
Weak Competition and Ideally Distributed Populations in a

Cooperative Diffusive Model with Crowding Effects

Abstract

We study a dynamic model describing the cooperation-competition between two species,
where the first species diffuses along a smooth distribution function while the second is
dispersive randomly. The analysis is designed for weak competition with corresponding
coefficients and by considering different resource functions. It is shown that the directed
diffusion population has evolutionary advantages to design its own niche. The higher
carrying capacity is an important issue of persistence. If there is a combination of two
strategies adopted by the two species then the ideal free distribution is attained and the
coexistence steady state is a global attractor.
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1 Introduction

Mathematical modeling is always an important tool in economy and ecology to describe
the characteristic life of populations in nature to scientific structures. Instantaneously, for
example, the mathematical model used to describe some favorite features to predict the
dynamics of

• competition

• cooperation

• mutualistic relation, and

• predator-prey interactions.

At present time and in the past two decades, the reaction-diffusion model including standard
dispersion was considered in the literature [3, 4, 7, 8, 9, 10, 17] and references therein. One es-
sential and important observation is that the slowest diffuser is the sole winner in competition
and become a justification of the standard dispersion and was established in [7]. Crowdiness
effects are another important issue for Lotka type models and were studied in [8]. A nonlin-
ear system of initial boundary value problem was considered in [9]; and they investigated the
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solutions of a predator-prey model that generally covered a wide class of reaction-diffusion
equations.

In this paper, we consider a problem of two interacting species competing in a non-
homogeneous habitat for the fundamental resources such as

• water and food

• shelter and territory

• light or any means to maintain life and reproduce.

The diffusion script of the system is dissimilar for each resident. The diffusion motion of one
population is influenced by a distribution function introduced in [2] while the other one is
dispersing classically.

The notion of the ideal free distribution from ecology distinguishes how animals optimally
distribute themselves crosswise the habitats. Generally, regular dispersal strategies cannot
conduct to achieve the ideal free distribution in a spatially heterogeneous environment. The
environmental gradient corresponds to the reaction-diffusion-advection model with the com-
bination of directed and regular movement and was studied in [1, 4, 5, 6]. For a particular
dynamical system when the ratio of the diffusion and the advection coefficients tends to zero
then for such problem the solutions tend to be ideally distributed. If there is any movement
of ideally distributed populations, the system will decrease the total fitness of traveling polls.
An ideal free distribution can be gained for a measurable rate of advection in the pattern
considered by [6] and recently this result was explored and upgraded by [1]. One important
target of this paper is to develop the ideal free solution by considering a system with divergent
diffusion strategies. It is noted that the following diffusion model (1.1) was studied in my
PhD thesis 1.

In the present work, the model is defined in the following way: out of two diffusion
strategies, the first population is diffusing with the positive distribution P (x) while the other
species is diffusing classically (randomly). Considering different carrying capacities of the
two species, the system is governing by the following equations with homogeneous Neumann
boundary conditions:

∂u
∂t

= d1∆

(
u(t, x)
P (x)

)
+ u(t, x) (K1(x)− u(t, x)− µv(t, x)) , t > 0, x ∈ Ω,

∂v
∂t

= d2∇ · ∇v(t,x)
P (x) + v(t, x) (K2(x)− νu(t, x)− v(t, x)) , t > 0, x ∈ Ω,

∂(u/P )
∂n

= ∂v
∂n

= 0, x ∈ ∂Ω,

u(t0, x) = u0(x), v(t0, x) = v0(x), x ∈ Ω.

(1.1)

For functions K1 and K2, we assume that either K1 ̸≡ K2 on a nonempty open domain or
K1 ≡ K2 for any x ∈ Ω and both are positive. The functions u(t, x) and v(t, x) represent the
densities of the two competing species with corresponding diffusion rates d1 > 0 and d2 > 0.
Here Ω is a bounded smooth domain in Rn with boundary ∂Ω. The constants µ, ν account
for competitive interactions between two species. We also assume that u(t0, x) and v(t0, x)
are smooth enough, non-negative and not identically zero in Ω. The function P (x) is in the
class of C1+α(Ω), α > 0. We have two important assumptions throughout the paper:

1http://theses.ucalgary.ca/bitstream/11023/2771/1/ucalgary 2016 kamrujjaman md.pdf
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1. Distribution function, P (x) ̸≡ const and is smooth enough.

2. Competition coefficients µ ∈ (0, 1] and ν ∈ (0, 1].

Shortly, we summarize some important results for this type of model (1.1) studied recently
in the literatures [12, 13, 14].

1. If µ = ν = 1 and P (x) ≡ K1(x) ≡ K2(x), the steady state (K(x), 0) of (1.1) is
globally asymptotically stable [12, 13], where a system of equation was investigated for
logistic type growth [12] as well as for variety of growth laws [13]. In a heterogeneous
environment, it is shown that the species distributed by the carrying capacity only
survives.

2. If µ = ν = 1, P (x) ≡ K1(x) ̸≡ K2(x) and K1(x) > K2(x) in a nonempty open sub-
domain, the semi-trivial equilibrium (K1(x), 0) of (1.1) is globally asymptotically stable
[14] for multiple growth functions. It is proven that the population assigned with higher
carrying capacity is in advantageous situation.

When the movement of both species is affected according to the distribution functions then
that type of model was considered in [15, 16]. They established the competitive exclusion of
one species by the other and the cooperative scenarios between two populations due to the
effect of competition coefficients, the influence of diffusion coefficients and intrinsic growth
rates.

Out of many issues, the key ideas due to the following novelties in this paper:

• We consider the problem describe in (1.1) to show the effects of constant competition
coefficients for rational and arbitrary functions.

• For unique competition coefficients, diversity of diffusion strategies provide ideal free
solution for non-proportional carrying capacity and distribution function.

• In the reaction parts, the characterizationK1(x) ̸≡ K2(x) is referred to as the crowdiness
effect, where the two species have similar physical attributes.

• At the end, we outline the effects of space-variable interactions for further research.

The paper is organized in the following way. In section 2, we establish some preliminary
results for single species and for a couple of species and these will be used in the rest of the
part. The global analysis of equilibria are investigated in section 3 for competition coefficients
µ ≤ 1 and ν ≤ 1.

Here we construct the following results:

1. If µ = ν = 1 and K(x) ≡ αP (x) + β
∫
Ω

P (x) dx then there exists a unique ideal free

distribution (αP (x), β
∫
Ω

P (x) dx) which is stable for arbitrary diffusion coefficients.

2. Including other assumptions as above, if µ, ν ∈ (0, 1) then the system (1.1) has a stable
coexistence solution.

3. For arbitrary P (x) and K(x), if µ ∈ (0, µ∗), ν ∈ (0, ν∗) then the problem (1.1) has at
least one coexistence solution (us, vs) independently of the diffusion coefficients.
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4. The system (1.1) has a stable coexistence solution if the deviation between two resource
functions is bounded and very small.

Section 4 deals with the effects of crowding tolerance. This segment illustrates the dy-
namics for different distributions of P (x), K1(x) and K2(x) with µ = ν = 1. If the ratio of
P (x) and K1(x) is a positive constant and K1(x) ≥ K2(x) in a nonempty open domain then
the semi-trivial equilibrium (u∗(x), 0) is globally asymptotically stable.

Finally, portion 5 presents summary of the results and we introduce the spatially dis-
tributed competition coefficients and edited the problem (1.1) for further research. In that

case, we establish some results by considering µ(x) ≡ K(x)−P (x)
Q(x) > 0 and ν(x) ≡ K(x)−Q(x)

P (x) > 0
and d1 ̸= d2.

2 Preliminaries

Several next results correspond to the stationary solution of the monotone dynamical system
(1.1) considering the case of single-species.

We assume that the function u∗(x) is the unique solution of the following single-species
boundary value problem (BVP) when the species v is identically equal to zero in (1.1)

d1∆

(
u∗(x)

P (x)

)
+ u∗(x) (K1(x)− u∗(x)) = 0, x ∈ Ω,

∂(u∗/P )

∂n
= 0, x ∈ ∂Ω. (2.1)

Proposition 1. [12, 13, 16] Let K1(x) ̸≡ const and if P (x) and K1(x) are linearly indepen-
dent then ∫

Ω

P (x) (u∗(x)−K1(x)) dx = d1

∫
Ω

|∇(u∗/P )|2

(u∗/P )2
dx > 0. (2.2)

and ∫
Ω

K1(x)(K1(x)− u∗(x)) dx > 0. (2.3)

Similarly, for single-species v, let us assume that v∗(x) is the unique positive solution of
the equation

d2∇ · ∇v∗(x)

P (x)
+ v∗(x) (K2(x)− v∗(x)) = 0, x ∈ Ω,

∂v∗

∂n
= 0, x ∈ ∂Ω. (2.4)

The result of the following can be justified similarly to proposition 1.

Proposition 2. Suppose that K2(x) ̸≡ const, P (x) and K2(x) are linearly independent and
v∗(x) is a positive solution of (2.4) then∫

Ω

(v∗(x)−K2(x)) dx =

∫
Ω

d2
P (x)

|∇v∗(x)|2

v∗2(x)
dx > 0. (2.5)

and ∫
Ω

K2(x)(K2(x)− v∗(x)) dx > 0. (2.6)
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Proof. Since v∗ > 0, dividing the first equation of (2.4) by v∗, we obtain

d2
∇ · ∇v∗(x)

P (x)

v∗
+ (K2(x)− v∗(x)) = 0, x ∈ Ω,

∂v∗

∂n
= 0, x ∈ ∂Ω. (2.7)

Integrating (2.7) over the domain Ω using boundary conditions in (2.7), we have

d2

∫
Ω

|∇v∗|2

P (x)v∗2
dx+

∫
Ω

(K2(x)− v∗(x)) dx = 0. (2.8)

Therefore, ∫
Ω

(v∗(x)−K2(x)) dx =

∫
Ω

d2
P (x)

|∇v∗|2

v∗2
dx > 0, unless v∗(x) = const. (2.9)

But v∗ = const is not a solution of (2.4) as long as K2(x) ̸≡ const.
The second part of the proof can be established by directly integrating the equation of v in
(2.4) and hence the details proof is omitted.

The instability of trivial equilibrium was shown in the following result.

Lemma 1. [12, 13, 14] The zero solution (0, 0) of (1.1) is unstable and its a repeller.

Proposition 3. Assume that (us, vs) is a strictly positive stationary solution of (1.1), K1 ≡
K(x) ≡ K2 and µ, ν ∈ (0, 1]. Then∫

Ω

K(x) (K(x)− νus − µvs) dx ≥
∫
Ω

(νus + µvs −K)2 dx, (2.10)

where equality is attained in (2.10) only when µ = ν = 1. The inequality (2.10) is strictly
positive unless νus(x) + µvs(x) ≡ K(x).

Proof. Assume that there exists a stationary positive solution (us(x), vs(x)) and the equilib-
rium (us(x), vs(x)) of (1.1) satisfies

d1∆

(
us(x)
P (x)

)
+ us(x) (K(x)− us(x)− µvs(x)) = 0, x ∈ Ω,

d2∇ ·
(
∇vs(x)
P (x)

)
+ vs(x) (K(x)− νus(x)− vs(x)) = 0, x ∈ Ω,

∂(us/P )
∂n

= ∂vs
∂n

= 0, x ∈ ∂Ω.

(2.11)

Multiplying the first equation of (2.11) by ν, second by µ adding them and integrating over
Ω using the boundary conditions, we obtain

0 =

∫
Ω

[
K(x)(νus + µvs)−

(
νu2s + µv2s + 2νµusvs

)]
dx

≤
∫
Ω

[
K(x)(νus + µvs)−

(
ν2u2s + µ2v2s + 2µνusvs

)]
dx, since ν ≤ 1, µ ≤ 1

=

∫
Ω

[
K(x)(νus + µvs)− (νus + µvs)

2
]
dx =

∫
Ω

(νus + µvs) (K(x)− νus − µvs) dx.
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It follows that ∫
Ω

(νus + µvs) (K(x)− νus − µvs) dx ≥ 0. (2.12)

Integrating both sides of (νus+µvs) (K(x)− νus − µvs) = (νus+µvs−K(x)) (K(x)− νus − µvs)
+K (K(x)− νus − µvs) over Ω yields the following integral∫

Ω

K(x) (K(x)− νus − µvs) dx ≥
∫
Ω

(νus + µvs −K)2 dx > 0. (2.13)

Here equality holds if µ = ν = 1 and then (2.13) is valid unless νus(x) + µvs(x) ≡ K(x).

3 Global Analysis of Steady States

When only one population survives, we will state the results on stability of two semi-trivial
equilibrium of (1.1), which are (u∗(x), 0), (0, v∗(x)). The stationary solution (us(x), vs(x)),
if it exists, that is neither a trivial nor a semi-trivial equilibrium and satisfy the positivity
us > 0, vs > 0, then we have a coexistence solution.

Let us nominating

Ic := α

∫
Ω

P (x) dx > 0, α > 0, (3.1)

and we will use this notation in further study.
If (us(x), vs(x)) is any stationary coexistence solution of (1.1) and K2(x) ≡ K(x) then the

eigenvalue problem of the second equation of (1.1) around (u∗(x), 0) is

d2∇ · ∇ϕ(x)

P (x)
+ ϕ(x) (K(x)− νu∗(x)) = σϕ(x), x ∈ Ω,

∂ϕ

∂n
= 0, x ∈ ∂Ω. (3.2)

3.1 Case of Identical Resource Function: K1 ≡ K(x) ≡ K2

Let us now explore the results for the case of equivalent carrying capacity. If the distribution
function P (x) is proportional to the carrying capacity K(x) then we have the following result
as a remark.

Remark 1. Suppose that K1(x) ≡ K(x) ≡ K2(x) ̸≡ const, P (x)/K(x) ≡ const and µ = ν =
1. Then the steady state (u∗(x), 0) of (1.1) is globally asymptotically stable.

In the following portion, we consider the arbitrary functions P (x) and K(x) ≡ K1(x) ≡
K2(x).

Lemma 2. Assume that K1(x) ≡ K(x) ≡ K2(x) ̸≡ const, and K(x) ≡ αP (x) + β
∫
Ω

P (x) dx,

α > 0, β > 0. Then the semi-trivial steady state (u∗(x), 0) of (1.1) is unstable if ν ≤ 1.

Proof. The principal eigenvalue [4] of (3.2) around (u∗(x), 0) is defined as

σ1 = sup
ϕ ̸=0,ϕ∈W 1,2

−d2

∫
Ω

|∇ϕ|2

P (x)
dx+

∫
Ω

ϕ2 (K(x)− νu∗(x)) dx

/∫
Ω

ϕ2 dx.
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Choosing the eigenfunction ϕ(x) =
√

K(x)− αP (x) = const and denoting Ip = β
∫
Ω

∫
Ω

P (x) dx dx,

the principal eigenvalue σ1 is given by

σ1 ≥
1

Ip

∫
Ω

(K(x)− αP (x)) (K(x)− νu∗(x)) dx

≥ 1

Ip

∫
Ω

(K(x)− αP (x)) (K(x)− u∗(x)) dx, if ν ≤ 1

=
1

Ip

∫
Ω

K(x) (K(x)− u∗(x)) dx+
α

Ip

∫
Ω

P (x) (u∗(x)−K(x)) dx.

While K(x) ≡ K1(x) ≡ K2(x), from Proposition 1, we have
∫
Ω

P (x) (u∗(x)−K(x)) dx > 0

and
∫
Ω

K(x) (K(x)− u∗(x)) dx > 0. Therefore, σ1 is strictly positive.

Lemma 3. Suppose that K1(x) ≡ K(x) ≡ K2(x) ̸≡ const, and K(x) ≡ αP (x)+β
∫
Ω

P (x) dx,

α > 0, β > 0. Then the semi-trivial steady state (0, v∗(x)) of (1.1) is unstable if µ ≤ 1.

Proof. Consider the associated eigenvalue problem of the first equation of (1.1) around (0, v∗(x))

d1∆

(
ϕ(x)

P (x)

)
+ ϕ(x) (K(x)− µv∗(x)) = σϕ(x), x ∈ Ω,

∂(ϕ/P )

∂n
= 0, x ∈ ∂Ω. (3.3)

The principal eigenvalue of (3.3) is

σ1 = sup
ϕ̸=0,ϕ∈W 1,2

−d1

∫
Ω

|∇(ϕ/P )|2 dx+

∫
Ω

ϕ2

P
(K(x)− µv∗) dx

/∫
Ω

ϕ2

P
dx.

Taking positive eigenfunction ϕ(x) =
√
αP (x), addressing Ic defined in (3.1) and if K(x) ≡

αP (x) + β
∫
Ω

P (x) dx, we obtain

σ1 ≥
1

Ic

∫
Ω

αP (x) (K(x)− µv∗(x)) dx

≥ 1

Ic

∫
Ω

αP (x) (K(x)− v∗(x)) dx, since µ ≤ 1

=
1

Ic

∫
Ω

(αP (x)−K(x) +K(x)) (K(x)− v∗(x)) dx

=
1

Ic

∫
Ω

K(x) (K(x)− v∗(x)) dx+
1

Ic

∫
Ω

(K(x)− αP (x)) (v∗(x)−K(x)) dx

=
1

Ic

∫
Ω

K(x) (K(x)− v∗(x)) dx+
β

Ic

∫
Ω

∫
Ω

P (x) dx (v∗(x)−K(x)) dx.
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Now for arbitrary positive and smooth function P (x), the fact is
∫
Ω

P (x) dx = c > 0, where c

is a constant and we obtain

σ1 ≥
1

Ic

∫
Ω

K(x) (K(x)− v∗(x)) dx+
cβ

Ic

∫
Ω

(v∗(x)−K(x)) dx.

Next, proposition 2 implies that both integrals
∫
Ω

K(x) (K(x)− v∗(x)) dx and
∫
Ω

(v∗(x)−K(x)) dx

are strictly positive as long as K1(x) ≡ K(x) ≡ K2(x) ̸≡ const. Therefore, σ1 > 0 and the
proof follows.

Lemma 4. Let K1(x) ≡ K(x) ≡ K2(x) ̸≡ const, K(x) ≡ αP (x)+β
∫
Ω

P (x) dx, α > 0, β > 0,

and µ = ν = 1 then the system (1.1) has a unique positive coexistence equilibrium (us, vs) ≡
(αP (x), β

∫
Ω

P (x) dx).

Proof. For a stationary solution (us, vs) under the assumption K1(x) ≡ K(x) ≡ K2(x), the
problem (1.1) can be written as

d1∆

(
us(x)
P (x)

)
+ us(x) (K(x)− us(x)− vs(x)) = 0, x ∈ Ω,

d2∇ ·
(

1
P (x)∇vs(x)

)
+ vs(x) (K(x)− us(x)− vs(x)) = 0, x ∈ Ω,

∂(us/P )
∂n

= ∂vs
∂n

= 0, x ∈ ∂Ω.

(3.4)

By direct substitution, one can verify that (αP (x), β
∫
Ω

P (x) dx) is a coexistence solution of

(3.4). To prove the uniqueness, assume that there is an another solution (us, vs) of (3.4)
except (αP (x), β

∫
Ω

P (x) dx).

The following result comes from the equation (3.4) for vs > 0 and we obtain∫
Ω

(us + vs −K(x)) dx =

∫
Ω

d2
P

|∇vs|2

v2s
dx ≥ 0. (3.5)

The equality is attained in (3.5) only when vs ≡ const.
We have to show that us(x) + vs(x) ≡ K(x).
Let us define the eigenvalue problem by assuming to the contrary that us(x)+vs(x) ̸≡ K(x)

d1∆

(
ϕ(x)

P (x)

)
+ ϕ(x) (K(x)− us − vs) = σϕ(x), x ∈ Ω,

∂(ϕ/P )

∂n
= 0, x ∈ ∂Ω. (3.6)

The principal eigenvalue of (3.6) is

σ1 = sup
ϕ ̸=0,ϕ∈W 1,2

−d1

∫
Ω

|∇(ϕ/P )|2 dx+

∫
Ω

ϕ2

P
(K(x)− us − vs) dx

/∫
Ω

ϕ2

P
dx.
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Substituting ϕ(x) =
√
αP (x), using Ic defined in (3.1) and using the notation as declared in

Lemma 3,
∫
Ω

P (x) dx = c > 0, we have

σ1 ≥
1

Ic

∫
Ω

(αP (x)−K(x) +K(x)) (K(x)− us − vs) dx

=
β

Ic

∫
Ω

∫
Ω

P (x) dx (us + vs −K(x)) dx+
1

Ic

∫
Ω

K(x) (K(x)− us − vs) dx

=
cβ

Ic

∫
Ω

(us + vs −K(x)) dx+
1

Ic

∫
Ω

K(x) (K(x)− us − vs) dx.

If µ = ν = 1, proposition 3 becomes
∫
Ω

K(x) (K(x)− us − vs) dx > 0. Thus, σ1 > 0 using

(3.5) and by Proposition 3. The zero principal eigenvalue of (3.6) contradicts the positivity
of σ1 > 0 and thus us(x) + vs(x) ≡ K(x).

Next, if us(x) + vs(x) ≡ K(x) then by the Maximum Principle [11], ws = const and
vs = const in (1.1), where us/P = ws. So we must have P (x)ws + vs ≡ αP (x) + β

∫
Ω

P (x) dx

and this implicity implies that ws = α and vs = β
∫
Ω

P (x) dx. Hence the unique solution of

(1.1) is (us, vs) = (αP (x), β
∫
Ω

P (x) dx).

For the monotone dynamical system (1.1), if all equilibriums are unstable except one then
we can conclude that the remaining steady state is globally asymptotically stable. The next
theorem shows that the coexistence equilibrium (us, vs) of (1.1) remains globally asymptoti-
cally stable regardless of the initial functions.

Theorem 1. Let K1(x) ≡ K(x) ≡ K2(x) ̸≡ const, K(x) ≡ αP (x) + β
∫
Ω

P (x) dx, α >

0, β > 0 and µ = ν = 1. Then there exists a unique coexistence solution (us, vs) ≡
(αP (x), β

∫
Ω

P (x) dx) of (1.1) which is globally asymptotically stable. Moreover, if µ < 1

and ν < 1, the system (1.1) has a stable coexistence solution (us, vs).

Theorem 2. Assume that K1(x) ≡ K(x) ≡ K2(x) and let P (x) and K(x) are non-constant
and arbitrary. Then there exists positive µ∗ and ν∗ such that for µ ∈ (0, µ∗), ν ∈ (0, ν∗), the
problem (1.1) has a stable coexistence solution (us, vs).

Proof. It is sufficient to show that two semi-trivial equilibria (u∗, 0) and (0, v∗) are unstable.
Let us define

a =

∫
Ω

P (x)K(x) dx > 0, b =

∫
Ω

K(x) dx > 0

such that

µ∗ = min

 a∫
Ω

P (x)v∗(x) dx
, 1

 , ν∗ = min

 b∫
Ω

u∗(x) dx
, 1

 . (3.7)
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If µ < µ∗ then
∫
Ω

P (x)K(x) dx > µ
∫
Ω

P (x)v∗(x) dx which implies that

∫
Ω

P (x) (K(x)− µv∗(x)) dx > 0. (3.8)

In a similar fashion, for ν < ν∗, we have∫
Ω

(K(x)− νu∗(x)) dx > 0. (3.9)

Linearize the second equation in (1.1) around (u∗, 0) and consider the associated eigenvalue
problem

d2∇ · ∇ϕ(x)

P (x)
+ ϕ(x) (K(x)− νu∗(x)) = σϕ(x), x ∈ Ω,

∂ϕ

∂n
= 0, x ∈ ∂Ω. (3.10)

The principal eigenvalue of (3.10) can be designated by

σ1 = sup
ϕ̸=0,ϕ∈W 1,2

[−d2

∫
Ω

|∇ϕ|2

P (x)
dx+

∫
Ω

ϕ2 (K(x)− νu∗(x)) dx]/

∫
Ω

ϕ2 dx.

Sorting constant ϕ(x) and using (3.9), we have σ1 =
1
|Ω|

∫
Ω

(K(x)− νu∗(x)) dx > 0. Therefore,

(u∗, 0) is not stable. For µ < µ∗, instability of (0, v∗) is verified similarly.

3.2 Small Deviations between Two Carrying Capacities

This section continues the development of equilibrium analysis in case of K1(x) ≡ K2(x) ±
ϵ, ϵ > 0 as we did in previous sections for function K1(x) ≡ K2(x) and directed distribution
P (x) while µ = ν = 1. The problem is linearized about the equilibria to determine the
behavior of the models near the equilibria.

Theorem 3. Let K1(x) and K2(x) be non-constant, µ = ν = 1, K1(x) ≡ P (x) + b, and
K2(x) ≡ P (x) + c, where b and c are positive constants. Then the system (1.1) has a stable
coexistence solution if |K2(x)−K1(x)| < ϵ for any x ∈ Ω, where ϵ is very small and positive.

Proof. It is simple to observe that all spatial functions P (x), K1(x) and K2(x) are arbitrary.
For small deviations between K1(x) and K2(x), we have either K1 − ϵ < K1 ≤ K2 < K1 + ϵ
or K2 − ϵ < K2 ≤ K1 < K2 + ϵ, where ϵ is small enough and positive. Also it is noted that
either K1 ≡ K2 + b∗ or K2 ≡ K1 + c∗, where b∗ = b− c > 0 and c∗ = c− b > 0.

First, let us consider the case K1(x) ≡ P (x) + b, b > 0, and |K2(x) − K1(x)| < ϵ with
K2(x) ≥ K1(x). Then the principal eigenvalue of (1.1) around (u∗(x), 0) is defined as

σ1 = sup
ϕ̸=0,ϕ∈W 1,2

−d2

∫
Ω

|∇ϕ|2

P (x)
dx+

∫
Ω

ϕ2 (K2(x)− u∗(x)) dx

/∫
Ω

ϕ2 dx. (3.11)
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It is noted that by construction, K1(x) > P (x) for any x ∈ Ω. Considering ϕ(x) =√
K1(x)− P (x) =

√
b = b∗ > 0, the principal eigenvalue is

σ1 ≥
1

b2∗|Ω|

∫
Ω

(K1(x)− P (x)) (K2(x)− u∗(x)) dx

≥ 1

b2∗|Ω|

∫
Ω

(K1(x)− P (x)) (K1(x)− u∗(x)) dx, K1 ≤ K2 < K1 + ϵ

=
1

b2∗|Ω|

∫
Ω

K1(x) (K1(x)− u∗(x)) dx+

∫
Ω

P (x) (u∗(x)−K1(x)) dx

 .

Hence, σ1 is positive by Proposition 1.
The instability of (0, v∗) is computed similarly if K2(x) ≡ P (x) + c and K1(x) ≥ K2(x)

such that |K2(x)−K1(x)| < ϵ which due to K2 − ϵ < K2 ≤ K1 < K2 + ϵ.
Since both semi-trivial equilibria are unstable and the trivial solution is unstable by

Lemma 1, the proof follows in case of strong monotone dynamical system (1.1).

4 Effects of Crowding Tolerance: µ = ν = 1

In this section, our study is exploring the analysis for non-symmetric growth functions due
to K1(x) ̸≡ K2(x).

Lemma 5. Let P (x), K1(x) and K2(x) be non-constant, µ = ν = 1, K2(x) ≡ P (x)+c, c > 0,
and K1(x) ≥ K2(x) for any x ∈ Ω and K1(x) > K2(x) in a nonempty open domain. Then
the equilibrium (0, v∗(x)) of (1.1) is unstable. Moreover, if K1 ≡ αP, α > 0 and K1 ≥ K2 on
Ω then (0, v∗(x)) is also unstable.

Proof. Let us study the eigenvalue problem of (1.1) around (0, v∗(x)) and we obtain

d1∆

(
ϕ(x)

P (x)

)
+ ϕ(x) (K1(x)− v∗(x)) = σϕ(x), x ∈ Ω,

∂(ϕ/P )

∂n
= 0, x ∈ ∂Ω. (4.1)

Considering ϕ(x) =
√
αP (x) and inviting Ic drafted in (3.1), the principal eigenvalue of (4.1)

is given by

σ1 ≥
α

Ic

∫
Ω

P (x) (K1(x)− v∗(x)) dx

≥ α

Ic

∫
Ω

P (x) (K2(x)− v∗(x)) dx, when K1 ≥ K2

=
α

Ic

∫
Ω

(K2(x)− c) (K2(x)− v∗(x)) dx, while P (x) ≡ K2(x)− c

=
α

Ic

∫
Ω

K2(x) (K2(x)− v∗(x)) dx+
cα

Ic

∫
Ω

(v∗(x)−K2(x)) dx.

Thus, σ1 > 0 by Proposition 2.
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Next, if K1 ≡ αP, α > 0 then we have

σ1 ≥
α

Ic

∫
Ω

P (x) (K1(x)− v∗(x)) dx =
1

Ic

∫
Ω

K1(x) (K1(x)− v∗(x)) dx.

In absence of species u, v∗(x) is the solution of (2.4) and after integrating the equation (2.4)
over Ω using boundary conditions, we have

∫
Ω

v∗ (K2(x)− v∗(x)) dx = 0 such that

0 =

∫
Ω

v∗ (K2(x)− v∗(x)) dx ≤
∫
Ω

v∗ (K1(x)− v∗(x)) dx, while K1 ≥ K2.

Therefore,
∫
Ω

K1(x) (K1(x)− v∗(x)) dx ≥ 0 and the inequality is strict since K1 ̸≡ const ̸≡ v∗

and hence σ1 > 0.

Lemma 6. Assume that P (x), K1(x) and K2(x) are non-constant and µ = ν = 1. If K1(x) ≡
P (x)+b, b > 0, and K2(x) > K1(x) for any x ∈ Ω then the semi-trivial equilibrium (u∗(x), 0)
of (1.1) is unstable.

Proof. The principal eigenvalue of (1.1) around (u∗(x), 0) is defined as

σ1 = sup
ϕ̸=0,ϕ∈W 1,2

−d2

∫
Ω

1

P (x)
|∇ϕ|2 dx+

∫
Ω

ϕ2 (K2(x)− u∗(x)) dx

/∫
Ω

ϕ2 dx

≥ sup
ϕ̸=0,ϕ∈W 1,2

−d2

∫
Ω

1

P (x)
|∇ϕ|2 dx+

∫
Ω

ϕ2 (K1(x)− u∗(x)) dx

/∫
Ω

ϕ2 dx

where K2(x) > K1(x) in a nonempty open domain.
For eigenfunction ϕ(x) =

√
K1(x)− P (x) =

√
a, and designating Ia =

∫
Ω

a dx, the princi-

pal eigenvalue becomes

σ1 ≥
1

Ia

∫
Ω

K1(x) (K1(x)− u∗(x)) dx+
1

Ia

∫
Ω

P (x) (u∗(x)−K1(x)) dx. (4.2)

Hence, σ1 is positive by Proposition 1.

Lemma 7. Let P (x), K1(x) and K2(x) be non-constant and µ = ν = 1. If K1(x) ≡
αP (x), α > 0 and K1(x) ≥ K2(x) in some nonempty open domain then (1.1) has no co-
existence solution (us(x), vs(x).

Proof. Let us assume that there is a stationary solution (us(x), vs(x)) and at the end we will
show the contradictory results. For (us(x), vs(x)), the problem (1.1) is as follows:

d1∆

(
us(x)
P (x)

)
+ us(x) (K1(x)− us(x)− vs(x)) = 0, x ∈ Ω,

d2∇ ·
(

1
P (x)∇vs(x)

)
+ vs(x) (K2(x)− us(x)− vs(x)) = 0, x ∈ Ω,

∂(us/P )
∂n

= ∂vs
∂n

= 0, x ∈ ∂Ω.

(4.3)
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Adding the equations of us and vs in (4.3), integrating over Ω and employing K1(x) ≥ K2(x),
we obtain

0 =

∫
Ω

us(x) (K1(x)− us(x)− vs(x)) dx+

∫
Ω

vs(x) (K2 − us(x)− vs(x)) dx

≤
∫
Ω

(us(x) + vs(x)) (K1(x)− us(x)− vs(x)) ,

since ∆

(
us(x)
P (x)

)
= 0 and ∇ ·

(
1

P (x)∇vs(x)
)
= 0 due to the boundary conditions. Thus

∫
Ω

(us(x) + vs(x)) (K1(x)− us(x)− vs(x)) ≥ 0

which yields ∫
Ω

K1(x) (K1(x)− us − vs) dx ≥
∫
Ω

(K1(x)− us − vs)
2 dx > 0 (4.4)

unless us + vs ≡ K1. The equality holds only for K1 ≡ K2. Hence, we have two cases:

Case 1: If us + vs ̸≡ K1, we consider the principal eigenvalue and obtain

σ1 = sup
ϕ̸=0,ϕ∈W 1,2

−d1

∫
Ω

|∇(ϕ/P )|2 dx+

∫
Ω

ϕ2

P
(K1(x)− us − vs) dx

/∫
Ω

ϕ2

P
dx.

For a suitable selection of positive eigenfunction ϕ(x), the principal eigenvalue becomes

σ1 ≥
1

Ic

∫
Ω

αP (x) (K1(x)− us − vs) dx =
1

Ic

∫
Ω

K1(x) (K1(x)− us − vs) dx > 0 (4.5)

by inequality (4.4) and using the primary condition K1(x) ≡ αP (x); a contradiction, σ1 > 0
with the zero principal eigenvalue.

Case 2: If us(x)+vs(x) ≡ K1(x) ≡ K2(x), by the Maximum Principle [11] and introducing
a new variable us/P = ws, the solutions of (1.1) are ws = const and vs = const. Then we
must have P (x)ws+vs ≡ K1(≡ K2), which implies that ws = 1/α and vs = 0. A contradiction
of zero solution follows the proof.

Once again, for a monotone problem (1.1), the rest equilibrium (u∗, 0) is the global at-
tractor and the result is implemented in the following Theorem.

Theorem 4. Let P (x), K1(x) and K2(x) be non-constant and µ = ν = 1. If K1(x) ≡
αP (x), α > 0 and K1(x) ≥ K2(x) in some nonempty open domain then the semi-trivial
equilibrium (u∗(x), 0) of (1.1) is globally asymptotically stable.

If the second species are in homogeneous environment while the functions P (x) and K1(x)
are arbitrary, we can explore the next few results.
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Lemma 8. Suppose that P (x), K1(x) are non-constant, K2 ≡ const and µ = ν = 1. If
K1(x) ≡ P (x) + b, b > 0, and K2 is the upper bound of K1(x) in a nonempty open domain
then the semi-trivial steady state (u∗(x), 0) of (1.1) is unstable.

Lemma 6 is still valid for this case and the proof of Lemma 8 is omitted.

Lemma 9. Let P (x), K1(x) be non-constant, K2 ≡ const and µ = ν = 1. If K1(x) ≡
P (x) + b, b > 0, and K2 is the upper bound of K1(x) in a nonempty open domain then the
system (1.1) has no coexistence solution.

Proof. This result is proven by the method of contradiction. Assume that there is a stationary
coexistence solution (us(x), vs(x)), and the system (1.1) can be written as

d1∆

(
us(x)
P (x)

)
+ us(x) (K1(x)− us(x)− vs(x)) = 0, x ∈ Ω,

d2∇ ·
(

1
P (x)∇vs(x)

)
+ vs(x) (K2(x)− us(x)− vs(x)) = 0, x ∈ Ω,

∂(us/P )
∂n

= ∂vs
∂n

= 0, x ∈ ∂Ω.

(4.6)

Adding first two equations of (4.6) and integrating over Ω, we obtain∫
Ω

us(x) (K1(x)− us(x)− vs(x)) dx+

∫
Ω

vs(x) (K2 − us(x)− vs(x)) dx = 0, (4.7)

since diffusion terms are vanishes due to the boundary conditions. For the upper bound of
K1(x), we have (K2 − us(x)− vs(x)) > (K1(x)− us(x)− vs(x)) such that∫

Ω

(us(x) + vs(x)) (K2 − us(x)− vs(x)) > 0.

After few steps and notifying c∗ = K−1
2 , we obtain∫

Ω

(K2 − us − vs) dx > c∗
∫
Ω

(K2 − us − vs)
2 dx > 0 (4.8)

which excludes the possibility of us + vs ≡ K2. Then we consider the principal eigenvalue for
us + vs ̸≡ K2 and obtain

σ1 = sup
ϕ ̸=0,ϕ∈W 1,2

−d2

∫
Ω

|∇ϕ|2

P (x)
dx+

∫
Ω

ϕ2 (K2 − us − vs) dx

/∫
Ω

ϕ2 dx. (4.9)

Choosing constant eigenfunction ϕ, the principal eigenvalue becomes

σ1 ≥
1

|Ω|

∫
Ω

(K2 − us(x)− vs(x)) dx > 0 (4.10)

by inequality (4.8); a contradiction of the positivity of σ1 follows the proof.

Lemmata 8 and 9 follow due to the following result pertaining to the problem (1.1).

Theorem 5. Suppose that P (x), K1(x) are non-constant, K2 ≡ const and µ = ν = 1. If
K1(x) ≡ P (x) + b, b > 0, and K2 is the upper bound of K1(x) in a nonempty open domain,
the semi-trivial equilibrium (0, v∗(x)) of (1.1) is globally asymptotically stable.
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5 Summary and Further Work

We investigated a Lotka-Volterra type reaction-diffusion model that describes two species
cooperative-competitive dynamics with different dispersal strategies. By considering non-
homogeneous environment, we established several results. If the growth functions are sym-
metric and the carrying capacity is allotted in terms of distribution function, there is a unique
coexistence solution. For weak competition with common resource area of both populations,
there exists at least one stable coexistence solution.

If there is a small difference between two resource functions then, once again, the coex-
istence solution is stable. By setting competition coefficients equal to 1, if the resource and
distribution functions changes rationally then the global stability for the species operated by
the distribution P (x), is guaranteed. If the second species is in homogeneous environment
while the rest one is in heterogeneous niche, only the second species survives.

To expand the current model for further research, we can modify the problem (1.1) to
introduce the new idea, where the competition coefficients are spatially distributed. In this
problem, we introduce non-constant competition coefficients µ(x) > 0, ν(x) > 0 with a
common carrying capacity K(x) of both species in (1.1). Thus the problem (1.1) can be
rewritten as follows:

∂u
∂t

= d1∆

(
u(t, x)
P (x)

)
+ u(t, x) (K(x)− u(t, x)− µ(x)v(t, x)) , t > 0, x ∈ Ω,

∂v
∂t

= d2∇ · 1
P (x)

∇v(t, x) + v(t, x) (K(x)− ν(x)u(t, x)− v(t, x)) , t > 0, x ∈ Ω,

∂(u/P )
∂n

= ∂v
∂n

= 0, x ∈ ∂Ω,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω,

(5.1)

where

µ(x) ≡ K(x)− P (x)

Q(x)
> 0 and ν(x) ≡ K(x)−Q(x)

P (x)
> 0 (5.2)

such that 0 < P (x) < K(x) and 0 < Q(x) < K(x) for any x over the domain Ω. The function
Q(x) is in the class of C1+α(Ω), α > 0 and is positive.

Let us explore some instant results of the system (5.1). For constant Q, the system has a
coexistence solution and the solution is attractive globally under certain conditions of P (x)
and K(x).

Theorem 6. Let Q ≡ const and K(x) ≡ P (x) + Q for any x ∈ Ω. Then the system (5.1)
has a unique solution (us, vs) ≡ (P (x), Q), which is globally asymptotically stable.

Proof. Following Lemma 2, σ1, the principle eigenvalue of the equation of v in (5.1) around
(u∗, 0) is expressed as

σ1 = sup
ϕ̸=0,ϕ∈W 1,2

−d2

∫
Ω

1

P (x)
|∇ϕ|2 dx+

∫
Ω

ϕ2 (K(x)− ν(x)u∗(x)) dx

/∫
Ω

ϕ2 dx

15

UNDER PEER REVIEW



Selecting ϕ(x) =
√
K(x)− P (x) =

√
Q = const, and denoting IQ =

∫
Ω

Qdx, σ1 is given by

σ1 ≥
1

IQ

∫
Ω

(K(x)− P (x))

(
K(x)− (K(x)−Q)u∗(x)

P (x)

)
dx

≥ 1

IQ

∫
Ω

(K(x)− P (x)) (K(x)− u∗(x)) dx, if K(x) ≡ P (x) +Q

=
1

IQ

∫
Ω

K(x) (K(x)− u∗(x)) dx+
1

IQ

∫
Ω

P (x) (u∗(x)−K(x)) dx.

Therefore, σ1 is strictly positive by Propositions 1.
The instability of (0, v∗) is evaluated similarly. By extending the proof of Lemma 4,

it is easy to establish that the system (5.1) has a unique coexistence solution as long as
K(x) ≡ P (x) +Q.

Theorem 7. Assume that K(x) ≡ P (x) + c, c > 0 and K(x) ≤ P (x) +Q(x) for any x ∈ Ω.
Then the system (5.1) has a stable coexistence solution (us, vs).

Proof. It can be checked that there exists some non-constant functions P (x), Q(x) and K(x)

such that K(x)−P (x)
Q(x) ≤ 1 and K(x)−Q(x)

P (x) ≤ 1, for all x in some nonempty open domain.

If K(x) ≡ P (x)+c and K(x)−Q(x)
P (x) ≤ 1, then by Propositions 1, we can prove that the semi-

trivial equilibrium (u∗, 0) is unstable. Similarly, it is also possible to show that the semi-trivial

equilibrium (0, v∗) is unstable by Proposition 2 while K(x) ≡ P (x)+c and K(x)−P (x)
Q(x) ≤ 1.
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