbulent boundary layer consists of two 25 

separate layers in which the shape of the vortex fields is different. Interestingly, both showed 26 

similar characteristics. The first layer has vertical structure that is common to all developed shear 27 

flows. In this layer, the effect of viscosity is transmitted to the mainstream body through streaks 28 

that separates the viscous sub layers. The second layer possess the remaining part of the 29 

neighbouring region of the boundary layer. 30 

Gupta  et  al  (2003)  investigated  heat transfer along the surface with a longitudinal  curvature   31 

in  laminar fluid flow and concluded that as the curvature changes from  concave to convex, the 32 

Nusselt  number  decreases for Eckert number being small and  increases if the Eckert number is 33 

increased to unity. 34 

Bradshaw et al (2006) extended the study on the use of the algebraic analogy to the curved shear 35 

layers and the effects of the curvature on the mixing length if the shear layer thickness exceeds 36 

1/300 of the radius of the curvature. In their study they concluded that large effects occurred in 37 

compressible fluid flows. 38 

From the investigations conducted by Khoshevis et al (2007) on effects of the concave curvature 39 

on turbulent fluid flows, it was found that turbulent intensities as well as shear stresses are high 40 

on concave surfaces compared to a flat surface under similar conditions. In their study, they 41 

concluded that the de-stabilizing effects on the boundary layer of the concave surface leads to 42 

increase in turbulence between the fluid particles similar to the way concave curvature would 43 

cause the flow to be destabilized. 44 

Mugambi   et al (2008)  in their investigation on the forces produced  by  the  fluid  motion  on a 45 

sub-merged  finite  curved plates established the relationship between geometrical shape of the 46 

curvature and the variation of drag force of specific velocities of the viscous fluid.  47 

George   et al (2009) in their study on the convective heat transfer over curved surface 48 

established that as fluid flows over an immersed curved surface, some work is done against 49 

viscous effect and energy spent is converted into heat.  The vortices formed in the boundary 50 

layer due to high velocity gradient is swept outwards from the boundary layer. They established 51 
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that the rate of heat transfer is considerably high at points close to the convex surface within the 52 

boundary layer thickness. This, as a result leads to a decrease in fluid viscosity.  53 

Kioi et  al (2011)  in their study noted that when the Reynolds number is high, the heat 54 

dissipation in the boundary layer also goes high. Their study concluded that when the Reynolds 55 

number is increased, the consequence is decrease in drag. When the Reynolds number decreased, 56 

the effect of drag goes high. At high Reynolds number the lift is increased and vise versa, hence 57 

a direct proportionality of the two quantities. 58 

Mawira et al  (2014) investigated the convective transfer of heat in a laminar boundary layer 59 

over an immersed curved surface. In their study, they established the pressure gradient affects the 60 

velocity and temperature profiles in the laminar boundary layer in that when the fluid pressure 61 

was decreased in the direction of the flow, this led to increase in velocity. The study concluded 62 

that when the surface area of the curvature was increased, the velocity and temperature of the 63 

fluid increased and vise versa.  64 

From the above discussed research investigations and findings, it is clear that limited or little 65 

attention has been paid on the extent to which varying the length and the nature of the surface of 66 

the curvature would affect the velocity and temperature profiles along the unsteady  laminar fluid 67 

flow. This was the motivation of this research study. 68 

2 STATEMENT OF THE RESEARCH PROBLEM 69 

Many researches in the past has laid more emphasis mass transfer, effect of varying the curvature 70 

radius on velocity and temperature distributions on the fluid flow but little has been done on the 71 

extent to which varying the length of the curvature and inertia forces would affect the 72 

temperature and velocity profiles along the immersed curved surface in consideration.  This thus 73 

formed the basis of this research study. 74 

 75 

2.1 JUSTIFICATION 76 

The cost of maintenance brought about by degradation of equipment and a machine whose parts 77 

comes in contact with a fluid has been a major economical threat to manufacturers in 78 
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Engineering sector. Heat produced due to viscosity on the body surface has led to degradation of 79 

equipment and machines which has led to high cost of maintenance being incurred. Rise in 80 

temperature decreases the viscosity of the fluid and vise versa, thus need to design bodies with 81 

optimal curvature lengths and appropriate materials that could withstand such variations.  82 

An aquatic animal like fish that solely depends on their effective swimming ability is affected by 83 

variations in fluid physical conditions such as temperature and velocity. 84 

3 OBJECTIVES OF THE RESEARCH STUDY 85 

3.1     General objective of the study 86 

The aim of our study is to investigate the problem of natural convective heat transfer in a laminar 87 

flow over an immersed curved surface. 88 

3.2    Specific objectives 89 

1. To determine  the effect of varying the length of the curvature on velocity and 90 

temperature profiles 91 

 92 

2. To study the effect of inertia forces on velocity and temperature distributions along the 93 

boundary layer of an immersed curved surface  94 

4  EQUATIONS GOVERNING THE FLUID FLOW 95 

 4.1     Equation of continuity 96 

The equation is based on the law of conservation of mass, which states that matter cannot be 97 

created nor destroyed. The rate at which mass enters the system is equal to the rate at which mass 98 

leaves the system in a control volume. The general expression representing mass conservation is:  99 

  

  
            0                                                                                  (1.0)  100 

 In Cartesian co-ordinate form, the equation (1.0) is expressed as; 101 

  

  
   

  

  
 

  

  
 

  

  
     0                                                                 (1.1)  102 
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For two-dimensional fluid flow with constant density, w=0 and 
  

  
  = 0 and thus equation (1.1) 103 

reduces to: 104 

  

  
 

  

  
                                                                                                     (1.2) 105 

Equation (1.2) is our two-dimensional continuity equation in the velocity boundary layer under 106 

consideration. 107 

4.2 Momentum equation   108 

This equation is formulated from the Newton’s second law of motion, which states that the rate 109 

of change of momentum of a body or matter is equal to the net external force applied to that 110 

particular body. These external forces that acts on the body are of two categories: 111 

i) Body forces 112 

These are forces acting on a body from an external source. They are usually expressed as forces 113 

per unit mass e.g gravitational force, magnetic force or electric fields and centrifugal forces. 114 

ii) Surface force 115 

The surface forces are due the interaction between the body and the matter in the immediate 116 

contact with it. The viscous stresses at any point in the velocity boundary layer were resolved 117 

into the two components; the normal stress which was always perpendicular to the surface and 118 

shear stress which was always tangential to the surface in consideration.  119 

The momentum equation along x- axis is generally given as: 120 

   
  

  
  

  

  
   

   

  
   

  

   
  

    

  
 

    

  
    +   Fx                     (1.3) 121 

Along the y-direction we have: 122 

   
  

  
  

  

  
   

  

  
   

  

  
  

    

  
 

    

  
    +   Fy                       (1.4) 123 

 The viscous stresses and shear stresses in two dimensions are given by; 124 
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              xx   =  2µ
  

  
     

  

 
  
  

  
 

  

  
                                             (1.5a) 125 

       126 

              yy  =  2µ
  

  
     

  

 
   

  

  
 

  

  
                                             (1.5b) 127 

 128 

                 xy =  yx =   
  

  
 

  

  
                                                     (1.5c) 129 

Substituting (1.5a), (1.5b), (1.5c) into equations (1.3) and (1.4), we obtain momentum equation 130 

along the x-axis and y- axis as: 131 

Along the x-axis; 132 

 
   

  
    

  

  
  

  

  
    

  

   
  

 

  
       

  

  
 

 

 
   
  

  
 

  

  
           133 

            
 

  
      

  

  
 

  

  
       Fx                                                                       (1.6a)                                                                                                                                                                      134 

 135 

Along the y- axis; 136 

 
   

  
    

  

  
  

  

  
    

  

   
  

 

  
       

  

  
 

 

 
   
  

  
 

  

  
           137 

            
 

  
      

  

  
 

  

  
         Fy                                                                          (1.6b)                                                                                                                                                                      138 

  139 

Since   
  

  
 

  

  
   , equations  (1.6a) and (1.6b)   reduced to                                                                                      140 

 
   

  
    

  

  
  

  

  
    

  

   
   

   

      
  

   

      
  

   

    
       Fx                 (1.7a)                                                 141 
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 and  142 

 
   

  
    

  

  
  

  

  
    

  

   
   

   

      
   

   

    
  

   

      
       Fy                 (1.7a)                                                 143 

respectively. 144 

From the boundary layer approximations made earlier, the boundary layer thickness under 145 

consideration was very small to the extent that the velocity component tangential to the surface 146 

was much larger than that perpendicular to the surface. Hence the gradients perpendicular to the 147 

surface were larger than those along the surface i.e  
  

  
 
  

  
  
  

  
   

  

  
   and  

  

  
  = 0 since the 148 

fluid flow is assumed to be steady along the y- direction. 149 

From these approximations, equation (1.7a) reduces to:  150 

  

  
  =   

 

 

  

  
 

 

 
 
    

    
 + Fx    151 

But  
 

 
 =    and thus the above equation further reduces to: 152 

                
  

  
  =   

 

 
 
  

  
   

   

      
 + Fx                                                                   (1.8a) 153 

 Also from the approximations made earlier, equation  (1.7b) reduced to: 154 

              0 =   
 

 
 
  

  
  +  Fy                                                                 (1.8b) 155 

 From Bernoulli’s equations, we have 156 

       P + 
 

 
  u2  

= constant                                                                                   (1.9) 157 

The  curved surfaces provided both adverse and favourable pressure gradients whose tangential 158 

components of the velocity of the outer flow reveals a power law dependence on the streamwise 159 

x measured along the curved surface boundary as; 160 
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 = x

m
                                                                                                             (2.0) 161 

Where c was a positive velocity coefficient and  m was an integer obtained from the angle of 162 

inclination from a horizontal plane 163 

Differenciating partially equation (1.9) with respect to x, we obtain  164 

      
  

  
   

  

  
                                                                                              (2.1) 165 

Which implied that; 166 

  
 

 
 
  

  
   

  

  
                                                                                                    (2.2) 167 

But from the power law dependence,  168 

 
  

  
   m c

2
 x

2m-1  
                                                                                    (2.3) 169 

Hence equation (1.8a) became  170 

     
  

  
  =  Pt  +   

   

      
 + Fx                            where Pt = m c

2
 x

2m-1  
                                       (2.4) 171 

                                                                           And    
 

 
 =     172 

Since the body under consideration had both concave and convex surfaces, the concave part of 173 

the body brought  about an unstable effect which  was determined by 
  

  

   

  
. The curved surface 174 

as a curvature was defined by a quadratic equation of the form 175 

  bx
2 

+ c(x) – y = 0                                                                                                                 (2.5) 176 

where 0< b < 1 was set to ensure that surface radius of the curvature was large enough and the 177 

end points were set at specific co-ordinates values when solving for a particular case of which 178 

length of the plate curvature were determined analytically. 179 
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The concave wall extended a destabilizing influence on the momentum exchange. Prandtl, who 180 

is considered to be the father of fluid mechanics proposed to account for the effect of the 181 

curvature through multiplying the length of the concave curved surface by a factor f. This factor 182 

f was a function given by; 183 

   f  
  

  
  =  -  

    

 
 + 1 

  

  
 , which on simplifying further yielded:                        (2.6) 184 

                                    f =  -  
 

 

    

 
  

  
 
 + 1                                                                     (2.7) 185 

he also deduced that the boundary layer equation on the curved surface was written as ; 186 

     
  =   

  

  
   , which was re-written as 187 

                   
 

 

  

  
   =   

    
 

   
                                                                        (2.8) 188 

Where kr  and h1 are curvature parameters which were defined as 189 

   kr =  -  
 

      
                                                                              (2.9) 190 

     h1  = 1 + kr y                                                                                                        (2.10) 191 

where c(x) was the radius of the curvature. 192 

Equation (1.8b) was re-written as 193 

          Fy =   
 

 

  

  
                                                                                                         (2.11) 194 

Comparing equation (2.8) and (2.11) , we have; 195 

        
    

 

   
  = Fy                                                                                                        (2.12) 196 

Body forces, Fx and Fy which were purely due to the gravitational pull and which was assumed to 197 

be a constant in both cases. This  led to a crucial assumption that: 198 
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        Fx = Fy                                                                                                                                                             (2.13) 199 

From equations (2.12) and (2.13), it was resolved that 200 

         
    

 

   
  = Fx                                                                                                        (2.14) 201 

Equation (2.14) was replaced in equation (2.5), a result which gave us a generalized equation of 202 

conservation of momentum for fluid flow over an immersed  curved surface as; 203 

    
  

  
  =  Pt  +   

   

      
 +  

    
 

   
                                                                         (2.15)  204 

since  h1 = 1+ kr y, the term     
    

 

   
  in equation (3.3) was written in Taylor series as  205 

    
  (1 +     )

-1
 =     

  (1-      +     
   +…..)                                                   (2.16) 206 

 And therefore, equation  (2.15) yielded 207 

  

  
  =  Pt  +   

   

      
 +     

  (1 -       +    
   +…..)                                            (2.17) 208 

The flow was along the x- axis. This implies that y   0 and for every small value of     we have 209 

(1 -       +    
   +…..) = 0. Consequently, equation (2.17) reduced to  210 

  

  
  =  Pt  +   

   

      
 +     

                                                                                     (2.18) 211 

4.3  The Energy equation 212 

This  equation is derived from the First Law of Thermodynamics that asserts the mutual  213 

equivalence  between heat and mechanical work. The law  states  that  the amount of heat added 214 

to the system, dQ  is equal to the sum work done, dW in the system plus the of change in the 215 

internal energy, dE of the system .  216 

In mathematical expression, the equation can be written as: 217 

                                                                                                                 (2.19) 218 
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where              (
 

 
) for a unit mass. 219 

Equation (2.19) reduced to  220 

                     (
 

 
)                                                                                              (2.20) 221 

The 1
st
 law of thermaldynamics for a fluid flow with constant thermal conductivity K, zero 222 

internal generation and negligible compressibility effect, the equation reduced to; 223 

          
  

  
 = K 

2 
T + µø,                                                                                        (2.21) 224 

where µø was the internal heating due to the viscous dissipation while for an incompressible 225 

two-dimensional fluid flow, the viscous dissipation function was 226 

ø = 2      
  

  
 
 
   

  

  
 
 

    
  

  
 

  

  
 
 
                                                      (2.22) 227 

By considering unsteady incompressible flow in a control volume, the standard thermal energy 228 

equation for the thermal boundary layer was given by 229 

   
  

  
  ρ

  

  
   

  

  
  = (µø + q ) + 

 

  
   

  

  
  + 

 

  
   

  

  
  +  

  

  
  

  

  
           (2.23) 230 

where h was the enthalpy and q was  the rate of heat dissipation. 231 

Now the enthalpy h was given by 232 

                
 

ρ
                                                                                                 (2.24) 233 

then, the first order derivative of enthalpy became 234 

       + 
 

 
    +     

 

 
                                                                                  (2.25) 235 

But                 +     
 

 
  and for a unit mass and a single species fluid, 236 

        .  Therefore we have 237 
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dE = Tds - pd  
 

 
                                                                                               (2.26) 238 

In view of (2.26), equation (2.25) became 239 

         +  
 

 
    +     

 

 
  -      

 

 
                                                            (2.27) 240 

hence  241 

         +  
 

 
                                                                                           (2.28) 242 

Assuming that  
  

  
 and  

  

  
 were negligible and          , equation (2.23) reduced to  243 

   
  

  
  +        

  

  
  

  

  
 =  

   

      
    

  

  
 
 
  +                                     (2.29) 244 

For a fluid flowing over a body with a curved surface, the heat transfer area was the length of the 245 

of the curved surface and increase in the heat transfer area intensified the natural convective heat 246 

transfer along the surface of the fluid flow. The convection equation was expressed as 247 

                                                                                                                               (2.30) 248 

where    = (    -     was the difference in temperature between the body surface and the bulk 249 

fluid.  A was the area of the surface . 250 

In this case, the area of the surface was the length of the curved surface and for this concave 251 

surface which had a destabilizing effect, the effect of the curved surface was taken into account 252 

by  multiplying the area, A by a dimensionless factor given by the equation (2.7). This resulted 253 

to: 254 

 255 

                                                                                                                             (2.31) 256 

Where   was the heat transferred per unit time.  257 

On replacing f, equation (2.31) reduced to 258 
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   (    -                                                                           (2.32) 259 

From Newton’s law of cooling, the local heat flux was given by 260 

       
   =    (    -                                                                                                      (2.33) 261 

Where h was the local convection coefficient. 262 

Since the flow conditions varied from one point to another on the curved surface, both   
  
 and h 263 

also varied along the curved surface. 264 

For any particular distance x from the edge of the curved surface,   
  
 was found by applying the 265 

Fourier’s Law to the fluid. This was done at y = 0 and was given as: 266 

      -   
   =   

  

  
   , which was re-written as: 267 

                
   = -  

  

  
                                                                                                            (2.34) 268 

The local convection heat transfer was expressed as  269 

             h =    
  

  
          

                                                                                       (2.35) 270 

At the thermal boundary layer, the rate of heat conduction along the y- direction was larger than 271 

that along the  x- axis i.e    
  

  
 >> 

  

  
 272 

Then the equation of 1
st
 Law of thermodynamics (2.24) reduced to  273 

        
  

  
  

  

  
 +   

  

  
  =    

   

      
    

  

  
 
 
                          (2.36) 274 

From the above approximations, equation (2.36) reduced to 275 

      
  

  
   =  

   

      
    

  

  
 
 
  +                                                       (2.37) 276 
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But the value of q was replaced with equation (2.32) in order to take care of the curvature effects 277 

and hence on substituting equation (2.32) in equation (2.37) yielded 278 

      
  

  
   =  

   

      
     

  

  
 
 
           

 

 

    

 
  

  
 
   (    -                     (2.38) 279 

Equation (2.38) gave the equation of energy for convective heat transfer over an immersed 280 

curved surface. 281 

5  DESCRIPTION OF THE FLOW 282 

In this research work, a two dimensional laminar unsteady flow of a fluid over an immersed 283 

curved surface was studied. Since the body had both convex and concave surfaces there existed 284 

two non- zero pressure gradients. 285 

 286 

                                                       
  

   
 < 0                                  

  

  
 > 0 287 

                                        288 

         289 

                       U0 290 

 291 

                                                             292 

                                                                   Fluid flow over convex surface 293 

                                                   Curved surface 294 

          Figure 1. Effects of pressure gradients  295 

 296 

 297 

 298 
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 299 

 300 

6 NON-DIMENSIONALIZING THE EQUATIONS GOVERNING THE FLOW 301 

 As defined earlier, Dimensional analysis is a method which describes a natural phenomenon by 302 

a dimensionally correct equation with certain variables which affects the phenomenon. 303 

In our research work, we let L, V, P and T to be the characteristic length, velocity, pressure and 304 

temperature respectively. The following transformations were used to reduce our equations in a 305 

dimensionless form; 306 

  
 

  
  ,     

 

  
  ,      

 

  
  ,       

 

  
  ,     

 

  
  ,                

-1 
=          307 

            or         
   

 
     308 

 309 

 6.1   Equation of Continuity 310 

For this particular fluid flow, the equation of continuity was given by  311 

 
  

  
 

  

  
                                                                                       (2.39) 312 

On non-dimensionalising , the equation of continuity became 313 

 
      

      
 

      

      
                                                                           (2.40) 314 

 315 

Or          
 

 
  
   

   
 

   

   
                                                                            (2.41) 316 

 317 

Or            
   

   
 

   

   
                                                                               (2.42) 318 

 319 
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6.2   The  Momentum  Equation 320 

The equation of conservation of momentum for this flow problem was given by 321 

  

  
  = Pt  +   

   

      
 +     

                                                                           (2.43) 322 

On non-dimensionalising, the equation became 323 

      

  
   

 
 
 =  P

*
 Pt +   

       

          
 +      

                                                                (2.44) 324 

Hence the equation became 325 

  

 

   

   
 =  P

 
Pt

*
 + 

  

     
 
    

       
 +     

                                                                       (2.45) 326 

Multiplying both sides by   
 

  
 we have 327 

   

   
 = 

  

  
   Pt

*
 + 

 

  
 
    

       
 +      

                                                                          (2.46) 328 

This gave the equation of momentum in non-dimensional form 329 

6.3 The Energy Equation 330 

The equation of conservation of energy was given by 331 

  

  
  +  

  

  
  +  

  

  
  =

 

      
 
   

      
 + 

 

      
  
  

  
 
 

+  
  

      
(    -           

 

 

    

 
  

  
 
        

    
(2.47)

    332 

From the boundary boundary approximations the above equation reduced to 333 

  

  
   =

 

      
 
   

      
 + 

 

      
  
  

  
 
 

+  
  

      
(    -           

 

 

    

 
  

  
 
                                       

    
(2.47)

   
 334 

From the non-dimensional form of T, we had 335 

       =   
      

          
 ,  which on making T the subject of the formulae yielded 336 

             (          +       and thus the equation of energy became 337 

UNDER PEER REVIEW



17 
 

 338 

                     

  
   

 
 

   =
 

      

                      

          
+

 

      
 
      

      
  
 

+  
  

      
(  -         

 

 

     
   

 
      

      
  
                                       

        
339 

                                                                      
340 

                                                                                                                                                                                                                      
(2.48)

  
 341 

This equation became 342 

            

 
 
   

   
 =

 

      

          

     
 
     

       
+

    

           
 
   

   
 
 

+  
  

      
(  -         

 

 

    
  

 
   

   
 
            (2.49) 343 

Diving all through by the term 
          

 
 , we obtained         344 

   

   
 =

 

        

     

       
+

  

                
 
   

   
 
 

+  
   

       
      

 

 

    
  

 
   

   
 
                                         (2.50)       

       
 345 

Multiplying the term
   

                
 
   

   
 
 

 by V  in the numerator and the denominator, we 346 

obtained 347 

   

   
 =

 

        

     

       
+

    

                  
 
   

   
 
 

+  
   

       
      

 

 

    
  

 
   

   
 
                                        (2.51)   348 

 349 

The equation (2.52) represented the equation of conservation of energy in non-dimensional form 350 

 351 

7  NUMERICAL METHOD OF SOLUTION 352 

In carrying out this study, we shall solve the governing equations using the finite difference 353 

method.  The advantage of this method is based on its convergence and its ability to take less 354 

memory. The distinguishing feature of a finite difference method is the approximation of partial 355 
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derivatives in the governing equations with finite differences relating the values of the unknown 356 

function at a set of the neighboring grid points at various levels.   357 

7.1 REPRESENTATION OF THE RESULTS 358 

 
         

          

           1 

          1 

          1 

          1 

          1 

 359 

       360 

Figure 2: velocity profiles for Re=1.3, Pe=1, V=1, Kr = 1, Ec = 2, A = 2, Pt = 1 361 

 362 

 363 

 364 
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 365 

 366 

Figure 3: velocity profiles for Re=1.3, Pe=1, V=1, Kr = 1, Ec = 2, A = 2, Pt = 1 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 
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 375 

  376 

 377 

           Figure 4: velocity profile for L=1,   Pe=1,  V= 1,  Kr= 1,  Ec= 2,  A = 2,  Pt= 1 378 

 379 

 380 
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 381 

                     Figure 5:  Temperature profile for L=1, Pe = 1, V = 1, Kr= 1, Ec= 2, A = 2, Pt= 1  382 

 383 

 384 

 385 

 386 
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7.2 DISCUSSION OF THE RESULTS 387 

From figure 2, when the length of the curvature was increased form L= 0.5 to L= 1.0 , the free 388 

stream velocity was accompanied by a considerable increase from 0.275501 to 0.360971 as 389 

shown on the graph. 390 

This is because as the length of the curvature increases, the velocity gradient also increases. 391 

Increase in velocity gradient increases the velocity of the fluid flow in consideration. When the 392 

length of the curvature was increased, the velocity gradient also increased and when the length of 393 

the curvature was reduced, the velocity gradient also decreased. 394 

More so, when the velocity gradient is increased, the kinetic energy of the fluid particles went 395 

high at the boundary layer which implied that the fluid particles possessed high velocities. 396 

 397 

From Figure 3, we note that when the length of the curvature was increased from L = 0.5 to L = 398 

1.0, the heat dissipation in the boundary layer increased from 0.392678 to 0.572599. 399 

This is because increase in the length of the curvature increases the velocity gradient which led 400 

to increase in shear stresses. The friction between the fluid particles and the surface in 401 

consideration was brought about by these shear stresses. In return, this friction force led to the 402 

dissipation of heat in the boundary layer. This was due to the fact that the shear stress is directly 403 

proportional to velocity gradient.  i.e   τ =  
  

   
 404 

 405 

 406 

 407 

 408 

 409 

 410 
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From Figure 4, we note that as the Reynolds number increases from 0.7 to 1.3, a direct 411 

consequence of the increase in inertia forces occurred leading to increase in velocity from 412 

0.297405 to 0.367155. When the Reynolds number is high, the inertia forces tend to dominated 413 

over the viscous force and consequently, the friction of the fluid particles and the surface in 414 

consideration was very minimal. This resulted to increase in velocity of the fluid flow. At large 415 

inertia forces, the velocity of the fluid tend to be high since low viscous forces implied that little 416 

or minimal  friction existed between the fluid particles and the surface in consideration. 417 

 418 

From Figure 5, we note that when the Reynolds number is increased from  0.8 to 1.3, the heat 419 

dissipation in the boundary layer reduced from 0.613144 to 0.508381. 420 

This is because when the value of the Reynolds number was small, the inertia forces were very 421 

minimal. The viscosity of the fluid thus dominated over the inertia forces and consequently, the 422 

friction of the fluid particles with surface was high resulting to increase in heat dissipation within 423 

the boundary layer. When Reynolds number was high, the viscous forces were very minimal 424 

since inertia forces dominated in the fluid flow. Consequently, the friction of the fluid particles 425 

with the surface was minimal and this resulted to minimal dissipation of heat within the 426 

boundary. 427 

7.3   CONCLUSION 428 

Numerical investigations of the convective heat transfer in a laminar boundary layer over an 429 

immersed curved surface ha been carried out. The variations of the length of the curvature as 430 

well as the Reynolds number affected the velocity and temperature profiles in the laminar 431 

boundary layer. 432 

When the length of the curvature was increased, this led to velocity and temperature rise. This 433 

matched the theoretical explanation since increase in velocity gradient increases the velocity of 434 

the fluid flow. Also at high velocity gradients, the shear stresses are high which brings about the 435 

friction between the fluid particles and the surface. Consequently, heat is dissipated. It thus 436 

follows that the length of the curvature is directly proportional to the velocity and temperature 437 

distribution. 438 

UNDER PEER REVIEW



24 
 

It was also observed that at large Reynolds number, the inertia forces were high compared to the 439 

viscous effect of the fluid and consequently, the fluid velocity went high. This is in line with 440 

theoretical explanation, since at low viscosity, minimal shear stresses exist between the fluid 441 

particles and the surface and thus the velocity of the fluid is favoured. At low Reynolds number, 442 

the viscosity of the fluid is high since there are minimal inertia forces. Consequenltly, the fluid 443 

velocity is low. At high Reynolds number, the amount of heat dissipated at the boundary layer 444 

was minimal due to minimal friction between the fluid particles and the surface. 445 

It therefore follows that Reynolds number is directly proportional to the velocity distribution and 446 

inversely proportional to the temperature distribution in the boundary layer. 447 

8   RECOMMENDATIONS 448 

It is recommended that further investigations be done in the following areas: 449 

1. Compressible fluid flow over immersed curved surface 450 

2. Convective heat transfer on turbulent fluid flows over immersed curved surface 451 

3. Use of finite element method for solving the problem for more accurate results 452 

4. Study of the same orientation but in three-dimensional aspect 453 
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