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ABSTRACT  7 

 8 

Aims: Flow in annular regions encounters in many fields such as bio-medical, petroleum, aerospace 
and chemical industries and among them, the flow between two coaxial pipes has rather become 
interesting due to its asymmetry nature.  
Study design: Theoretical solution and numerical approximation and analysis. 
Place and Duration of Study: Department of mathematics, Faculty of Science, University of 
Peradeniya, Sri Lanka, between August 2017 and January 20118. 
Methodology: Yet it is particularly challenging to obtain theoretical solutions. In this paper, we carried 
out a comprehensive analysis for unsteady, unidirectional and incompressible Couette flow between 
annulus, where we derived the exact solution for by Laplace transformation method when inner and 
outer pipes were brought to abrupt stop from constant velocities. The analytical work is supported by 
the numerical approximation using Finite Difference Method, which was implemented in MATLAB 
programming. We illustrate results varying radii of the outer and inner pipe captured by ratio (� =0.1, 0.3, 0.5 
�� 0.7) and for different boundary conditions. Flow field was visualized using FDM 
approximation for selected parameter regime when the flow was suddenly stopped. 
Results: Asymmetry of the velocity profile was affected by different radius ratios 
(� = 0.1, 0.3, 0.5 
�� 0.7). Unsteadiness in the flow field was happened due to sudden changes in flow 
parameters. 
Conclusion: The results depicted that radii ratio and boundary condition has a strong impact on the 
role on changing the flow characteristics and flow parameters. 
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1. INTRODUCTION  13 

 14 
The study of flow through an annulus bounded by two coaxial pipes has attracted the attention of 15 
researches due to its peculiarity nature and the flow geometry is one which has found considerable 16 
practical application in the process industries. The concentric annulus also presents a flow system 17 
which is still amenable to analysis. Nevertheless, in this seemingly simple flow field some rather 18 
strange and puzzling phenomena occur. The most interesting of these are associated with the 19 
transition from laminar to non-laminar [1]. 20 
The unsteady laminar Couette flow in concentric annulus, where the geometry is shown in , is 21 
investigated to predict the surge or swab pressure encountered when running or pulling pipes in a 22 
liquid-filled borehole. The motion equations were analytically solved in [2] for power-law fluids by the 23 
perturbation method. During the drilling operation of oil and gas wells, the velocity field varies along 24 
the well length and the resulting flow model is three-dimensional. Lubrication theory has been used to 25 
simplify the governing equations into a two dimensional differential equation that describes the 26 
pressure field and velocity in each cross section was analysed for different cases in [3]. In [4], stability 27 
and transition to turbulence of wall-bounded unsteady velocity profiles with reverse flow was 28 
investigated. Experiment and theoretical investigations of instability and evolution of reverse flow that 29 
occurred in a decelerating flow has been performed where the flow is generated by the controlled 30 
piston motion. The procedure to obtain analytical solution for unsteady laminar flow in an infinitely 31 
long pipe with circular cross section and in an infinitely long two dimensional channel, created by an 32 
arbitrary but given volume flow rate with time was presented in [5].  33 
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 34 
Fig. 1. Schematic description of annular space bounded by concentric pipes (radius of the 35 
inner pipe: �� and radius of the outer pipe: ��) 36 

Some properties of the time dependent Navier-Stokes equation for impulsively started from rest by 37 
sudden application of a constant pressure gradient or by the impulsive motion of a boundary was 38 
discussed in [6] and a satellite reaction control subsystem was explained in [7]. A flow channel 39 
network numerical scheme is used to determine the blow down pressure profile and the steady state 40 
pressure drops in the propellant lines. This study give the idea about damaged to the propulsion 41 
components or lines due to the sudden closure of fuel valves. 42 
Moreover, an analytical solution to the flow through the pipe and the annular space between two 43 
concentric pipes has been obtained for the case of one-dimensional unsteady flow in [8]. However, 44 
the solution obtained were only when the volume flow rate is provided. Analytical solution of the 45 
unsteady laminar bi-directional flow between concentric pipes with known volume flow rate has been 46 
derived for various cases in [9]. A new analytical solution for unsteady bi-directional flow through an 47 
annulus between two concentric pipes with a prescribed time dependent volume flow rate has also 48 
been obtained in [10]. Analytically obtained velocity profiles are used for determining the linear 49 
stability characteristics of such flows. Yet, the analysis when annular boundaries have abrupt changes 50 
is still scarce.  51 
In the present work, we carry out an analysis of suddenly stopped Couette flow. Initially the flow was 52 
considered as independent of time and subsequently, the pipes were brought to abrupt rest and the 53 
flow then depends on time. This sudden change in boundaries encounters in many industrial 54 
processes. Asymmetry, radii ratio and unsteadiness of the annular flow have significant but different 55 
role in flow instability and transition.  56 
The paper is organized as follows. In section 2, the unsteady and incompressible flow in a concentric 57 
annulus for abruptly stopped axial Couette flow is investigated. Exact analytical solution methodology 58 
for incompressible, unidirectional and unsteady flow is presented. In section 3, Finite Difference 59 
Method is discussed to approximate the flow characteristics in the annular region and the 60 
approximate values for axial Couette flow for various cases are presented. In section 5, the present 61 
work and the scope for future work were summarized. 62 
 63 

2. METHODOLOGY  64 

 65 
2.1 Theoretical Implementation 66 

 67 

An annular region between a long inner pipe of radius, ��∗ and a coaxial outer pipe of radius, ��∗ is 68 
considered in the study. The flow is taken to be at steady state in the annular region, before making 69 
the abrupt changes to the boundary. Cylindrical co-ordinates system (�∗, �, �∗) is employed due and, 70 �∗, �, and �∗ indicates the radial, azimuthal and axial directional co-ordinates respectively. 71 
Corresponding velocity components in axial, radial and azimuthal directions are defined as ��∗, ��∗  and 72 ��∗ respectively. The superscript “*” is used to denote dimensional quantities. The simplified Navier-73 
Stokes equation was written as when the flow was assumed to be axisymmetric, incompressible, 74 
unidirectional, fully developed, entirely depend on the wall movement and has no body force. Hence, 75 
simplified Navier-Stokes equations for steady and unsteady flow are as below in equations (1) and (2) 76 
respectively. 77 
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 1�∗ ���∗ ��∗ ���∗��∗� = 0 
(1) 

 � ����∗��∗ � =  ! 1�∗ ���∗ ��∗ ���∗��∗�" (2) 

Dimensionless parameters introduced with special co-ordinates are normalized by #$ (Reynolds 78 

number), while velocity and time are made dimensionless by %& and 
'()(, respectively; where, #& and %& 79 

were characteristic length and velocity respectively. Thus, the non-dimensional variables and 80 
parameters are written as, 81 
 �� =  �∗�%& ;    � = �∗#& ;    � = �∗%&#& ;    #$ = %&#&�  

(3) 

 82 
2.1.1 Steady State Solution 83 
 84 
 ��+�, 0, = -. + -0 ln+�, (4) 
 ��+��  , �, = 3�;     ��+�4  , �, = 34 (5) 
Equations (4) and (5) were dimensionless initial and inner and outer boundary conditions respectively 85 
for steady governing equation. Where, initial condition was obtained from the literature study in [11] 86 
and boundary conditions were assumed as constant velocities. 87 
Hence, the solution for the steady state equation can be written as, 88 
 ��+� , �, = 34 − 3�2 + 3� − 3427�+�, 827�+�, − 7�+�4��,9 (6) 

Let, 89 
 :. = 34 + 3�2 ;    :0 = 3� − 3427�+�,  7�+�4��,;   :; = 3� − 347�+�,  

(7) 

 And, :.0 = :. − :0. Thus, the simplified steady state solution is written as, 90 
 �� = :.0 + :; 7�+�, (8) 
 91 
2.1.2 Unsteady Solution 92 
 93 
 ��+�, 0, = :.0 + :; 7�+�, (9) 
 ��+�� , �, = <�;    ��+�4 , �, = <4 (10) 
The equations (9) and (10) are dimensionless initial and inner and outer boundary conditions 94 
respectively for unsteady governing equation. Initial condition for the unsteady equation is the solution 95 
of the steady state equation. 96 
Laplace transforms of dimensionless unsteady equation and boundary conditions are, 97 
 �0�̅�+�, >,��0 + 1� ��̅�+�, >,�� − #$ > �̅�+�, >, =  −#$ ��+�, 0, 

(11) 

 �̅�+��  , >, = <?�;    �̅�+�4 , >, = <?4 (12) 

Here, the over bar quantities were transformed variables. Hence, ��+�, 0, = :.0 + :; 7�+�, is due to 98 
the choice of initial condition. The equation (11) is a second order, non-homogeneous and ordinary 99 
differential equation. Since the governing equation and boundary conditions are known, the problem 100 
was well posed. 101 
 �0�̅�+�, >,��0 + 1� ��̅�+�, >,�� − #$ > �̅�+�, >, =  −#$ 8:.0 + :; 7�+�,9 (13) 

Here, #$ > = @0. In the equation (13), the homogeneous part is the modified Bessel equation of 102 
highest order [12], [13]. Homogeneous and non-homogeneous solutions are, 103 
 �̅�A4B4CDED4FG = H.I�+@�, + H0K�+@�, (14) 

 �̅�E4EKA4B4CDED4FG = −8:.0 + :; 7�+�,9 (15) 

Thus, the complete solution is, 104 
 �̅� = H.I�+@�, + H0K�+@�, − 8:.0 + :; 7�+�,9 (16) 

Here, I� and K� are highest order modified Bessel functions of first and second kind respectively. H. 105 
and H0 were the arbitrary constants, determined by using boundary conditions (10) in equation (16). 106 
To find the non-homogeneous solution, Wronskian [14] is given as, 107 
 108 
 L8I�+@�,, K�+@�, 9 = MI�+@�, K�+@�,I�N +@�, K�N +@�,M = − 1� 

(17) 
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 �̅�.E4EKA4B4CDED4FG = −I�+@�, O P K�+@�,8−#$ :; 7�+�,9Q
− 1� �� + K�+@�, O P I�+@�,8−#$ :; 7�+�,9Q

− 1� �� 

(18) 

 �̅�0E4EKA4B4CDED4FG = −I�+@�, O P K�+@�,8−#$ :.0 9Q
− 1� �� + K�+@�, O P I�+@�,8−#$ :.09Q

− 1� �� 

(19) 

Thus, the non-homogeneous solution is written as, 109 
 �̅�E4EKA4B4CDED4FG = �̅�.E4EKA4B4CDED4FG + �̅�0E4EKA4B4CDED4FG (20) 

From equation (16), the solution in transformed domain is written as, 110 
 �̅� = H.I�+@�, + H0K�+@�, + :.0> + :; 7�+�,>  

(21) 

Applying the boundary conditions (12) in the equation (21), we can find the arbitrary constants H. and 111  H0. Then the equation (21) was written as, 112 
 

�̅� =
RSS
T
SSUV W<?� − :.0> − :;> 7�+��,X 8I�+@�4,K�+@�, − K�+@�4,I�+@�,9

+ W<?4 − :.0> − :;> 7�+�4,X 8K�+@��,I�+@�, − I�+@��,K�+@�,9Y
K�+@��,I�+@�4, − I�+@��,K�+@�4,

ZSS
[
SS\

+ ]:.0 + :; 7�+�,> ^ 

(22) 

If the boundary conditions are constants, then <?� = _G̀  and <?4 = _aG . 113 

 @�� = ��√#$√> = c√>;   @�4 = ��√#$√> = d√>;   @� = �√#$√> = -√> (23) 

Here, = ��√#$ ; d = ��√#$ and - = �√#$. 114 
The flow velocity is, 115 
 

�̅� =

RSS
SSS
T
SSS
SSU

RS
TS
U W<?� − :.0> − :;> 7�+��,XeI�fd√>gK�f-√>g − K�fd√>gI�f-√>gh+ W<?4 − :.0> − :;> 7�+�4,XeK�fc√>gI�f-√>g − I�fc√>gK�f-√>ghZS

[S
\

> eK�fc√>gI�fd√>g − I�fc√>gK�fd√>gh

ZSS
SSS
[
SSS
SS\

+ ]:.0 + :; 7�+�,> ^ 

(24) 

 116 
Moreover, the solution in time domain ��+�, �, was obtain by taking the inverse Laplace transform of 117  �i�+� , >,. The inverse transform of equation (24) can be obtained using the convolution theorem. 118 
Applying convolution theorem to equation (24), we can obtain, 119 
 ��+� , �, = 12jk O �̅�+� , >, $�l +�, >,�m�n

�K�n �� 
(25) 

We can write the integrand in the form of  
opqrstpq , where, Γ is the radius of the Bromwich contour taken; 120 

such that all the poles lie in the left of the contour. The integrand diverges as Γ → ∞, preventing the 121 
application of the convolution theorem, Hence, we take the inverse Laplace transform [15] of equation 122 
(24) and obtain the solution in time domain. 123 
 ��+� , �, = x P�$>k�y$ z{ lz7$> z{ 8�̅�+� , >,$�l +�, >,9 Q (26) 

Thus, the complete final solution was written as, 124 
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��. =
RSS
T
SSUj�40#$8<� − :.0 − :;7�+��,9 | Y�+
E,J� �-d 
E�−J�+
E,Y� �-d 
E�� $�l �− 
E0��40#$�

2
E0 ��:�� � G�Koq���. ZSS
[
SS\

 

+ 7� ��47� cd !<?� − :.0> − :;> 7�+��," 

(27) 

 

��0  =
RSS
T
SSUj�40#$8<4 − :.0 − :;7�+�4,9 | J� �cd 
E� Y� �-d 
E�−Y� �cd 
E� J� �-d 
E�� $�l �− 
E0��40#$�

2
E0 ��:�� � G�Koq���. ZSS
[
SS\

 

(28) 

and 125 
 ��; = :.0 + :; 7�+�, (29) 

Thus, the velocity in time domain: 126 
 ��+� , �, = ��. + ��0 + ��; (30) 

When <� and <4 are assumed to be zero in the equation (30), the exact analytical solution can be 127 
obtained for the abruptly stopped axial Couette flow. 128 

2.2 Numerical Implementation 129 
 130 
The numerical implementation, starts with the equation (2), where the dependent variable, �� (velocity 131 
in axial direction) and the independent variables, � (radius between inner and outer pipes) and � 132 
(time). To approximate the solution of the unsteady equation using Finite Difference method, solution 133 
of the steady state equation was taken as initial condition (9). 134 
Using central space difference approximation the second order partial derivative with respect to radius 135 
and the first order partial derivative with respect to radius of the equations are approximated as, 136 
 ��NN+�, ≃  �!%+� − ∆�, − 2 %+�,+ %+� + ∆�, "+∆�,0 � +  �+∆�,0 

(31) 

 ��N+�, ≃  ]%+� + ∆�, −  %+� − ∆�,2∆� ^ +  �+∆�,0 
(32) 

Using the forward time difference approximation the first order partial derivative with respect to time is 137 
approximated as, 138 
 ��N+�, ≃  ]%+� + ∆�, −  %+�,∆� ^ +  �+∆�,0 

(33) 

Thus, the discretized equation with ∆� = � and  ∆� = ℎ is as, 139 
 

���,�m. −  ���,�� = 1#$
RSS
T
SSU

���
������m.,� − 2 ���,�+ ���K.,� �ℎ0 ���

��

+ 1� !���m.,� −  ���K.,�2ℎ "ZSS
[
SS\

 

(34) 

Here, k = 0,1,2,3, … . , �  and � = 0,1,2,3, … . , � 140 
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141 
Fig. 2. Specifying initial and boundary conditions142 

Figure (2) shows the discretization of the annular and the known initial boundary values of grid points. 143 
Using boundary conditions values are obtained at the grids of the inner wall and outer wall and the 144 
initial condition values are used for �145 
 146 
 147 

3. RESULTS AND DISCUSSION148 
 149 
Finite difference method was programmed in MATLAB to visualize the suddenly stopped axial 150 
Couette flow for various cases. 151 
 152 

3.1 Case I 153 
 154 
In this case the outer pipe was fixed and the inner pipe was moving at a constant velocity in axial 155 
direction and the inner pipe was suddenly stopped.156 

Specifying initial and boundary conditions 

Figure (2) shows the discretization of the annular and the known initial boundary values of grid points. 
Using boundary conditions values are obtained at the grids of the inner wall and outer wall and the � = 0. Hence, subsequent values are approximated 

ON 
 

Finite difference method was programmed in MATLAB to visualize the suddenly stopped axial 

the outer pipe was fixed and the inner pipe was moving at a constant velocity in axial 
direction and the inner pipe was suddenly stopped. 

 

Figure (2) shows the discretization of the annular and the known initial boundary values of grid points. 
Using boundary conditions values are obtained at the grids of the inner wall and outer wall and the 

 

Finite difference method was programmed in MATLAB to visualize the suddenly stopped axial 

the outer pipe was fixed and the inner pipe was moving at a constant velocity in axial 
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157 
Fig. 3. Streamline for suddenly stopped axial Couette158 
when inner pipe moving at a constant velocity and outer pipe at rest159 

Figure (3) shows the streamlines at different radii ratios160 
inner pipe was moving and suddenly th161 
ratios there is a significant change in streamlines of the flow field.162 

 
Streamline for suddenly stopped axial Couette flow at different radius ratios for Case I 

when inner pipe moving at a constant velocity and outer pipe at rest 

Figure (3) shows the streamlines at different radii ratios +�), 0.1, 0.3, 0.5 and 0.7 when initially the 
inner pipe was moving and suddenly the inner pipe was brought to rest. With respect to the radius 
ratios there is a significant change in streamlines of the flow field. 

flow at different radius ratios for Case I 

), 0.1, 0.3, 0.5 and 0.7 when initially the 
e inner pipe was brought to rest. With respect to the radius 
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 163 
Fig. 4. Velocity profiles at different times for Case I when initially inner pipe moving at a 164 

constant velocity and outer pipe at rest at � = �. ��� 165 

Figure (4) shows the points of discrete values of velocity profile at different time steps. Due to the 166 
viscosity of the fluid, near to inner boundary velocity was maximum and at the outer boundary the 167 
velocity was zero. Initially inner pipe was moving at a constant velocity and outer pipe was at rest. 168 
Then, the inner pipe was brought to rest suddenly. There was a decay in velocity profile was observed 169 
with respect to time. 170 
 171 

3.2 Case II 172 
 173 
When inner pipe and outer pipe were moving at a constant velocity and both pipes were suddenly 174 
stopped. 175 
For the different radius ratios +�), 0.1, 0.3, 0.5 and 0.7, streamlines of the suddenly stopped Couette 176 
flow is obtained when initially inner pipe and outer pipe is moving at a constant velocity. Figure (5) 177 
shows the flow field at different radius ratios. With respect to the radius ratios notable difference in the 178 
streamlines of the flow field is noticed. 179 
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180 
Fig. 5. Streamline for suddenly stopped axial Couette flow at different radius ratios for Case II 181 
when initially inner and outer pipes moving at same constant veloc182 

183 

 
Streamline for suddenly stopped axial Couette flow at different radius ratios for Case II 

when initially inner and outer pipes moving at same constant velocity

 

Streamline for suddenly stopped axial Couette flow at different radius ratios for Case II 
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Fig. 6. Velocity profiles at different times for Case II when initially inner and outer pipes 184 
moving at same constant velocity at 185 

Figure (6) represents the points of discrete values of velocity profile at different time steps. In this 186 
case inner and outer boundaries are moving at a constant velocity. Boundaries are moving with the 187 
same velocity and asymmetry in the velocity profiles 188 
2.2.1.3 Case III 189 
When inner pipe and outer pipe initially moving at different velocities (190 
stopped suddenly. 191 

192 
Fig. 7. Streamline of suddenly stopped axial Couette193 
pipes in different constant velocities194 

Figure (7) denotes the streamlines of the abruptly stopped axial Couette flow when inner boundary 195 
and outer boundary have different constant velocities. In the flow field the ch196 
significant. 197 

198 
Fig. 8. Velocity profiles for abruptly stopped pipes at different times for Case III when199 
at � = �. ��� 200 

Figure (8) shows the points of discrete values of velocity profile at 201 
inner boundary moving faster than outer boundary and both are brought to rest suddenly.202 

Velocity profiles at different times for Case II when initially inner and outer pipes 
moving at same constant velocity at � = �. ��� 

Figure (6) represents the points of discrete values of velocity profile at different time steps. In this 
case inner and outer boundaries are moving at a constant velocity. Boundaries are moving with the 
same velocity and asymmetry in the velocity profiles are observed. 

When inner pipe and outer pipe initially moving at different velocities (3� and 34) and both pipes are 

 
Streamline of suddenly stopped axial Couette flow for Case III when inner and outer 

pipes in different constant velocities 

Figure (7) denotes the streamlines of the abruptly stopped axial Couette flow when inner boundary 
and outer boundary have different constant velocities. In the flow field the change in streamlines are 

Velocity profiles for abruptly stopped pipes at different times for Case III when

Figure (8) shows the points of discrete values of velocity profile at different time steps when initially 
inner boundary moving faster than outer boundary and both are brought to rest suddenly.

Velocity profiles at different times for Case II when initially inner and outer pipes 

Figure (6) represents the points of discrete values of velocity profile at different time steps. In this 
case inner and outer boundaries are moving at a constant velocity. Boundaries are moving with the 

) and both pipes are 

flow for Case III when inner and outer 

Figure (7) denotes the streamlines of the abruptly stopped axial Couette flow when inner boundary 
ange in streamlines are 

 
Velocity profiles for abruptly stopped pipes at different times for Case III when �� � �� 

different time steps when initially 
inner boundary moving faster than outer boundary and both are brought to rest suddenly. 
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 203 
Fig. 9. Velocity profiles for abruptly stopped pipes at different times for Case III when �� � 3� 204 
at � = �. ��� 205 

Figure (9) represents the points of discrete values of velocity profile at different time steps when 206 
initially outer boundary moving faster than inner boundary and both are suddenly stopped. 207 
 208 

4. CONCLUSION 209 

 210 
In the work presented, the second order non-homogeneous partial differential equation was solved to 211 
obtain the solution for Couette flow. The numerical approximation for the unsteady abruptly stopped 212 
axial Couette flow was modelled using FDM. Three different cases were analysed in MATLAB 213 
programming, to visualize the flow field and streamline and velocity profiles at different time steps 214 
were obtained. 215 
In case I, initially the inner boundary was moving at a constant velocity and it was suddenly stopped. 216 
Streamlines for various radius ratios +�), 0.1, 0.3, 0.5 and 0.7 were obtained in Figure (3). In case II, 217 
initially inner and outer boundaries were moving at same constant velocity and both boundaries were 218 
suddenly stopped. Streamlines for various radius ratios +�), 0.1, 0.3, 0.5 and 0.7 were obtained in 219 
figure (5). In both cases significant differences in streamlines of the flow field were visualized. In case 220 
III, initially inner boundary and outer boundary had different velocities. Streamlines were visualized in 221 
figure (7). 222 
Different cases play different role in the flow characteristics of the annular flow. Flow characteristics 223 
were changed due to the asymmetry of velocity profiles and unsteadiness of flow field. The 224 
asymmetry of the velocity profile was affected by different radius ratios. Unsteadiness in the flow field 225 
was happened due to sudden changes in flow parameters. So, these sudden changes in the flow 226 
parameter and different radius ratios play important roles in the stability of the flow. 227 
This work presents the analytical and numerical solution and the approach for the solution for abruptly 228 
stopped axial Couette flow. The stability analysis can be carried out to analyse the stability of the flow 229 
when a small disturbance is introduced to the flow. Which may help to understand and predict the 230 
instability. The non-linear stability analysis could help in understanding the transition to turbulent 231 
process which is not addressed in this work. We plan to use MATCONT continuation software to 232 
perform a non-linear stability analysis [16]. Non-concentric annulus with bidirectional flow may give 233 
the solution for the real world applications with minimizing assumptions. 234 
 235 
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