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ABSTRACT: The article considers the regime of intermittency "quasi-periodic motion –9
chaos" in a dynamic system with compound chaotic multiattractor uniting several attractors10
of Lorenz. The possibility of changes in the parameters of this mode in a wide range by the11
variation of a single parameter.12
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1. INTRODUCION18
19

The study of the unpredictable alternation of regular and chaotic behaviour of20
dynamical systems is one of the important problems of nonlinear dynamics. This21
phenomenon is known as intermittency, is associated with different types of interaction of22
attractors, and manifests itself, in particular, in the the form of intermittency "quasiregular23
motion - chaos" [1-4], and intermittency of "chaos-chaos" [5-8].24

One of the classes of dynamical systems with continuous time, which is25
characterized by the alternation of regular and chaotic regimes are the system of ordinary26
differential equations, the movement of which occurs in the so-called compound (or27
composite) chaotic multiattractors, which is a limit set consisting of a number of regions of28
attraction (local chaotic attractors), in all of which phase trajectory stays for long enough,29
making chaotic oscillations, and, from time to time, making the transitions between30
neighboring regions [8-10]. The dynamics of such systems is an alternation of two types of31
movement – chaotic on the local attractors and, as a rule, the regular – during the transitions32
between them.33

Usually, because of the short duration of the episodes of transition movements from34
one local attractor to another, the observation of intermittency in such systems is difficult,35
resulting in their dynamics appears as a collection of chaotic fluctuations on the local36
attractors and fast erratic hopping of movement from one of them to another. However, in37
some cases, may be a considerable increase of the time of transitions, with the result that38
the intermittency manifests itself quite clearly.39

40
41
42
43

2. INTERMITTENCY “QUASIREGULAR MOTION - CHAOS” IN THE DYNAMIC SYSTEM44
WITH MULTIPLE LORENZ ATTRACTORS45

46
47

For example, consider the following dynamic system have the amounts of the48
composite chaotic multiattractor consisting of attractors of Lorenz [8]:49
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1P  ,55

– replicates (reduplicate) operator creates copies of the attractor of the original dynamical56
system, ordered by coordinate =x+y, where  is a real constant, and their merger into a57
single multiattractor. It represents a nonlinear function consisting of 1+M+N line segments of58
unit slope, connected by more steep intermediate segments with slope -d.59

The number of local attractors in the multiattractor of system (1), (2) is equal to the60
number of line sections with a single slope. Each of them is inside its own region of phase61
space (phase cell), with a length of 2h in the coordinate . The constant s accounts for the62
asymmetry of the local attractors relative to the center of your cell. The coefficient d63
determines the width of the transition layer the phase space between adjacent cells (equal to64
2h/d) [8].65

Let A=10.5, B=33.2189, C=3/8, M=1, N=0, h=22, d=10, s=0. In this case, the66
replicate operator is a nonlinear function of the variable  containing two line segments with67
unit slope, connected by an intermediate segment with a slope -d (Fig.1), and the system (1)68
has the simplest composition multiattractor containing two local chaotic attractors (Fig.2).69

70
Consider the evolution of such multiattractor when you change the value of constants71

. When  < -0.2, transitions of the phase point between the local attractors occur along72
short smooth segments (Fig.2, a). In the result the phases of regular movement look like as73
a fast direct transition of the phase point from one of the local chaotic at-tractor on the other.74
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75
However, if you increase the value of this parameter to -0.15 phase trajectories begin76

to twist around the unstable cycle, which owes its existence to nonlinearity of the replicate77
function. First, when  -0.15, trajectories manage to do a maximum of one turn before it78
gets into the region of attraction of one of the local attractors and are attracted to it (Fig.2, b).79

80
With the increase of this coefficient the maximum number of turns of the trajectories81

increases. Accordingly, increasing the average time of regular motion in the neighborhood of82
this cycle. In the timing diagram appear long sections of quasiperiodic oscillations (Fig.3).83
When  -0.1 cycle becomes stable. Now the phase trajectory, once finding himself in84
region of its attraction can not leave. That is, the case   -0.1 corresponds to the global85
metastability of the system (1), (2). A movement that begun on any of the local chaotic86
attractors, through the end time will always reach a stable cycle corresponding to regular87
oscillations.88

Fig.2,a. Example of the transition movement in the system (1), (2)
from local chaotic attractor 1 on the local chaotic attractor 2 when
 = -0.2.
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Fig.2,b. Example of the transition movement in the system (1), (2)
from local chaotic attractor 1 on the local chaotic attractor 2 when
 = -0.15.
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90

Thus, in the interval of values of the coefficient  from about -0.15 to -0.1 for the91
chosen values of the other constants, the system (1), (2) shows a typical example of92
intermittent dynamics. If the value  close to -0.1 observed long laminar phases of motion,93
during which the number of revolutions of the phase trajectory around the unstable cycle can94
be very large (Fig.3).95

The same behavior of the system (1), (2) is observed in the General case of an96
arbitrary number of local attractors in the composition of multiattractor [8].97

98

99

3. STATISTICAL CHARACTERISTICS100

101

Random variables that can be investigated by statistical methods to description of the102
phenomenon of intermittency in dynamical systems that have multiple chaotic multiattractor103
are the duration of individual episodes of motion on the chaotic attractors and in the vicinity104
of the regular attractors, part of multiattractor.105

In the presentase the most interest are the dependence of the relative total time of106
the regular movements of the value of the constant  and frequency distribution of durations107
of regular and chaotic motions.108

The relative total duration of regular motion is equal to





T

T
to i

ireg

Treg lim , where T –109

total time of observation, Treg i – duration of the i-th episode of a regular movement.110

Fig.3, a. An example of time dependencies of dynamic
variable y of system (1), (2) when  = -0.109.
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Fig.3, b. An example of time dependencies of dynamic
variable x of system (1), (2) when  = -0.109.
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The frequency distribution in this case represents the relationship "the number of111
episodes of movement on the selected attractor – the duration of these episodes" for the112
observation time T at T.113

114

The dependence toreg () for three values of the slope of the intermediate segment of115
the replicate function (d=10, d=100, d=) is shown in Fig.4. A characteristic feature of this116
dependence is the existence of the limit of the maximum value toreg when d<. For example,117
for d=10 and d=100 the percentage of time consumed on a regular traffic may not exceed118
approximately 0.55. In the case of discontinuous replicate function the upper limit of toreg119
equal to 1.120

Note that these dependences are satisfactorily approximated by functions of the form121

   




regto ,                                      (3)122

123

where – , , ,  – are positive constants124

For the dependence corresponding to d=10 (Fig.4), these constants have the125
following values: =1.6 .10

-8
, =0.1005, =0.45, =6. For the dependence corresponding to126

d=100, these constants have the following values: =3 .10
-6

, =0.0993, =0.35, =4. For the127
dependence corresponding to d= , they are equal =1.5 .10

-4
, =0.09975, =0.6, =1.8.128

Frequency distribution of durations of episodes of motion on the chaotic attractors is129
shown in Fig.5. They show that the duration of motion on the chaotic attractors are130
concentrated within a limited interval within which appreciable secondary concentration131
ravnodushie with each other the highsThe values of the maximums are approximately132
uniformly distributed throughout the interval. The equality of intervals between the peaks is133
due to the fact that the visit of the phase point of the intersection area of the chaotic attractor134

Fig.4. The dependence of the relative total time to the regular
movements of the value of the constants  at d=10 ( - numerical data,
dashed line – approximation by function (3)), d=100 (x - numerical data,
small dashed line – approximation by function (3)), d= (o - numerical
data, solid line – approximation by function (3)). 0 – limit constant value
, above which the regular oscillations become stable (for d=10 0 -
0.10088, for d=100 0 -0.09966, for d= 0 -0.1002).
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with the boundary of its phase cell is mostly quasi-periodic character. Any pronounced135
dependence of these distributions from  not observed.136

137

138
139

In Fig.6 shows the frequency distribution of durations of episodes of regular motion,140
including at least one rotation of the trajectory around the unstable cycle, with =0.1009,141
0.109 and 0.125, which, according to Fig.4, corresponding to values of relative total duration142
of regular movement toрег approximately equal to 0.55, 0.1 and 0.03. It is seen that these143
distributions have an exponential character. That is, the duration of episodes of regular144
movement in General are concentrated near the minimum value, which is equal to time of145
one rotation of the phase trajectory around the unstable cycle (turn90). Also it is clearly146
seen that the distributions consists of significantly more highly expressed compared to the147
distributions in Fig.6, the individual concentrations, separated by equal intervals of turn /2,148
which is a direct consequence of the quasi-periodic nature of the regular movement. (The149
fact that neighboring maxima separated by intervals of length exactly turn /2, due to the fact150
that for every revolution, the trajectory passes through the vicinity of two areas of contact of151
regular manifolds with chaotic attractors).152

Fig.5, a. Frequency distribution of durations of episodes of
movement on the local chaotic attractor 1.
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Fig.5, b. Frequency distribution of durations of episodes of
movement on the local chaotic attractor 2.
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153

154
A comparison of these distributions corresponding to different values of the constant155

, shows their strong dependence on toreg. With the reduction in relative overall duration of156
regular motion the distribution of the lengths of its intervals is substantially compressed by157
the ordinate. From Fig.6 seen that when  changing from -0.1009 to -0.125 (in this case toreg158
is reduced from 0.55 to 0.03 – see Fig.5) maximum observed length of intervals of regular159
motion is reduced four times – from 4000 to 1000.160

161

3. THE MECHANISM OF INTERMITTENCY162

163

The reason for the alternation between chaotic and laminar phases of the movement164
in the system (1), (2) is the coexistence of interacting attractors of two types (chaotic and165
regular) that are in a metastable state, and having such a mutual position that the phase166
trajectory, leaving the attractor of the same type always appears in the region of attraction of167
the attractor of another type.168

Metastability of regular motion due to instability of the corresponding limit cycle.169
Metastability of the local chaotic attractors induced by the choice of size of the containing170
cell of the phase space, so that each of them had crosses the boundaries of its cell, causing171
the phase trajectory gets the opportunity to leave a local attractor through the area of its172
intersection with the border of the cell [8].173

Fig.6, a.
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Fig.6, b.
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Therefore, the mechanism for intermittent oscillations in dynamic systems that have174
composite chaotic multiattractors, can be described as follows.175

For example, the initial conditions chosen in the domain of attraction of one of the176
local chaotic attractors. Then, the phase point coming on this attractor will have some time to177
make chaotic motion on it, until it leaves it through the intersection with the boundary of the178
phase cell. Getting off a chaotic attractor she gets into the region of attraction of the unstable179
limit cycle and starts a quasi-periodic motion in its surroundings. Because of the instability180
cycle, the magnitude of the momentum of the phase trajectory around it over time begins to181
grow (Fig.3,b) with simultaneous displacement of the region of rotation of the phase182
trajectories at the unstable manifold – until the phase trajectory crosses the border of the183
region of attraction of one of the local attractors and be attracted to it. Further, the movement184
continues on a chaotic attractor, while the phase trajectory will go beyond the boundaries of185
the containing it cell of the phase space and does into the region of attraction of the cycle,186
and again started to make momentum around it. The result is a typical pattern of187
intermittency "quasi-periodic motion – chaos" (Fig.3).188

189
190
191

4. CONCLUSION192
193

Thus, the alternation of regular and chaotic types of motion underlying the dynamics194
of systems with composite chaotic multiattractor, can manifest itself very clearly, and the195
degree of its manifestation controlled by a small number of control parameters (in the196
considered case, by the value of a single constant ).197
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