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EFFECTS OF VARIABLE ELECTRICAL CONDUCTIVITY ON 

THERMAL BOUNDARY LAYER OVER A VERTICAL PLATE 

WITH BUOYANCY FORCE AND CONVECTIVE SURFACE 

BOUNDARY CONDITIONS  
 

Abstract 
    This paper investigates the effects of variable electrical conductivity on thermal 
boundary layer over a vertical plate with buoyancy force and convective surface 
boundary conditions. The governing nonlinear partial differential equations are 
transformed into a set of coupled non-linear ordinary differential equations by using 
the usual similarity transformation method. The resulting nonlinear ordinary differential 
equations are then solved numerically by Runge- Kutta fourth order method with 
Shooting technique to study the effects of variable electrical conductivity on the 
thermal boundary layer over a vertical plate with buoyancy force and convective 
surface boundary conditions. The results show that the fluid temperature increases 
due to increase in magnetic field intensity and decreases due to increase or decrease 
in electrical conductivity parameter but it is maximum at the plate surface and 
decreases exponentially to zero far away from the plate thereby satisfying the 
boundary conditions. The fluid velocity increases with increase or decrease in 
electrical conductivity parameter and decreases due to magnetic field intensity. The 
boundary layer thickness increases with an increase in Biot numbers and decreases 
with increase in Grashof and Prandtl numbers. Convective surface heat transfer 
enhances thermal diffusion while an increase in Prandtl number which is an intensity 
of buoyancy force slows down the rate of thermal diffusion within the boundary layer. 
The skin friction and the rate of heat transfer at the surface increases with an increase 
in local Grashof number, electrical conductivity parameter and convective surface heat 
transfer parameter. 
 
Keywords: Electrical conductivity, Thermal boundary layer, Vertical plate, Convective 
surface boundary conditions. 
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1. Introduction  

The study of heat transfer is an integral part of natural convection flow and a class of boundary 

layer theory. The quantity of heat transferred is highly dependent upon the fluid motion within 

the boundary layer.  

Convective heat transfer studies are very important in processes involving high temperatures 

such as gas turbines, nuclear plants, thermal energy storage, etc. The fluid flow along a 

horizontal, stationary surface located in a uniform free stream was solved for the first time by 

Blasius (1908) and since then it has been a subject of current research. Cortell [3] in his work 

presenteda numerical Solutions of the Classical Blasius Flat-Plate Problem using a Runge-

Kutta algorithm for high-order initial value problem. He [5] worked on a simple perturbation 

approach to blasius equation. In his paper, he coupled the iteration method with the 

perturbation method to solve the well-known Blasius equation. 

Also, Bataller [2] presented a numerical solution for the combined effects of thermal radiation 

and convective surface heat transfer on the laminar boundary layer about a flat-plate in a 

uniform stream of fluid (Blasius flow) and about a moving plate in a quiescent ambient fluid 

(Sakiadis flow). 

 The study of an incompressible viscous and electrically conducting fluid in the presence of a 

uniform transverse magnetic field was investigated by Watunade and pop [10]. Shrama and 

Gurminder[9] investigated the effect of temperature dependent electrical conductivity on 

steady natural convection flow of a viscous incompressible low Prandtl(Pr<<1) electrically 

conducting fluid along an isothermal vertical non-conducting plate in the presence of 

transverse magnetic field and exponentially decayingheat generation. Aziz [1] investigated a 

similarity solution for laminar thermal boundary layer over a flat-plate with a convective 

surface boundary condition. Makinde and Sibanda [8] conducted a study on magneto 
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hydrodynamic mixed convective flow and heat and mass transfer past a vertical plate in a 

porous medium with constant wall suction. 

Makinde [7] studied analysis of non-newtonian reactive flow in a cylindrical pipe. Cortell [4] 

investigated a similarity solutions for flow and heat transfer of a quiescent fluid over a 

nonlinearly stretching surface. 

Makinde and Olanrewaju [6] conducted a study on the effects of buoyancy force on thermal 

boundary layer over a vertical plate with convective surface boundary conditions. This paper 

extends the work of Makinde and Olanrewaju (2010) to include the electrical conductivity 

parameter. The numerical solutions of the resulting momentum and the thermal similarity 

equations are reported for representative values of thermo physical parameters characterizing 

the fluid convective process. 

2. Mathematical Analysis 

Consider a two-dimensional steady incompressible fluid flow coupled with heat transfer by 

convection over a vertical plate. A stream of cold fluid at temperature   moving over the right 

surface of the plate with a uniform velocity    while  the left surface of the plate is heated by 

convection from a hot fluid at temperature   ,which provides a heat transfer coefficient    see 

Fig.3.1.The x-axis is taken along the plate and y-axis is normal to the plate. Magnetic field of 

intensity    is applied in the y- direction. It is assumed that the external field is zero, also 

electrical field due to polarization of charges and Hall effect are neglected. Incorporating the 

Boussinesq’s approximation within the boundary layer, the governing equations of continuity, 

momentum and energy equations are respectively given as: 
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where u   and v are the x(along the plate) and the y(normal to the plate) components of the 

velocity  respectively; g  is the acceleration due to gravity; x, y are the Cartesian coordinates, 

   is the Magnetic field intensity,    is the  coefficient of thermal expansion,    is the density of 

the fluid,    is the Kinematic viscosity,    is the coefficient of thermal conductivity, T is the 

temperature of the fluid,    is the electrical conductivity and it is variable with temperature as 

given below  

   
 

    
                                                                                                         (4) 

   is the  electrical conductivity parameter. All prime symbols denotes differentiation with 

respect to    

        The velocity boundary conditions can be expressed as: 

 (   )   (   )                                                                                                           (5) 

 (   )                                                                                                                        (6) 

The boundary conditions at the plate surface and far into the cold fluid may be written as: 
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Fig 3.1 Flow Configuration and coordinate system  
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Introducing the stream function ψ(x,y) such that  

u=
  

  
                                                                                                                       (9) 

v = - 
  

  
 

where    (   )   √
   

 
 ( ),                                                                  (10) 

The similarity variable   , a dimensionless stream function )(f   and temperature )(  are 

given as  

   √
  

   
,          ( ),     √   ( ) ,       

  –  

      
                                      (11) 

Thus, the continuity equation (1) is satisfied with u  and v  of equations (11). Using (11), 

equations (2) and (3) are transformed into a set of coupled non-linear ordinary differential 

equation as  

      ( )    ( )    ( )    ( )   
 

     
  ( )      ( )                                  (12) 

          ( )       ( )  ( )                                                                                     (13) 

The boundary conditions (5), (6), (7) and (8) reduced to   

  ( )     ( )     ,        ( )                                                    (14) 

                           ( )       [ –  (   )]     ,    ( )                                                  (15) 

where      
  (      )

      is the dimensionless Grashof number ,  
  

    

  
 is the magnetic 

parameter ,      
 

 
  is the prandtl number and  Bi     

 

 
√

 

 
    is the Biot number. 

Assuming that equations (12) and (13) have a similarity solution with the parameters     and  

   defined as constants. 

3. NUMERICAL SOLUTIONS 
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Solving the governing boundary layer equations (12) and (13) with the boundary 

conditions (14) and (15)  above numerically using Runge- Kutta fourth order 

method along with shooting technique and implemented on maple 17. The step 

size of 0.001 is used to obtain the numerical solution correct to eight decimal 

places as the criterion of the convergence. 

4. RESULTS AND DISCUSSION 

Numerical calculations have been carried out for different values of the thermo physical 

parameters controlling the fluid dynamics in the flow region.  

Table 4.1: Computations Showing Comparison of the Makinde (2010) and the Present 

Result         

M = Gr = 0 and Pr =0.72 

 

Makinde 2010 Present  Work 

           Bi -θ'(0) θ(0) -θ'(0) θ(0) 

0.05 0.0428 0.1447 0.04276694 0.14466115 

0.10 0.0747 0.2528 0.07472420 0.25275803 

0.20 0.1139 0.4035 0.11929550 0.40352251 

0.40 0.1700 0.5750 0.16999442 0.57501394 

0.60 0.1981 0.6699 0.19805068 0.66991553 

0.80 0.2159 0.7302 0.21586402 0.73016997 

1.00 0.2282 0.7718 0.22817787 0.77182213 

5.00 0.2791 0.9442 0.27913110 0.94417378 

10.00 0.2871 0.9713 0.28714625 0.97128538 

20.00 0.2913 0.9854 0.29132895 0.98543355 

Source: Maple 17 Output 
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Table 4.1 shows the comparison of Makinde’s work (2010) with the present work for Prandtl 

number Pr=0.72 and it is noteworthy that there is a perfect agreement in the absence of Grashof 

number. Table 4.2, illustrates the values of the skin-friction coefficient and the local Nusselt 

number in terms of   ( )and    ( ) respectively, for various values of embedded parameters. 

  

Table4.2: Computational table showing f''(0), -θ'(0) and θ(0) 

Pr M Gr   Bi   f''(0) -θ'(0) θ(0) 

0.72 0.1 0.1 0.1 0.1   0.07803359 0.06842756 0.31572443 

1 0.1 0.1 0.1 0.1   0.07387282 0.07041418 0.29585824 

3 0.1 0.1 0.1 0.1   0.06130059 0.07665015 0.23349847 

0.72 0.1 0.1 0.1 0.1   0.07803359 0.06842756 0.31572443 

0.72 1 0.1 0.1 0.1   0.03481939 0.06023466 0.39765338 

0.72 3 0.1 0.1 0.1   0.02305143 0.05740404 0.42595962 

0.72 0.1 0.1 0.1 0.1   0.07803359 0.06842756 0.31572443 

0.72 0.1 1 0.1 0.1   0.30527486 0.07435471 0.25645289 

0.72 0.1 3 0.1 0.1   0.61823565 0.07792806 0.22071942 

0.72 0.1 0.1 0.1 0.1   0.07803359 0.06842756 0.31572443 

0.72 0.1 0.1 1 0.1   0.07983050 0.06856275 0.31437250 

0.72 0.1 0.1 3 0.1   0.08254355 0.06877520 0.31224801 

0.72 0.1 0.1 0.1 0.1   0.07803359 0.06842756 0.31572443 

0.72 0.1 0.1 0.1 1   0.13602308 0.19344578 0.80655422 

0.72 0.1 0.1 0.1 10   0.15452103 0.24045670 0.97595433 

Source: Maple 17 Output 
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From Table 4.2 and Fig. 4.5, 4.7 and 4.9, it is understood that the skin-friction and the rate of 

heat transfer at the plate surface increases with an increase in local Grashof number Gr, 

electrical conductivity parameter   and convective surface heat transfer parameter Bi . It is also 

observed that for values of Gr > 0 as in Fig.4.6 there is decrease in the temperature profile 

which corresponds to the cooling problem. The cooling problem is often encountered in 

engineering applications; for example, in the cooling of electronic components and nuclear 

reactors. 

 However, in Fig. 4.1 and Fig.4.3, an increase in the fluid Prandtl number Pr and magnetic field 

parameter M decreases the skin-friction but increases the rate of heat transfer at the plate 

surface. This is attributed to the fact that as the prandtl number decreases, the thermal boundary 

layer thickness increases, causing reduction in the temperature gradient .   ( )  at the surface of 

the plate.  

In Fig. 4.2, the temperature gradient reduces at the surface because low prandtl fluid has high 

thermal conductivity, causing the fluid to attain higher temperature thereby reducing the heat 

flux at the surface. Moreover, for such low prandtl number, the velocity boundary layer is 

inside the thermal boundary layer and its thickness reduces as Prandtl number decreases so the 

fluid motion is confined in more and more thinner layer near the surface and experiences 

increase drag (skin-friction) by the fluid. In other words there is more straining motion inside 

velocity boundary layer resulting in the increase of skin-friction coefficient. It is also observed 

from the table that  increase in magnetic field intensity, the skin-friction coefficient and the rate 

of heat transfer decreases near the surface; hence the surface experiences reduction in drag.  

          Generally, Figs. 4.1, 4.3, 4.5, 4.7 and 4.9 show that the fluid velocity is zero at the plate 

surface and increases gradually away from the plate toward the free stream value satisfying 

the boundary conditions. Similarly, Figs 4.2, 4.4, 4.6, 4.8 and 4.10 show that the fluid 
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temperature is maximum at the plate surface and decreases exponentially to zero value far 

away from the plate satisfying the boundary conditions.  

        From these figures, it is important to note that:  

1.   thermal boundary layer thickness increases with an increase with biot numbers iB  and decreases 

with an increase in Grashof number Gr and Prandtl Pr number. Thus, convective surface heat 

transfer enhances thermal diffusion while an increase in the prandtl number which is  an 

intensity of buoyancy force slows down the rate of thermal diffusion within the boundary 

layer. 

2.    fluid velocity increases due to increase or decrease in electrical conductivity parameter while it 

decreases due to magnetic field intensity  

3.    fluid temperature increases due to increase in magnetic field intensity while it decreases due 

increase or decrease in electrical conductivity parameter. 

The Graphs below Show the Velocity Profiles and the Temperature Profiles 

at Various Parameters Values 
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Fig. 4.1 velocity profile for Pr 

 

 
Fig. 4.2 Temperature profile for Pr 
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Fig. 4.3 velocity profile for M 

 

 
Fig. 4.4 Temperature profile for M 

 

Fig. 4.5 velocity profile for Gr 
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Fig. 4.6 temperature profile for Gr 

 

 

 

 
Fig. 4.7 velocity profile for   
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Fig.4.8 temperature profile for   

 

 

 
Fig. 4.9 velocity profile for Bi 
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Fig. 4.10 : Temperature profile for Bi 

 

5.   CONCLUSION 

From the numerical solutions and graphical representations, the combined effects of increasing 

the Prandtl number and the Grashof number tend to reduce the thermal boundary layer 

thickness. Fluid temperature increases due to increase in magnetic field intensity while it 

decreases due to increase in electrical conductivity parameter. Fluid velocity increases due to 

increase in electrical conductivity parameter while it decreases due to increase in magnetic 

field intensity which is in full agreement with the physical phenomenon. 
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