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ABSTRACT 6 

Spin and pseudospin symmetries of the Dirac equation for Modified Eckart plus Inverse square 7 

potential within a zero tensor interaction are investigated using the parametric Nikiforov-Uvarov 8 
method which is based on the solutions of general second-order linear differential equations with 9 
special functions. The bound state eigen value was obtained with some few cases of potential 10 

considerations. 11 
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1. INTRODUCTION 17 

The exact solutions of wave equations are still an interesting problem in fundamental quantum 18 
mechanics. Unfortunately, there are only a few potentials for which the Schrodinger, Dirac, 19 
Klein-Gordon, and Duffin-Kemmer-Petiau (DKP) equations can be exactly solved. Several 20 

potential models have been introduced to explore the relativistic and nonrelativistic energy 21 

spectra and the corresponding wave functions [1–5]. Jiaet al. [6] have derived the bound-state 22 
solution of the Klein-Gordon equation under unequal scalar and vector kink-like potentials.The 23 
solutions of the Dirac equation under pseudospin and spin symmetries with a number of potential 24 

models have been investigated by many researchers. These potentials include the 25 
ManningÄRosen [7], Eckart [8], Hylleraas [9], Deng-Fang [10], Méobious square [11], Tietz 26 

[12], hyperbolical [13], Yukawa and inversely quadratic Yukawa [14, 15] potentials. The spin 27 
and pseudospin symmetries under various phenomenological potentials have been investigated 28 
using various methods, such as the NikiforovÄUvarov (NU) method [16], supersymmetric 29 

quantum mechanics (SUSYQM) [17], and others [18]. On the other hand, we are now almost 30 
sure that the spin and pseudospin symmetries of the Dirac equation play a significant role in 31 

nuclear and hadronic spectroscopy[19, 20]. The tensor interaction has attracted a great attention 32 
as it removes the degeneracy between the doublets [20]. In most studies, due to the mathematical 33 

structure of the problem, the tensor interaction is considered as the Coulomb-like [19, 20] or 34 
Cornell interaction. Hassanabadi et al. were the first to introduce the Yukawa tensor interaction 35 
[21]. The investigation has shown that tensor interaction removes the degeneracy between two 36 
states in the pseudospin and spin doublets. The effect of tensor coupling under spin and 37 
pseudospin symmetries has been studied only for the Coulomb-like interaction until recently that 38 

Hassanabadi et al. [21] introduced the Yukawa tensor interaction. Our research group has 39 
recently solved the eigen functions of Dirac, Klein-Gordon and Schrodinger using combined or 40 
superposed potentials.  These include Manning-Rosen plus shifted Deng-fang potential [22], 41 
Manning-Rosen plus Yukawa Potential [23], Generalized Woods-Saxon plus Mie-Type Nuclei 42 
Potential [24], with Kratzer plus Reduced Pseudoharmonic Oscillator potential [25] and so on. 43 
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In the present study, we obtain the approximate analytical solutions of the Dirac equation for the 44 

vector Modified Eckart plus Inverse square potentials under zero tensor interaction within the 45 
framework of spin and pseudospin symmetry limits. 46 
This paper therefore, is organized as follows. Section 1 covers the introduction, in section 2, we 47 

review the NU method, Section 3 is devoted to the Dirac equation for spin and pseudospin 48 
symmetries, Special case of the potential is discussed in Section 4, and finally, we give a brief 49 
conclusion. 50 
 51 

2. REVIEW ON NIKIFAROV-UVAROV METHOD 52 

The main equation which is closely associated with the method is given in the following form 53 

(Nikiforov and Uvarov, 1988). 54 

       
     

    
      

     

     
                 55 

Where      and       are polynomials at most second-degree,       is a first-degree polynomial 56 

and      is a function of the hypergeometric-type. 57 

In order to find the exact solution to Eq. (2), we set the wave function as  58 
 59 

                           60 
 61 
and on substituting Eq. (3) into Eq. (2), then Eq. (3) reduces to hypergeometric-type, 62 

 63 

                                       64 
 65 

where the wave function      is defined as the logarithmic derivative 66 
 67 
     

    
 

    

     
               68 

 69 

Where      is at most first-order polynomial? 70 
 71 

The hypergeometric-type function      whose polynomial solutions are given by the Rodrigues 72 
relation 73 
 74 

     
  

    

  

   
                        75 

 76 

Where    is the Normalization constant and the weight function      most satisfy the condition 77 
 78 
 

  
                                 79 

 80 
Where 81 
 82 

                              83 
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 84 

In order to accomplish the condition imposed on the weight function       , it is necessary that 85 

the classical or polynomials      be equal to zero to some point of an interval       and its 86 

derivative at this interval at        will be negative, that is 87 
 88 
     

  
                  89 

 90 

Therefore, the function       and the parameters λrequired for the NU method are defined as 91 
follows: 92 
 93 

     
     

 
   

     

 
 
 

              94 

      95 
 96 

Where           97 
 98 

The parametric generalization of the NU method is given by the generalized hypergeometric-99 
type equation as 100 
 101 

        
        

        
        

    
        

          
                102 

 103 
Equation (11) is solved by comparing it with Eq. (2) and the following polynomials are obtained: 104 
 105 

                                       
               106 

 107 

Now substituting Eq. (12) into Eq. (11), we find 108 
 109 

                                                110 

 111 

Where    
 

 
             

 

 
                  

                             
  112 

                
                                                113 

                                                114 

 115 

The resulting value of k in Eq. (13) is obtained from the condition that the function under the 116 

square root be square of a polynomials and it yields, 117 
 118 

                                  119 

 120 

Where           
       121 

 122 

The new      for k becomes 123 
 124 

                                        125 
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 126 

Using Eq. (8), we obtain 127 
 128 

                                                  129 

 130 
We obtain the energy equation as 131 
 132 

            
                                                   

 133 

While the wave function is given as 134 
 135 

      =      
          

     
   
    

       
   
  

         
                136 

 137 

Where   is the orthogonal polynomials. 138 

Given that   
      =  

                

                          

 
    

   

 
 
 

 
   

 
 
   

      139 

This can also be expressed in terms of the Rodriguez’s formula 140 

   
          

 

    
               

 

  
 
 

                        141 

 142 

 143 

3. BOUND STATE SOLUTION OF THE DIRAC EQUATION 144 

The Schrodinger like differential equation for the upper radial spinor component of the Dirac 145 

equation is given as 146 

  
  

   
 

      

  
 

 

    
                                   

 

   

  
 

 

  
 

 

 
 

              
           

Where                and                are the differences and the sum of the 147 

potentials V(r) ans S(r), respectively. 148 

In the presence of the SS, that is, the difference potential                          or 149 
   

  
  . Then the above equation becomes 150 

  
  

   
 

      

  
 

 

    
                       

     
                             

Similarly, under PSS conditions,                             or 
     

  
   151 
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 152 

The Modified Eckart Potential is given as 153 

        
   

   

         
                154 

 155 

The Inverse Square Potential,      
 

              156 

Applying the transformation        and pekeris-type approximation.The superposed potential 157 

can be represented as MEISP 158 

 159 

       
   

      
  

    

      
              160 

Applying the pekeris-type approximation and after lengthy algebra, we obtained the following 161 

second order differential equation for Spin Symmetry in the presence of Spin-Orbit Coupling 162 

term 163 

 164 

      

   
 

     

      

     

  

 
 

        
                                      

       

 165 

 166 

Where 167 

     
     

    ,            ,     
   

      ,     
      

          
      

            168 

 169 
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 170 

Using the eigenvalue equation, the energy eigen spectrum of MEISP is found to be 171 
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 173 

3.1.SPIN SYMMETRY 174 

The above equation can be solved explicitly and the energy eigen spectrum under the Spin 175 

Symmetry      ,MEISP 176 

      177 
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 181 

 182 

3.2.PSEUDO-SPIN SYMMETRY 183 

For Pseudo-Spin consideration      , the explicit energy of the MEISP becomes 184 

 185 
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 190 

4. DISCUSSION 191 

We consider the following cases of potential from equations               192 

(I) When       Dirac equation for Inverse square potential for Spin and Pseudo-spin 193 

symmetry is obtained as follows 194 

 195 

SPIN SYMMETRY 196 
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PSEUDO-SPIN SYMMETRY 204 
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(II) When     Dirac equation for Modified Eckart potential for Spin and Pseudo-spin 208 

symmetry is obtained as follows 209 

 210 

 211 
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SPIN SYMMETRY 212 
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 215 

PSEUDO-SPIN SYMMETRY 216 
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 219 

5. CONCLUSION 220 

In this paper, we obtained the approximate analytical solutions of the Dirac equation for the 221 
Modified Eckart plus Inverse Square potential for zero tensor interaction within the framework 222 

of pseudospin and spin symmetry limits using the NU technique. We have obtained the energy 223 
levels in a closed form and some special case of the potential has been discussed.  224 

 225 

 226 

 227 
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