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Abstract
A new non-steady-state photovoltaic effect in a uniform bipolar semiconductor doped with impurities
changing their charge state under illumination is predicted. Direct electric current is shown to arise
in the ring-shaped uniform bipolar semiconductor sample illuminated by a moving light pattern. The
physical basis of the effect is the simultaneous change of the charge carriers density and mobility,
as well as the difference in lifetimes of the ionized impurities, charge carriers and the light pattern
traveling time along the semiconductor sample.
The expression for the short-circuit photocurrent in the semiconductor ring is obtained under the
quasineutrality assumption, its dependence on the light pattern parameters, as well as on the
semiconductor properties and on the sample size is analyzed. It is shown that there are the
optimum light pattern velocity and the optimum semiconductor length such that the photovoltaic
effect magnitude riches its maximum value. It is found that the short circuit photocurrent is
proportional to the squared amplitude of the light intensity modulation at its arbitrarily small value.
The photocurrent is also sensitive to the mean intensity of light pattern and may change its sign
with increasing the mean intensity of the incident light. Under a sufficiently strong illumination the
photovoltaic effect vanishes.

Keywords: dynamic photovoltaic effect; photoelectricity; nonequilibrium current carriers; electromotive
force; mobility

1 Introduction
Recently a number of papers [1, 2, 3] devoted to non-steady-state photovoltaic effects that are not
related to the presence of potential barriers in semiconductor samples has been published. Likely
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the interest in such mechanisms as the Dember effect is due to the fact that they can be responsible
for the emission of terahertz radiation by ultrashort laser pulses [4, 5, 6]. In the view of the pure
semiconductor physics the non-steady-state photovoltaic phenomena are of interest because they
manifest themselves in situations where the formation of the static photo-electromotive force (photo-
emf) is impossible [7, 8, 9]. Also non-steady-state photovoltaic effect seems promising from a practical
viewpoint as the physical basis for new adaptive photodetectors [7, 10].

Not long ago an experimental technique for determining the mobility and lifetime of nonequilibrium
carriers in a semiconductor — the moving-photocarrier-grating technique [11, 12, 13], as well as the
underlying theory of the dynamic photoelectric effect was developed [14, 15, 16].

Unlike static photovoltaic phenomena in the semiconductor sample with no potential barrier (e.g.,
the Dember effect [17, 9, 18] and the bulk photovoltaic effect [19, 9]), where the current carrier mo-
bility difference or the spatial inhomogeneity of the current carrier density give rise to the photo-emf,
non-steady-state photovoltaic effect is essentially a transient process, all the time supported by an
external perturbation (e.g. by the time-dependant spatial inhomogeneity of the illumination due to the
space-time modulation of the incident light, such as a vibrating light pattern). If the illumination of
a uniform semiconductor were static the transient process would end with formation of the nonequi-
librium distribution of excess current carriers in such a way that the arising built-in electric field is
compensated by the diffusion current, and the photo-emf vanishes. In other words, in terms of the
imrefs (the quasi-Fermi levels), the static illumination would give rise to the spatially constant elec-
tron and hole imrefs. From these considerations, it is commonly assumed that the non-steady-state
photo-emf (or the short-circuit photocurrent in the closed circuit) is an alternating electric signal, in
which the harmonic corresponding to the frequency of the light intensity spatial modulation (e.g., the
vibration frequency of the light pattern) is dominated. Naturally, due to the semiconductor nonlin-
earity high order harmonics are also possible. No direct current is believed to flow in the closed
circuit under conditions of the non-steady-state photoeffect, unless the semiconductor medium itself
possesses rectifying properties.

However, from the physical point of view it is of interest to find out whether the appearance of
the DC electric photocurrent as a result of non-steady-state illumination is in principle possible under
conditions that fully rule out a static photo-emf? Or even more paradoxical formulation: may the only
direct current (without alternating components) arise from the non-steady-state photovoltaic effect
in the closed semiconductor circuit with no rectifying properties? For example, in the unbounded
uniform bipolar semiconductor (the ring-shaped bipolar semiconductor sample)?

When studying the non-steady-state photovoltaic phenomena it is widely assumed that the ef-
fect of the light is limited to the generation of excess current carriers, i.e. it affects the only electron
and hole density. However, in semiconductors doped with neutral or compensated impurities the il-
lumination can also affect the current carrier mobility. The reason is that the impurity atom changes
its charge state under illumination, so the cross section of the electron scattering by the impurity
and hence the electron mobility also change. The simultaneous influence of the illumination on the
excess current carriers density and their mobility gives rise to new photovoltaic effects, such as nonlin-
ear photo-response in a uniform semiconductor ring illuminated by nonuniform incident light [20, 21].
As it will be shown below, the inclusion of the light-induced electron mobility change allows to pre-
dict the appearance of the direct photocurrent in the uniform semiconductor ring illuminated by the
symmetric light pattern moving along the semiconductor. In this paper, in the framework of the quasi-
neutrality assumption we develop the theory of the non-steady-state photovoltaic effect in a uniform
bipolar semiconductor with neutral impurities, that manifests itself in the appearance of the only direct
photocurrent in the closed circuit.
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Figure 1: Semiconductor sample of length L, illuminated by moving light pattern.

2 Mathematical model of the photovoltaic effect
Let us consider an uniform bipolar semiconductor slab of the length L (see figure 1) illuminated by
incident light with the intensity modulated as I(x, t) = I0 + Ia cos[2π(x+ vt)/L]. Here I0 is the mean
intensity of the incident light, Ia represents the modulation depth of the light intensity in the “traveling
wave”-type light pattern, moving along the semiconductor slab with its velocity v.

In order to simplify the calculations and to obtain a qualitative picture of the effect, we confine
ourselves to the one-dimensional model, considering all the physical quantities in the transverse
directions uniform.

If the photon energy is high enough, both the interband generation of electrons in the conduction
band and holes in the valence band and the excitation of impurities simultaneously take place in the
semiconductor. The impurity excitation also occurs with an increase of the charge carrier density (e.g.,
the ionization of an impurity energy level is accompanied by the electron transition from the impurity
energy level to the conduction band). However, we assume that the impurity density is low enough to
neglect their influence on the excess charge carrier density in the conduction and valence bands. In
other words, we believe that the generation rate of the conduction electrons from the neutral impurity
energy level substantially less than the rate of the interband photogeneration. At the same time the
semiconductor temperature is taken to be low enough, so the impurity density is sufficient to ensure
that the scattering of the charge carriers by the the ionized impurities dominates. In other words, the
model under consideration assumes that the excess charge carrier density is solely controlled by the
interband transitions, while the carrier mobility is controlled exclusively by the impurity excitation.

We believe that the most favorable materials for such a situation are semiconductors with stoichi-
ometric vacancies of In2Te3-type[22]. In these semiconductors (which are remarkable by their ra-
diation stability), in equilibrium, the impurities are always in the neutral state, while illumination or
ionizing radiation leads to the appearance of charged impurity levels, thus substantially changing
their scattering cross-section, and hence the mobility of the current carriers.

Considering the process of the impurity photoexcitation in the Shockley-Read-Hall model [23],
one can write the following expression for the density of the neutral impurities Nt:

∂Nt

∂t
= Rt −Gt, (2.1)

where Gt = αgNtI is the photogeneration rate of the conduction electrons from the impurity energy
level, αg is the scattering cross section of the impurity photoexcitation. The inverse process of the
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conduction electron capture by the impurity energy levels can be written as Rt = αrn(Nt0 − Nt),
whereNt0 is the dark density of neutral impurities, n is the electron density in the conduction band, αr

is the phenomenological parameter characterising the probability of the conduction electron capture
by the impurity energy level. Here we neglect the thermal excitation of the impurity, assuming a
sufficiently low temperature. Recall that this condition is also necessary to ensure that the carrier
scattering by impurities rather than by phonons prevails.

To obtain analytical solutions we restrict ourselves by the first order of the perturbation theory
(i.e. by the linear approximation), considering the modulation depth of the incident light intensity to be
low enough: Ia � I0, Ia � 2πv/(αgL). Physically the latter condition means that in a time the light
pattern travels along the sample, only a small fraction of impurities (compared to their dark value) is
ionized.

Then from Eq. (2.1) one obtains the following stationary distribution for the neutral impurities
density in the semiconductor:

Nt = N t [1− ζ cos Ω(x, t)] , (2.2)

where

Ω(x, t) =
2π

L
(x− x0 + vt), (2.3)

N t = αrn(I0)τgNt0, (2.4)

ζ =
αgτgτv√
τ2g + τ2v

Ia, (2.5)

sin
2πx0
L

=
τg√

τ2g + τ2v
, (2.6)

τg = (αgI0 + αrn(I0))−1 , τv =
L

2πv
. (2.7)

In Eqs. (2.4)-(2.6) n(I0) is the conduction electron density in the semiconductor sample, uniformly
illuminated by the incident light of the intensity I0.

Physically the introduced above parameter τg represents the time scale for the photoexcitation of
the impurity by the uniform illumination with the intensity I0, and the parameter τv is the time the light
pattern travels along the sample.

Eq. (2.2) shows that in darkness (I0 = Ia = 0) one gets Nt = Nt0, as it might be expected, while
for a sufficiently strong light Nt → 0. Also, it turns out that the ionized impurity density is modulated
by the same traveling wave law as the incident light intensity is modulated, but with some phase shift
with respect to the latter. The space-time modulation depth of the unexcited impurity density ζ is the
maximum for a still light pattern, with increase of the light pattern velocity v the modulation depth
decreases, tending to zero for sufficiently large v. The phase shift represented by the parameter x0
grows with the increase in the velocity v, tending to the limit L/4 at v →∞. Again, the increase of the
mean incident light intensity I0 reduces the phase shift which disappears in the limit of the infinitely
strong illumination. As this takes place, the the space-time modulation depth ζ of the unexcited
impurity density also vanishes, indicating the complete ionization of impurities by a sufficiently strong
light.

Assuming that the mobility of electrons is proportional to the excited impurity density µn ∝ (Nt0−
Nt), let us represent the electron mobility in the following form:

µn(x, t) = µn0 + δµn0 + δµnd cos Ω(x, t), (2.8)

where µn0 is the electron mobility in the semiconductor sample in darkness, δµn0 describes the static
change in the electron mobility by the action of light, and the term with δµnd is the dynamic part of
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the electron mobility change induced by the moving light pattern. These values are, respectively:

δµn0 = − ∂µn

∂Nt

∣∣∣∣
Nt=Nt0

αgτgNt0I0, (2.9)

δµnd = − ∂µn

∂Nt

∣∣∣∣
Nt=Nt0

αgαrn(I0)τ2g τv√
τ2g + τ2v

Nt0Ia. (2.10)

Within the framework of the successive approximation we use, the charge carrier mobility change
caused by the illumination is assumed small enough: |δµn0| � µn0, |δµnd| � µn0.

The ionization of impurities also affects the hole mobility, but for the sake of simplicity we neglect
this influence, considering that the hole mobility is completely controlled by another scatterers (e.g.,
by phonons) and it is a constant µp0.

Note that the considerations above are equally valid for the excitation of the neutral impurity (gain-
ing a positive charge due to the photoionization), as well as for initially negatively charged acceptor
impurity (which turns into its neutral state under the action of the light). In both cases the light causes
a significant change in the scattering cross section of the impurity for the conduction electrons, and
therefore affects their mobility. The distinction between these two cases lies in the value and sign of
∂µn/∂Nt.

Let us find the photo-emf arising in the semiconductor under aforesaid conditions within the
formalism of the current continuity equations that in the 1-D model are written as follows [18, 8, 24]:

∂n

∂t
=

1

e

∂jn
∂x
−Rn +Gn, (2.11)

∂p

∂t
= −1

e

∂jp
∂x
−Rp +Gp (2.12)

where e is the electron charge, Gn,p and Rn,p are the photogeneration and recombination rates of
electrons and holes, respectively, and jn,p are the current densities for electrons and holes:

jn = eµnnE + kBTµn
∂n

∂x
, (2.13)

jp = eµp0pE − kBTµp0
∂p

∂x
, (2.14)

where n and p are the densities of electrons and holes, respectively; kB is the Boltzmann constant,
T is the temperature of the semiconductor, E is the electric field in the semiconductor.

To determine the electric field Eqs. (2.11)-(2.14) must be supplemented with the Poisson equa-
tion:

∂E

∂x
=

4πρ

ε
, (2.15)

where ρ is the space charge, ε is the semiconductor permittivity.
To simplify subsequent calculations we use the quasineutrality approximation ρ ≈ 0 [25, 26, 27,

24]. To meet the latter condition it is requisite that the sample size vastly larger than the Debye
screening length L� rD, rD = (εkBT/2πe

2n(I0))1/2, and all the problem time scales far exceed the
Maxwell time τg � τM , τv � τM , τM = ε/(4πσ0) [28, 8]. Here σ0 denotes the dark conductivity of
the semiconductor: σ0 = e(µn0n0 + µp0p0), where n0, p0 are the densities of electrons and holes in
the unlit semiconductor, respectively. When the above requirements are met, the Poisson equation
becomes redundant and can be used for subsequent verification of the excess charge carrier density
obtained. Due to the small impurity density and therefore its negligible influence on the charge carrier
density, the condition of the space charge absence takes the form: δn = δp, where δn = n − n0,
δp = p− p0.

As mentioned above, we assume that direct interband transitions make the major contribution to
the charge carrier photogeneration rate. Then Gn = Gp = gII(x, t), where gI is the phenomenolog-
ical factor, describing the efficiency of electron and hole photogeneration [23, 29]. In the present
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context the expression for the interband recombination can be written in the following form [29]:
Rn = Rp = δn/τR, where τR is the charge carrier lifetime.

The system of differential equations in Eqs. (2.11)-(2.15) must be supplied with the appropriate
boundary conditions (BCs). It should be emphasized that the correct choice of the BCs is crucial
to accurately determine the value of the photo-emf in bounded semiconductors [30, 31, 32]. For
example, properties of the “metal-semiconductor” interface affect not only the magnitude but also the
sign of the Dember emf [31]. To avoid painstaking study of the contact region impact on the value of
the photovoltaic effect, as well as to significantly simplify the calculations, we will connect the ends of
the semiconductor (points x = 0 and x = L), forming the semiconductor ring. The most important
physical parameter of the photoelectric effect in such a configuration is the short-circuit photocurrent.
For this problem definition the BCs are extremely simplified and consist in the continuity conditions
at x = 0 and x = L. In the quasineutrality approximation the continuity of the charge carrier density
(n(0) = n(L), p(0) = p(L)) is ensured by the single equation:

δn(0) = δn(L). (2.16)

In view of Eq. (2.16) and Eqs. (2.13)-(2.14) the continuity condition for the electric potential ϕ(0) =
ϕ(L) and the electric field E(0) = E(L) allow us to rewrite the continuity condition for the electron and
hole currents jn,p(0) = jn,p(L) as the continuity condition for the first-order derivative of the excess
charge carrier density with respect to the coordinate:

∂δn

∂x
(0) =

∂δn

∂x
(L). (2.17)

Let us express the electric field in the semiconductor from Eqs. (2.13)-(2.14) :

E = σ−1

[
j0 − ekBT

(
µn
∂n

∂x
− µp0

∂p

∂x

)]
, (2.18)

where j0 is the total electric current in the circuit (which, in general, has the dc and the ac components,
i.e. j0 = j0(t)), σ = e(µnn+µp0p) is the conductivity of the semiconductor. From the electric potential
continuity, which for the closed circuit can be written as

∫ L

0
Edx = 0, one obtains an expression for

the short-circuit current:

j0 = kBT

∫ L

0

µn − µp0

σ

∂δn

∂x
dx

(∫ L

0

dx

σ

)−1

. (2.19)

Note that if the illumination does not affects the charge carrier mobility (i.e., if µn = µn0 = const),
there is no current in the circuit, because in this case the integrand in Eq. (2.19) is the total differential
of the function dependant only on δn with δn(0) = δn(L). Assuming that the light-induced change of
the electron mobility is small µn = µn0 + δµn, |δµn| � µn0, we expand the integrand in Eq. (2.19) in
terms of δµn holding only the linear term. After some rearrangemens one obtains:

j0 =
eD

µn0L

∫ L

0

δµnd
∂δn

∂x
cos Ω(x, t)dx, (2.20)

where D = kBTµn0µp0(n0 + p0)/σ0 is the ambipolar diffusion coefficient, σ0 = e(µn0n0 + µp0p0) is
the dark conductivity of the semiconductor.

To derive Eq. (2.20) the above remarks that terms in the integrand, that do not explicitly depend
on the coordinate, do not contribute to the short-circuit current are taken into account, and terms of
higher order of smallness are omitted.

We emphasize that only the spatially nonuniform variation of the electron mobility δµnd appears
in Eq. (2.20), while the uniform variation of the electron mobility δµn0 drops out of the solution.

To calculate the excess charge carrier density δn we note that the integrand already contains a
small quantity δµnd as a factor. So, when using the method of successive approximations to get the
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solution of Eqs. (2.11)-(2.12), one may assign µn = µn0 and hold only the linear terms with respect
to δn. Granting this, substituting Eq. (2.18) in Eq. (2.13) and then Eq. (2.13) in Eq. (2.11) we finally
obtain the following linear differential equation for the excess electron density:

∂δn

∂t
= D

∂2δn

∂x2
− δn

τR
+ gII(x, t). (2.21)

3 Results and discussion
Since we are interested in the stationary (but not static!) distribution of the charge carrier density
(that is set, when all the transients, originated on the illumination switching on, are over), we seek the
solution of Eq. (2.21) as a “traveling wave” with some phase shift relative to the incident light intensity:

δn = δn0 + δns sin Ω(x, t) + δnc cos Ω(x, t). (3.1)

Then one easily obtains the following excess charge carrier densities:

δn0 = gIτRI0, (3.2)

δns = gI
τ2v τ

τ2v + τ2
Ia, (3.3)

δnc = gI
τvτ

2

τ2v + τ2
Ia, (3.4)

where

τ = τR

(
1 + 4π2L

2
D

L2

)−1

, (3.5)

and L2
D = DτR is the ambipolar diffusion length.

Note that the parameter τ is an effective carrier lifetime in the semiconductor ring. In a long sam-
ple it coincides with the charge carrier lifetime τR and decreases with reduction in the semiconductor
length. The latter physically means lesser impact of recombination in a short sample: in this case
the excess charge carriers have enough time to repeatedly go through the semiconductor ring before
recombining.

Substituting the excess carrier density distribution obtained Eq. (3.1) and the electron mobility
Eq. (2.8) into Eq. (2.20) one obtains the following expression for the photocurrent in the semiconductor
ring:

j0 = πegIαrαg
Dn0Nt0

µn0L

∂µn

∂Nt

∣∣∣∣
Nt=Nt0

τ2g τ
3
v τ(τg − τ)

(τ2v + τ2g )(τ2v + τ2)
I2a . (3.6)

As it can be seen from Eqs. (3.6), the moving light pattern induces the constant electric current
in the uniform ring-shaped semiconductor doped with neutral impurities. Surprisingly, the current has
no alternating component at all (at least in the first order of the perturbation theory). Remarkable that
even the electric current harmonic at the frequency of the incident light intensity modulation in each
point of the semiconductor f0 = v/L is also suppressed.

Physical foundation of the photovoltaic effect under consideration is as follows. Firstly, it is the
simultaneous influence of light on both the excess charge carrier density and their mobility due to
the presence of the impurities with controllable by light charge state. Secondly, it is the difference in
the the excited impurity lifetime τg and the effective excess charge carriers lifetime τ . With τg = τ
the electric current in the circuit vanishes. Finally, the motion of a symmetric light pattern breaks the
spatial symmetry of the problem, enabling the appearance of the photo-emf and the electric current,
with sign being determined by the direction of the light pattern movement.
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The considered photovoltaic effect features the square-law dependence on the amplitude of the
incident light intensity modulation Ia for an arbitrarily small its value. Recall that for the known mech-
anisms of the photoelectric phenomena the magnitude of the photo-emf depends linearly on the
incident light intensity, at least for low intensity.

As to the dependence of the short circuit current j0 on the mean incident light intensity I0, ap-
pearing in the definition of the parameter τg in Eq. (2.7), note two things. Firstly, the presence of the
factor τg − τ in Eq. (3.6) implies that for an appropriate choice of the semiconductor parameters the
photovoltaic effect strongly depends on the mean incident light intensity. As the latter increases, one
may observe even the change in sign of the electric current in the circuit. Secondly, a sufficiently high
mean intensity of the light pattern suppresses the photovoltaic effect. As discussed above, it is due to
the complete ionization of impurities at high-intensity illumination. However, let us note that this con-
clusion, despite its physical evidence, is not sufficiently justified by Eq. (3.6). In fact, Eq. (3.6) itself is
obtained with assumption of the small I0. Thus, one can speak correctly only about the tendency of
the dynamical suppression of the photovoltaic effect with increasing the mean intensity of the incident
light due to the depletion of the un-ionized impurities density in the sample.

Note that the considered non-steady-state photovoltaic effect takes place with appearance of
the quasi-neutral ambipolar excess charge carriers packet, rather than the nonequilibrium space
charge as it is usually the case for dynamic photovoltaic phenomena [1, 2, 3, 33]. Moreover, the
time dependence of the charge carrier density in the left hand side of Eqs. (2.11)-(2.12) is not crucial
for the phenomenon under investigation. It would be possible to solve the system of equations in
Eqs. (2.11)-(2.15), neglecting terms of ∂n/∂t and ∂p/∂t at all (though, of course, this approximation
is not physically valid), and get a nonzero photocurrent j0 6= 0. Fundamental point is the phase
shift between the excess electron density and the electron mobility (i.e., the ionized impurity density).
Thus, the effect under consideration can be called a quasistatic photoeffect.

Let us analyze the dependence of the short-circuit photocurrent j0 on the basic parameters ap-
pearing in Eq. (3.6). First of all, note that the value of j0 depends on the velocity of the light pattern
movement v. It is the velocity of light pattern along with the the sample length that determine the value
of the parameter tv (see Eq. (2.7)). For a sufficiently high light pattern velocity (v → ∞) the photo-
voltaic effect vanishes as j0 ∼ v−3. At the same time, for a sufficiently small light pattern velocity
j0 ∼ v. The latter means that the considered photovoltaic effect is nonexistent when the semiconduc-
tor is illuminated by a fixed symmetric light pattern. The pattern motion breaks the spatial symmetry
of the problem, giving rise to the electric current. Moreover, sign of j0 is determined by direction of
the light pattern movement (i.e. by sign of the velocity v)

From the above it follows that there is an optimal value of the light pattern velocity v∗, where the
photovoltaic effect is most pronounced. One can show that |v∗| = L/2πτ∗v , where τ∗v = (τ2 + τ2g +√
τ4 + 14τ2τ2g + τ4g )/2.

Note that the above results are obtained under the assumption of constant velocity of the light
pattern v = const. For a variable velocity of the light pattern an additional study is required, but it is
clear that in this case the non-steady-state photovoltaic effect also takes place. However, due to the
essential nonlinearity of the dependence j0(τv) the spectrum of the short-circuit photocurrent most
likely contains the ac components at the frequency of the light pattern velocity alternation as well as
its harmonics.

From the analysis of Eq. (3.6) one can see that the value of j0 depends essentially on the length
of the semiconductor L just as explicitly (since the denominator of Eq. (3.6) includes L), so via de-
pendencies of the times τv and τ on L. It can be shown that the electric current in the circuit vanishes
as L2 with decrease in the sample length. At the same time, in long samples the short-circuit pho-
tocurrent decreases by the law L−2 with increase in the sample length. This suggests that there is
some optimal length of the sample for which the photovoltaic effect is expressed in its fullest extent.

Let us analyze the dependence of the short-circuit photocurrent j0 on the charge carrier lifetime
τR. In the case of extremely strong recombination τR → 0, hence τ → 0 (see Eq. (2.7)) and the
current in the circuit vanishes as j0 ∼ τR → 0. The physical reason for this result is clear: very high
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recombination rate at the quasi-neutrality means there are no excess charge carriers [24, 29]. All
the electron-hole pairs generated by light recombine at the place of their generation, not having a
chance to contribute to the photo-emf. In the opposite limiting case, in the absence of recombination
(τR → ∞), the effective charge carrier lifetime τ is finite τ = L2/4π2D. Accordingly, the electric
current in the circuit remains a finite value as well. It is interesting to note that in the limiting case of the
absence of recombination for closely-related mechanisms of the photovoltaic phenomena (e.g., the
Dember effect and the bulk photovoltaic effect) the photo-emf continuously increases with increase
of the charge carrier lifetimes [17, 19, 9, 18, 8].

4 CONCLUSIONS

The above analysis demonstrates that a light pattern moving along the uniform ring-shaped semi-
conductor doped with impurities, changing their charge when exposed to light, gives rise to the direct
electric current. This effect is resulted from the simultaneous action of the light on the charge carrier
mobility and density, the existence of the characteristic time hierarchy (the charge carrier lifetime, the
ionized impurity lifetime and the light pattern travel time), as well as the spatial symmetry violation by
the movement of the light pattern.

The considered non-steady-state effect is a quasi-static phenomenon by its physical nature since
it is not related to the nonequilibrium space charge in the semiconductor. The excess charge carrier
transport is ambipolar.

The magnitude of the photovoltaic effect nonlinearly depends on the light pattern velocity, while
sign of the electric current is determined by direction of the light pattern movement. There is an
optimum velocity of the light pattern, whereby the electric current in the circuit reaches its maximum
value. For immobile or moving too fast light patterns the photovoltaic effect vanishes.

The dependence of the short-circuit photocurrent in the closed semiconductor circuit is a bulky
strongly nonlinear function of the semiconductor parameters and the sample length. There is an
optimal length of the semiconductor, for which the photovoltaic effect is most pronounced.

The photovoltaic effect in question exhibits the nonlinear (square-law) dependence on the ampli-
tude of the light intensity modulation. The effect is also sensitive to the mean intensity of the incident
light. If the mean incident light intensity is high enough, the photovoltaic effect is suppressed. Fur-
thermore, for an appropriate choice of parameters the photo-emf and the electric current in the circuit
may change in sign with increasing the mean intensity of the light pattern.

Now it is difficult to consider a practical implementation of the predicted effect, more likely it is
of a pure theoretical interest. However, it may be relevant as a source of noise in photoresistors and
photoconverters.
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