
Heat and Mass Transfer of a Chemically Reacting MHD Micropolar Fluid Flow over an
Exponential Stretching Sheet with Slip Effects

Abstract
This work investigates flow, heat and mass transfer of a chemically reacting and electrically con-
ducting micropolar fluid over an exponentially stretching sheet in the presence of thermal radiation,
viscous dissipation, suction/injection, heat source/sink and slip effects. The system of the govern-
ing partial differential equations of the fluid flow is transformed into nonlinear ordinary differential
equations by applying similarity variables. The resulting equations are numerically solved by shooting
method alongside fourth order Runge-Kutta integration technique. The influences of the controlling
flow parameters on the dimensionless velocity, angular velocity, temperature and species concentration
profiles as well as on the skin friction coefficient, wall couple stress, heat and mass transfer rates are
presented through graphs and tables. Comparison of the present results with previously published
work in the literature for some limiting cases shows a good agreement.
Keywords: Micropolar fluid; exponential stretching; slip effects; suction/injection

1 Introduction

In the recent times, engineers and researchers have developed interest in the study of non-Newtonian
fluids due to the increasing practical usefulness and relevance of these fluids in many industrial and
technological processes like polymer engineering, crude oil extraction, food processing manufactur-
ing and many others. Among the various non-Newtonian fluids models, the micropolar fluids theory
developed by Eringen [1] and extended to thermo-micropolar fluids also by Eringen [2] has gained
prominence. This because the theory of micropolar fluids provides a good mathematical model for
investigating the flow of complex and complicated fluids such as suspension solution, animal blood,
liquid crystals, polymeric fluids and clouds with dust [3-4].

Micropolar fluids are fluids with microstructure which belong to the class of fluids that exhibit
certain microscopic effect arising from the local structure and micromotion of the fluid element. Phys-
ically, micropolar fluids may represent fluids consisting of rigid, randomly oriented (or spherical)
particles suspended in a viscous medium, where particles deformation is ignored, they also belong to
the group of fluids with non-symmetric stress tensor that are called polar fluids which constitute a
substantial generalization of the Navier-Stokes model. Such fluids are of a complex nature and indi-
vidual fluid particles may be of different shapes and may shrink and/or expand, occasionally changing
shapes and rotating independently of the rotational movement of the fluid Lukaszewicz [5]. Peddieson
and McNitt [6] first studied the boundary layer flow of such fluids, thereafter, several authors have
investigated these fluids on different geometries and conditions.

The boundary layer flow past stretching sheet is significant in engineering processes such as ex-
trusion of plastic sheet, glass blowing, hot rolling, textile and paper production. Pioneering the work
on boundary layer flow induced by stretching sheet, Crane [7] investigated linearly stretching sheet
on the steady two-dimensional problem and gave the similarity solution in closed analytical form,
Gupta & Gupta [8] extended the work of Crane to include heat and mass transfer on stretching sheet
with suction or blowing. Eldabe et al., [9] studied MHD flow of a micropolar fluid past a stretching
sheet with heat transfer. Elbashbeshy and Bazid [10] examined heat transfer over a stretching sheet
embedded in a porous medium. Recently, Reddy [11] examined heat generation and thermal radiation
effects over a stretching sheet in a micropolar fluid.
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In some practical situations, however, the stretching of plastic sheet may not necessarily be linear,
it may be nonlinear and/or the exponential type. The flow, heat and mass transfer characteristics
over an exponentially stretching sheet has numerous applications in technology such as in the case of
annealing and thinning of copper wire. In such cases, the end product depends on the rate of heat
transfer at the stretching continuous surface with exponential variations of stretching velocity and
temperature distribution (Mukhopadhyay [12]). However, a little attention has been paid to the study
of flow over an exponentially stretching sheet in spite of its important applications in many engineer-
ing operations. Pioneering the flow over an exponentially stretching sheet, Magayari and Keller [13]
studied heat and mass transfer on boundary layer flow induced an exponentially stretching sheet with
exponential temperature distribution. Later, Sajid and Hayat [14] considered the influence of thermal
radiation on the boundary layer flow due to exponentially stretching sheet. El-Aziz [15] extended the
work of Magayari and Keller [13] by investigating viscous dissipation effect on mixed convection flow
of a micropolar fluid over an exponentially stretching sheet. Mandal and Mukhopadhyay [16] investi-
gated heat transfer analysis for fluid flow over an exponentially stretching porous sheet with surface
heat flux. Recently, Seini and Makinde [17] examined MHD boundary layer flow of a Newtonian fluid
due to exponential stretching surface with radiation and chemical reaction.

The boundary layer flow, heat and mass transfer of an electrically conducting fluid over stretching
surfaces has important applications in manufacturing and engineering processes such as hot rolling,
wire drawing, the extrusion of polymer sheet from a die and the cooling of metallic sheets. In such
processes, the quality of the final product depend to some extent on the kinematics of stretching and
the simultaneous rate of heating and cooling during the fabrication processes. Thus, the rate of cooling
can be controlled by the use of electrically conducting fluid and that of magnetic field. Kumar [18]
numerically studied the problem of heat and mass transfer in a hydromagnetic flow of a micropolar
fluid past a stretching sheet using the Finite element technique. It was reported that the fluid velocity
increased with a rise in the material parameter while the opposite was the case with increase in the
magnetic field parameter. Similarly, microrotation, concentration and temperature were increasing
functions of magnetic field parameter.

Many of the engineering and manufacturing operations occur at high temperature, thus, the effect
of thermal radiation on magnetohydrodynamic flow, heat and mass transfer becomes very important
for the design of relevant equipment such as the design of fins, steel rolling, nuclear power plants,
electric power generation and solar power technology. Due to this many researchers have reported the
influence of thermal radiation on fluid flow ( Ibrahim [19]; Hamad et al. [20]] ).

The study of boundary layer flow involving chemical reaction and heat generation/absorption has
drawn the attention of many researchers due to its important applications in many engineering pro-
cesses such as in chemical processes and hydrometallurgical industries, for example, food processing,
smog formation, groves of fruit trees and crop damage due to freezing and manufacturing of ceramics
and polymer production (Das[21]; Mishra et al. [22]). Likewise, heat generation/absorption effect may
change the temperature distribution of the fluid flow and in consequence affect various engineering
devices. Such study has attracted researchers such as (Ibrahim, [18]; (Olajuwon et al. [23]; Pal and
Chatterjee [24]).

Many of the researchers above have investigated the flow and heat transfer problems of Newtonian/non-
Newtonian fluids with the assumption of no-slip boundary condition which is the central tenet of the
Navier-Stokes theory. However, it has been observed that the assumption of no-slip boundary condi-
tion does not hold in some practical situations and hence, it may be necessary to replace the no-slip
boundary condition with the partial slip boundary conditions. The non-adherence of fluid to a solid
boundary is known as velocity slip. The slip and temperature jump boundary conditions represent
a discontinuity in the transport variable across the interface and describes more accurately the non-
equilibrium region near the surface. Slip flow problems are important when considering particulate
fluids e.g. emulsions, suspensions and polymer solutions in which there may be a slip between the
fluid and the boundary (wang [25]). The applications of such study in technology can be found in
the polishing of artificial heart valves and internal cavities (Mukhopadhyay [12]). In view of this,
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Anderson [26] examined the slip-flow of a Newtonian fluid over a linearly stretching sheet, Das [21]
investigated slip effects on heat and mass transfer in MHD micropolar fluid flow over an inclined plate
with thermal radiation and chemical reaction. Devi et al. [27] examined radiation effect on MHD slip
flow past a stretching sheet with variable viscosity and heat source/sink. Nandeppanavar et al. [28]
investigated flow and heat transfer in MHD Newtonian fluid flow over a stretching sheet with variable
thermal conductivity and partial slip.
The aim of this study is to investigate the flow, heat and mass transfer in MHD non-Newtonian
micropolar fluid under the influence of thermal radiation, higher order chemical reaction, viscous dis-
sipation, heat generation/absorption, with velocity and thermal slips over an exponentially stretching
sheet with exponential temperature and concentration distributions. The nonlinear partial differential
equations of the flow are transformed into nonlinear ordinary differential equations by an appropriate
similarity transformations while the resulting equations are solved by applying the shooting method
with fourth order Runge-Kutta integration scheme.

2 Problem Formulation

Consider a steady, two-dimensional, laminar boundary layer slip flow of a viscous, incompressible
chemically reacting and electrically conducting micropolar fluid past an exponentially stretching sheet.
The cartesian coordinate system is (x, y, z) and the corresponding velocity components are (u, v, 0).
The x-axis is directed towards the continuous stretching sheet along the flow while the y-axis is
normal to it. The stretching velocity is assumed to be uw = U0e

x
L while the velocity upstream is

assumed to be zero, the temperature and concentration of the sheet are Tw = Tw = T∞ + T0e
x
2L

and Cw = C∞ + C0e
x
2L respectively. The flow is confined to the region y > 0. A transverse variable

magnetic field B(x) is applied normal to the flow direction as displayed in Fig. 1. Also, the angular
velocity ω = (ω1, ω2, ω3) = (0, 0, N(x, y)) is assumed. The radiative heat flux term in x direction
is considered negligible as compared to that in the y direction. It is assumed also that the magnetic
Reynolds number is sufficiently small such that the induced magnetic field is negligible as compared
to the applied magnetic field.

Fig. 1. Geometry of the flow.

Under the stated assumptions and the boundary layer approximations, the governing boundary layer
continuity, momentum, microrotation, energy and concentration equations are respectively given as:

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂v

∂y
=

(µ+ κ)

ρ

∂2u

∂y2
+
κ

ρ

∂N

∂y
− σB2 (x)

ρ
u, (2)

u
∂N

∂x
+ v

∂N

∂y
=

γ

ρj

∂2N

∂y2
− κ

ρj

(
2N +

∂u

∂y

)
, (3)
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u
∂T

∂x
+ v

∂T

∂y
=

k

ρCp

∂2T

∂y2
+
µ+ κ

ρCp

(
∂u

∂y

)2

− 1

ρCp

∂qr
∂y

+
σB2(x)

ρCp
u2 +

Q0

ρCp
(T − T∞) , (4)

u
∂C

∂x
+ v

∂C

∂y
= Dm

∂2C

∂y2
− kr (C − C∞)n (5)

The associated boundary conditions for Eqs. 1, 2, 3, 4 and 5 are:

y = 0 : u = uw +A
∂u

∂y
, v = Vw (x) , T = Tw +B

∂T

∂y
, C = Cw, N = −m∂u

∂y

y −→∞ : u −→ 0, N −→ 0, T −→∞, C −→∞.
(6)

Here uw = U0e
x
L is the stretching velocity, Tw = T∞ + T0e

x
2L is the sheet Temperature, U0 is the

reference velocity, T0 is the reference temperature, A = α1e
−x
2L is the velocity slip factor which changes

with x, B = β1e
−x
2L is the thermal slip factor which changes with x (Mukhopadhyay [12]), the variable

magnetic field B(x) is assumed to be B(x) = B0e
x
2L (Seini and Makinde [17]), where B0 is the constant

magnetic field, positive and negative values of Vw indicates injection and suction respectively
Also, u and v are the velocity components in x and y directions respectively, ρ, κ, T , C, N , σ,
Cp, qr, Q0, kr and n are the fluid density, vortex viscosity, fluid temperature, fluid concentration,
component of microrotation whose direction of rotation lies perpendicular to the xy− plane, electrical
conductivity, specific heat at constant pressure, radiative heat flux, heat source/sink, chemical reaction
rate, and order of chemical reaction. Also, A is the velocity slip, B is the thermal slip, k is the thermal
conductivity, Dm is the molecular diffusivity, j is the spin gradient viscosity and m is the boundary
parameter with 0 ≤ m ≤ 1. The case m = 0 corresponds to N = 0, this represents no-spin condition
i.e. strong concentration such that the micro-particles close to the wall are unable to rotate, m = 1

2
indicates weak concentration of micro-particles and the vanishing of anti-symmetric part of the stress
tensor and the case m = 1 represents turbulent boundary layer flows (see Peddieson [29]; Ahmadi,
[30]; Jena and Mathur [31]).
Using Rosseland approximation,

qr = −4σ?

3α?
∂T 4

∂ȳ
(7)

is the radiative heat flux (Adeniyan [32]; Akinbobola and Okoya [33]), here σ? is the Stefan-Boltzmann
constant, α? is the mean absorption coefficient.
Assuming that there exists sufficiently small temperature difference within the flow such that T 4 can
be expressed as a linear combination of the temperature. Expanding T 4 in Taylor series about T∞ to
get

T 4 = T 4
∞ + 4T 3

∞ (T − T∞) + 6T 2
∞ (T − T∞)2 + ..., (8)

neglecting higher order terms in Eq. (8) gives

T 4 = 4T 3
∞T − 3T 4

∞, (9)

hence
∂qr
∂ȳ

= −16σ?T 3
∞

3α?
∂T 2

∂y2
. (10)

Following El-Aziz [15]; Seini and Makinde [17]), the following similarity transformations are introduced

η =

(
U0

2Lν

) 1
2

e
x
2L , ψ = (2νLU0)

1
2 e

x
2L f(η), u = U0e

x
L f ′(η), v = −

(
U0ν

2L

) 1
2

e
x
L
(
f(η) + ηf ′(η)

)
N =

(
U3
0

2Lν

) 1
2

e
3x
2L , T = T∞ + T0e

x
2L θ(η), C = C∞ + C0e

x
2Lφ(η),

(11)
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where η is the dimensionless similarity variable, ψ is the stream function defined as u = ∂ψ
∂y , v = −∂ψ

∂x
which identically satisfies the mass conservation Eq. (1), f(η) is the dimensionless stream function,
θ(η) is the dimensionless temperature, φ(η) is the dimensionless concentration and prime denote
differentiation with respect to η. Substituting Eq. (11) into (2-5) and using Eq. (8) in (4) yields the
following non-linear ODEs:

(1 +K) f ′′′ + ff ′′ − 2f ′2 +Kg′ −Mf ′ = 0 (12)

λg′′ + fg′ − 3f ′g − 2H
(
2g + f ′′

)
= 0 (13)(

1 +
4

3
R

)
θ′′ + PrEc (1 +K) f ′′2 − Pr

(
f ′θ − fθ′

)
+ PrEcMf ′2 + PrQθ = 0 (14)

φ′′ − Sc
(
f ′φ− fφ′

)
− Scζφn = 0 (15)

subject to boundary conditions:

η = 0 : f ′ = 1 + αf ′′, f = fw, g = −mf ′′, θ = 1 + βθ′, φ = 1

η −→∞ : f ′ = 0, g −→ 0, θ −→ 0, φ −→ 0
(16)

Here, prime denotes differentiation with respect to η, K = κ
µ is the material parameter, α = α1

√
U0
2νL

is the velocity slip parameter, α1 = Ae−
x
2L is the initial value of the velocity slip factor, β = β1

√
U0
2νL

is the thermal slip parameter, β1 = Be−
x
2L is the initial value of the thermal slip factor [12], Pr =

µCp

k

is the Prandtl number, R = 4σ?T 3
∞

k?k is the radiation parameter, M =
2LσB2

0
U0ρ

is the magnetic field

parameter, fw = − Vw

e
x
2L

(
2L
U0ν

) 1
2

is the suction (> 0)/injection (< 0), λ = γ
µj is the microrotation

density parameter, H = κL
ρjU0

is the vortex viscosity parameter, Q = 2L
ρCpuw

is the heat source/sink

parameter, Ec = u2w
Cp(Tw−T∞)e

2x
L is the Eckert number, ζ = 2Lkr(Cw−C∞)n−1

U0
is reaction rate parameter

and n is the order of chemical reaction.
The quantities of engineering interest are the local skin friction coefficient, the Nusselt number, the
Sherwood number, the wall couple stress. Following El-Aziz [15], these are respectively defined as:

Cfx =
1

ρu2w

[
(µ+ κ)

∂u

∂y
+ κN

]
y=0

, Nux =
L

(Tw − T∞)

(
−∂T
∂y

)
y=0

Shx =
L

(Cw − C∞)

(
−∂C
∂y

)
y=0

,Mw =

(
γ
∂N

∂y

)
y=0

,

(17)

In dimensionless form the skin friction, Nusselt number, Sherwood number and wall couple stress
correspondingly become

1√
2

(Rex)
1
2Cfx = (1 + (1−mK)) f ′′(0),

(
1

2
Rex

)− 1
2

Nux = −θ′(0)(
1

2
Rex

)− 1
2

Shx = −φ′(0), (Rex)−
1
2 ,Mw =

γu2w
2νL

g′(0),

(18)

where Rex = uwx
ν is the local Reynolds number

3 Method of Solution

The coupled nonlinear differential equations (12-15) with the boundary conditions (16) is a Boundary
Value Problem (BVP) which are solved using shooting method alongside fourth order Runge-Kutta
method. The higher order equations (12-15) of third order in f , and second order in g, θ and φ are
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reduced into a system of nine simultaneous equations of first order for nine unknowns. To solve this
system, nine initial conditions are required while only five initial conditions are available. Thus, four
initial conditions are needed which are not given in the problem, these are: f ′′(0), g′(0), θ′(0) and
φ′(0). However, the values of f ′, g, θ and φ are known as η −→ ∞. These four end conditions are
used to produce the four unknown initial conditions (p1, p2, p3, p4) at η = 0 by using the shooting
technique. To estimate the value of η∞ we start with some initial guess value and solve the BVP
equations (12-15) to get f ′′(0), g′(0), θ′(0) and φ′(0). The procedure is repeated until two successive
values of f ′′(0), g′′(0), θ′(0) φ′(0) differ only after desired significant digit signifying the limit of the
boundary along η. The last value of η is chosen as appropriate for a particular set of governing
parameters for the determination of the dimensionless velocity f ′(η), microrotation g(η), temperature
θ(η) and concentration φ(η) across the boundary layer. To reduce the higher order equations to a
system of first order differential equations we let:

f1 = f, f2 = f ′, f3 = f ′′, f4 = g, f5 = g′, f6 = θ, f7 = θ′, f8 = φ, f9 = φ′ (19)

f ′3 =
f22 − f1f3 −Kf5 +Mf2

(1 +K)
, (20)

f ′5 =
3f2f4 + 2H (2f4 + f3)− f1f5

λ
, (21)

f ′7 =
Pr
[
(f2f6 − f1f7)− Ec (1 +K) f23 − EcMf2f6f

2
2 −Qf6

](
1 + 4

3R
) , (22)

f ′9 = Scζfn8 + Sc (f2f8f1f9) . (23)

The boundary conditions become

f1(0) = fw, f2(0) = 1 + αf3(0), f3(0) = p1, f4(0) = −nf3(0), f5(0) = p2, f6(0) = 1 + βf7(0),

f7(0) = p3, f8(0) = 1, f9(0) = p4, f2(∞) −→ 0, f4(∞) −→ 0, f6(∞) −→ 0, f8(∞) −→ 0
(24)

Thereafter, after gotten all the initial conditions, fourth-order Runge-Kutta integration scheme with
step size ∇η = 0.05 is applied and the solution is obtained with a tolerance limit of 10−7. The
computations are carried out by a program coded in a symbolic language Maple 18. From the numerical
computation, the skin friction coefficient f ′′(0), the Nusselt number −θ′(0), the wall couple stress g′(0)
and the Sherwood number φ′(0) are found and presented in Table 3.

4 Results and Discussion

To have clear insight into the behaviour of the fluid flow, a computational analysis has been carried
out for the dimensionless velocity, temperature, concentration and microrotation for various values of
the velocity slip parameter α, thermal slip parameter β, material (micropolar) parameter K, vortex
viscosity parameter λ, radiation parameter R, chemical rate of reaction parameter ζ, order of chemical
reaction parameter n, suction/injection parameter fw, heat generation parameter Q. The default
values adopted for computation are: K = β = λ = n = ζ = M = 1, Pr = 0.72, R = Ec = 0.1,
Q = −0.2, H = m = 0.5 and Sc = 0.62. The graphs correspond to these values unless otherwise
indicated.
In order to verify the accuracy of the numerical scheme used in this work, comparisons of the present
results in respect to the values of the Nusselt number −θ′(0) have been made with the existing work
of Bidin and Nazar [34], Ishak [35], Seini and Makinde [17] and Mukhopadhyay [12] for some limiting
cases as shown in Table 1. The comparisons are found to be in good agreement.
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Table 1: Values of −θ′(0) for variation in Pr and R compared to existing results when
α = β = K = Sc = ζ = m = M = H = fw = λ = Q = Ec = n = 0

Pr R Bidin & Nazar [34] Ishak [35] Seini & Makinde [17] Mukhopadhyay [12] Present results

1.0 0.0 0.9547 0.9548 0.984811 0.9547 0.9548106
3.0 0.0 1.8691 1.8691 1.869060 1.8691 1.8690688
5.0 0.0 2.5001 2.500128 2.5001 2.5001280
10 0.0 3.6604 3.660369 3.6603 3.6603693
1.0 0.5 0.6765 0.6775462
1,0 1.0 0.5315 0.5312 0.5311 0.5353012
2.0 0.5 1.0735 1.0734 1.0735162
3.0 0.5 1.3807 1.3807 1.3807451

Table 2 depicts the values of the skin friction coefficient f ′′(0) and heat transfer coefficient −θ′(0) for
variation in radiation parameter R, magnetic field parameter M and Eckert number Ec as compared
with that of [17] in the absence of the velocity slip parameter α, thermal slip parameter β, material
(micropolar) parameter K and suction/injection parameter fw. The comparisons are found to be in
good agreement

Table 2: Values of f ′′(0) and −θ′(0) with [17] for variation in R,M and Ec when
Pr = 0.71, Sc = 0.24, ζ = n = 1 and α = β,K = H = m = 0

Seini & Makinde [17] Present Results

R M Ec −f ′′(0) −θ′(0) −f ′′(0) −θ′(0)

0.0 1.0 1.0 1.629178 0.006338 1.629178 0.006338
0.1 1.0 1.0 1.629178 0.006964 1.629178 0.006965
0.5 1.0 1.0 1.629178 0.035754 1.629178 0.459923
0.1 2.0 1.0 1.912620 -0.276418 1.912620 -0.276418
0.1 5.0 1.0 2.581130 -0.874464 2.581130 -0.874464
0.1 10.0 1.0 3.415289 -1.153452 3.415290 -1.536591
0.1 1.0 1.0 1.629178 0.006964 1.629178 0.006965
0.1 1.0 2.0 1.629178 -0.598521 1.629178 -0.598521
0.1 1.0 3.0 1.629178 -1.204006 1.629178 -1.204006

Table 3 displays the computational values of the skin friction coefficient, the local Nusselt number, the
local Sherwood number and the wall couple stress for variation in the velocity parameter α, thermal
slip parameter β, material parameter K, heat source/sink parameter Q, suction/injection parameter
and chemical reaction parameter ζ. From this table, it is found that an increase in the velocity slip
parameter α causes a reduction in the skin friction, Nusselt number, Sherwood number and the wall
couple stress whereas an increase in fw has the exact opposite effect. Similarly, a rise the thermal
slip parameter β decreases the Nusselt number while it has no effect on the skin friction coefficient,
Sherwood number and the wall couple stress. A rise in the material parameter K leads to a decrease in
both the skin friction and the wall couple stress while the opposite trend is observed for the heat and
mass transfer rates. The rate of mass transfer also increases with an increase in the rate of chemical
reaction ζ.
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Table 3: Values of −f ′′(0),−θ′(0),−φ′(0) and −g′(0) for varying values of α, β,K,Q, fw and ζ

α β K Q fw ζ −f ′′(0) −θ′(0) −φ′(0) g′(0)

0.0 1.0 1.0 -0.2 0.5 1.0 1.165924 0.466564 0.498763 1.025623
0.5 0.681269 0.454178 0.432430 0.496035
1.5 0.387813 0.432699 0.378757 0.233498
0.3 1.0 0.811615 0.888203 0.452322 0.628176

2.0 0.811615 0.605753 0.452322 0.628176
3.0 0.811615 0.370265 0.452322 0.628176
1.0 0.0 1.130453 0.434659 0.891765 0.873466

1.0 0.811615 0.459601 0.994994 0.628176
2.0 0.664698 0.469187 1.047335 0.513730
1.0 0.05 0.811615 0.417220 1.096904 0.628176

0.15 0.811615 0.391803 1.096904 0.628176
0.5 0.811615 0.311219 0.672770 0.325540

-1.0 0.688525 0.356113 0.789315 0.401561
-0.5 0.811615 0.459600 1.096904 0.628176
0.5 0.881867 0.510266 1.286923 0.792278
1.0 0.2 0.811615 0.459600 0.584242 0.628176
0.5 1.0 0.811615 0.459600 0.758253 0.628176

0.5 0.811615 0.459600 0.883001 0.628176

Figs. 2-3 depict the influence of magnetic field parameter M on the velocity and temperature profiles.
Evidently, the velocity decreases with an increase in the value of the magnetic field parameter M .
This response is due to the imposition of the transverse magnetic field in an electrically conducting
fluid which induces a drag-like force known as Lorentz force which act against the fluid motion and
slows it down. However, the temperature rises with increasing values of M as displayed in Fig. 3.
Figs. 4-7 illustrate the influence of the material parameter K on the velocity, temperature, microrota-
tion and concentration profiles. It is evident that the velocity profile increases with an increase in K
due to the increase in the hydrodynamic boundary layer thickness as shown in Fig. 4. On the other
hand, the temperature, concentration and the microrotation profiles decrease as K increases. The
decrease in the microrotation profile however, is only near the exponentially stretcing sheet, further
from the sheet, the profile overlap and then increase as displayed in Fig. 6.

Fig. 2. Effect of M on velocity profiles Fig. 3. Effect of M on temperature profiles
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Fig. 4. Effect of K velocity profiles Fig. 5. Effect of K on Temperature

Fig. 6. Effect of K on Microrotation profiles Fig. 7. Effect of K on concentration

Figs. 8-9 describe the effects of the velocity slip parameter α on the velocity and temperature profiles
across the boundary layer. There is a reduction in the fluid velocity as α increases as shown in Fig.
8. Moreover, it is noticed that the rate of transport reduces with the increasing distance (η) from the
sheet for the velocity profiles. In the presence of slip, the stretching velocity and the flow velocity near
the sheet are unequal. Therefore, an increase in the slip parameter α causes a rise in the slip velocity
leading to a decrease in the fluid velocity as observed in Fig. 8. Meanwhile, an increase in α enhances
the temperature distribution due to the thickening of the thermal boundary layer thickness as shown
in Fig. 9.
Fig. 10 shows that an increase in the thermal slip parameter β causes a decrease in temperature
profiles. This response is due to the fact that as β increases, less heat is transferred from the sheet to
the fluid leading to a drop in the temperature. (see Table 3). Figs. 11-13 describe the influence of the
suction/injection parameter fw on the velocity, temperature and concentration profiles. A decrease
in the velocity, temperature and microrotation profiles is observed with an increase in the suction
parameter (fw). An increase in fw > 0 causes a thinning effects on these profiles due to the fact that
the heated fluid is being pushed towards the sheet such that the fluid is brought closer to the surface
leading reduction in the, momentum, thermal and solutal boundary layer thicknesses. However, the
imposition of wall fluid injection fw < 0 produces the opposite effect as it enhances velocity, thermal
and solutal distribution within the boundary layer.
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Fig. 8. Effect of α on Velocity profiles Fig. 9. Effect of α on Temperature

Fig. 10. Effect of β on Temperature profiles Fig. 11. Effect of fw on Velocity

Fig. 12. Effect of fw on Temperature profiles Fig. 13. Effect of fw on Concentration profiles

Fig. 14 describes the variation of temperature profiles with η for different values of Eckert number Ec.
Observation shows that increasing values of Ec enhances temperature distribution and the thermal
boundary layer thickness. This response is due the fact that as Ec increases, heat is generated as a
result of the drag between the fluid particles, the internal heat generation inside the fluid increases the
bulk fluid temperature which is an indication of additional heating in the flow region due to viscous
dissipation, thus, the additional heat causes increase in the fluid temperature. The effect of radiation

10

UNDER PEER REVIEW



parameter R on the temperature distribution is displayed in Figure 15. Evidently, the temperature
profile increases as the magnitude of R increases. This is due to the fact that the divergence of the
radiative heat flux increases as the Rosseland mean absorption coefficient decreases. Thus, the rate of
radiative heat transfer to the fluid rises and then causing the temperature of the fluid to rise. Hence,
the cooling process is at a faster rate if R reduced.
Fig. 18 depicts the influence of the homogeneous chemical reaction rate parameter ζ on the concen-
tration profiles. An increase in ζ causes a decrease in the concentration of the micropolar fluid flow
along the exponentially stretching sheet due to the thinning of the solutal boundary layer thickness.
In contrast, an increase in the order of the chemical reaction n enhances the concentration profiles as
shown in Fig. 17. The influence of heat generation parameter Q on the dimensionless temperature
profile is illustrated in Fig. 18. Clearly, an increase in Q enhances the temperature distribution due
to a rise in the thermal boundary layer thickness as Q increases. In addition, energy is generated by
the imposition Q > 0 leading to an increase in the micropolar fluid temperature, thereby causing a
rise in the temperature profiles. Fig. 19 describes the effect of the microrotation density parameter
λ on the microrotation profile. It is noticed that the microrotation profile rises with an increase in λ
due to a rise in the microrotation boundary layer thickness.

Fig.14. Effect of Ec on Temperature Fig.15. Effect of R on Temperature

Fig. 16. Effect of ζ on Concentration Fig. 17. Effect of n on Concentration
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Fig. 18. Effect of Q on Temperature Fig. 19. Effect of λ on Microrotation

Conclusion
The problem of hydromagnetic micropolar fluid flow, heat and mass transfer over an exponentially
stretching sheet under the influence of thermal radiation, viscous dissipation, surface mass flux, chem-
ical reaction and slip effects has been investigated. The resulting equations governing the fluid flow
are solved by shooting method alongside Runge-Kutta integration technique. The results compared
well with the existing result in the literature in some limiting cases and the influences of the emerging
physical parameters on the dimensionless velocity, microrotation, temperature and species concentra-
tion profiles as well as on the skin friction coefficient f ′′(0), wall couple stress g′(0), Nusselt number
−θ′(0) and the Sherwood number −φ′(0) are presented through graphs and tables. The following
conclusions are drawn from this study:

• The material (micropolar) parameter K causes a reduction in the skin friction coefficient f ′′(0)
and the wall couple stress g′(0) whereas the rate of heat transfer −θ′(0) and mass transfer −φ′(0)
rise with an increase in K. Thus, the material parameter K can be useful in reducing drag along
the stretching sheet while it increases the rate of heat transfer.

• An increase in the velocity slip parameter α also reduces the skin friction coefficient f ′′(0) as
the thermal slip parameter β reduces the rate of heat transfer.

• An increase in the order of the chemical reaction enhances the concentration profiles as the rate
of mass transfer is enhanced by the chemical reaction rate. However, the rate of the chemical
reaction causes a decrease in the species concentration of the micropolar fluid flow.

• The thermal radiation, heat generation and viscous dissipation enhance the temperature profiles
and the thermal boundary layer thickness while the trend is reversed with the imposition of
suction.
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