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In this paper we consider the quantization of the time-dependent harmonic oscillator and its
associated Berry phase using the invariant operator method, as well as the occupation number
of the induced quasi-particle production. Furthermore, we point out that in the literature there
exist different methods for determining the solution to the Milne-Pinney equation, which leads to
different results. By measuring the time-dependent occupation number and associated Berry phase,
one can, in principle, determine which of these methods leads to physically realized results. As
a concrete example, we consider the mesoscopic RLC circuit and derive the occupation number
and associated Berry phase for each of these different methods. We find that, the solution to the
Ermakov equations leads to a time-dependent occupation number and associated Berry phase, while
the particular solution to the Milne-Pinney equation does not.

I. INTRODUCTION

Modern electronic material techniques has allowed for the fabrication of small structures, called mesoscopic systems,
with resolution that approaches the atomic scale, on the order of micro- and nanometer. As the devices and circuits
are small enough that the inelastic coherence of the charge carriers approaches the Fermi wavelength, fluctuations
about the average become important and hence the quantum effects of the device and circuit must be taken into
account. A study of a mesoscopic system is usually done by examining an LC circuit [1], which is a non-dissipative
circuit, and its more realistic counter part, the RLC circuit [2-5], which is a dissipative circuit. In this present paper,
we are interested in the quantization of the mesoscopic RLC circuit without source. This system is modeled as a
damped harmonic oscillator which is described by the Caldirola-Kanai Hamiltonian. To quantize the mesoscopic RLC
circuit, we will make use of the quantum invariant method to solve the Schriodingier equation associated with this
Hamiltonian. As is well-known, this system is cyclic in angular frequency 2. When the system is cyclic, there is a
connection between the invariant, which is a constant of motion, and the generalized Berry or geometric phases. The
exact solution to the quantum invariant method, however, depends on the solution to an auxiliary equation, known
as the Milne-Pinney equation, which is a non-linear equation. Due to the non-linear nature of the Milne-Pinney
equation, different methods exist for solving the equation. The methods are: (1) Solving for a particular solution of
the Milne-Pinney equation [10]; (2) for a set of initial conditions, one can solve the Milne-Pinney equation numerically
[13-15]; (3) the Ermakov equations, which give a relationship between the modulus of the damped harmonic equation
for the coordinate and the solution to the Milne-Pinney equation [9, 16]. In general, methods (1) and (3) lead to
different results, however, methods (2) and (3) lead to the same result. Hence, the mesoscopic RLC circuit gives a
venue which can be used to distinguish between the different methods. Additionally, in the Appendix, we construct
coherent and squeezed states for the quantized RLC circuit, as well as evaluate the quantum fluctuations of the charge
and magnetic flux, which gives the uncertainty relation.

The paper is organized as follows. In Section IT A, we derive the invariant operator and wave function for a time-
dependent harmonic oscillator. In addition, we note that the Ermakov equations allow for the exact solution of the
Milne-Pinney equation. In Section II B, we derive the occupation number of the induced quasi-particle that is induced
due to the time-dependent nature of the system. In Section II C, we show that the Lewis phase can be decomposed
into a generalized Berry (or geometric) phase and derive the Berry phase for the time-dependent harmonic oscillator.
In Section III, we quantize the mesoscopic RLC circuit, described by the Caldirola-Kanai Hamiltonian, by use of the
quantum invariant. Here, we consider the particular solution to the Milne-Pinney equation as well as the solution
to the Ermakov equations. Most importantly, we show that the solution to the Ermakov equations leads to a time-
dependent occupation number, as well as an associated Berry phase, while the particular solution to the Milne-Pinney
equation leads to a time-independent occupation and no associated Berry phase. In Section IV, we conclude the paper
with a short summary. Finally, even though these states are not germane to the Berry phase, in Appendix A we
derive the coherent states, expectation value of the coordinate and the uncertainty of the time-dependent harmonic
oscillator for completeness. Here, we show that the coherent states are indeed squeezed states.



II. TIME-DEPENDENT HARMONIC OSCILLATOR
A. Quantization

Before we quantize the mesoscopic RLC circuit, we will first quantize the time-dependent harmonic oscillator, that
has both a time-dependent mass and frequency, using the invariant operator method. This will allow us to obtain the
wave functional and discuss the generalized Berry phase associated with the oscillator. Throughout the text, we will
set h = 1.

To consider the quantization of a time-dependent harmonic oscillator, we will consider a general time-dependent
harmonic oscillator equation!
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where p is the conjugate momentum to the coordinate g, M(t) is a time-dependent mass, and w(t) is a time-dependent
frequency. In quantizing the time-dependent harmonic oscillator, we will work in the Heisenberg picture?. We can
diagonalize the Hamiltonian at all moments of time by defining the new operators
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which satisfy the commutation relation [a,af] = 1, as well as the Heisenberg equation
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Let’s first make some observations about (3). In (3), the second term is the usual time-evolution of an operator in
the Heisenberg picture, while the first term describes the moment to moment redefinition of the notion of what the
operator, and hence the quasi-particle, is for every moment ¢. The ground state associated with these operators is
defined by a|0), = 0 and leads to the normalized wavefunctional
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which is just the harmonic oscillator ground state wavefunctional.
Alternatively, one can use the invariant operator method to study the time-dependence of the quantum system

[6, 7]. In this method, one defines a Hermitian invariant operator that satisfies the operator equation
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which has real, time-independent, eigenvalues. For our purposes, the invariant operator may be decomposed in terms
of two linear invariants given as
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which satisfy the commutation relation [¢, c!] = 1, where p is the real solution to the auxiliary equation, known as the
Milne-Pinney equation,

1 This is not the most general time-dependent harmonic oscillator equation, since the most general equation involves terms that involve
products of the conjugate momentum and the coordintate.

2 We could equally well work in the Interaction picture. Here the creation operator defined in (2) is related to the creation operators in
the Interaction picture in the usual manner

a(t) = a(t) exp [fi/tt w(t’)dt’] .
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where
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In terms of the operators ¢ and cf, the Hermitian quadratic invariant operator is then given by I(t) = (cTc + %) The
ground state associated with these operators is defined by ¢|0). = 0 and leads to the normalized wavefunctional
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where ag, known as the ground state Lewis phase, is defined by

dao
dt

Using (6) and (7), one can then easily show that the phase is given by

= (00 — H|0),, (7)
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Using (6), the exact solution of the Schrédinger equation for any state is given by
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where H,,(z) are the Hermite polynomials and
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which is known as the Lewis phase.
Here, we note that the invariant operator ground state, |0)., is distinct from the harmonic oscillator ground state,
|0)4, in that the operators a and ¢ are related through aBogoliubov) transformation [§]

a = p(t)e + v, (10)
where
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are the Bogoliubov coefficients. That is, the transformation (10) is between two different Fock space basis at equal
times, not between the same basis at different times. Here we note that at the initial time ¢t = to, u(t = tp) = 1 and
v(t =tp) = 0 and the Bogoliubov transformation satisfies

(@ = @) =1 (12)

for all time ¢. Thus, from (10) and (12), we can also see that at the initial time, a = ¢ and ¥(q,t = to) = ¢(q) so
that the operators for the two methods are equivalent and the ground states are equivalent at the initial time and
thus there is no mixing at the initial time.

From (8) and (9), we can see that in order to quantize the time-dependent harmonic oscillator, one must solve for the
auxiliary equation (5). The non-linear nature of (5), on the other hand, suggests that it must be solved numerically.
Alternatively, one can choose to consider a particular solution of the Milne-Pinney equation [10]. However, using the
Ermakov equations [9], the relationship between the time-dependent amplitude q and p is given by q = pe~%, where
v satisfies the differential equation

dy A

dt — Mp?

From (1), the time-dependent amplitude of the coordinate satisfies the equation of motion

d2q dq 2
i} 1 =0. 1
dt2+0dt+wq 0 (13)

Hence, one can instead solve the linear equation (13) and use the fact that p =|q].
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B. Occupation Number

An interesting quantity to consider is the number of quasi-particles that are induced as a function of time. The
occupation number of quasi-particles created during the time of oscillation then amounts to determining the number
of a particles in the ground state® |0)..:

N = c(0la%a|0)e = [v(t)|*. (14)

Using (11), it is then easy to show that the spectrum of instantaneous excitations from (14), is given by
Muwp? 1 \? 1 dp\?
N(w,t) = 1—-—— —_—— . 15
(w,?) 4 l( wa2> Y (15)

C. Berry Phase

From the structure of the Lewis phase (9), we can see that the Lewis phase actually consists of two parts

day, .
— = de(n|d n)e — c(n| H|n).
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where the first term in (16) is the well-known generalized Berry phase in the adiabatic limit and the second term is the
dynamic phase of a time-dependent system. In general, the Berry phase is a real quantity, which leads to physically
measurable results. Using (8), we can determine the Berry phase to be

dOzB . 1 1 2 2 .2
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Now, assuming that the invariant I(t) is T-periodic and that its eigenvalues are nondegenerate, then the eigenstates
of the dynamical invariant satisfy ¢(q,T) = ¢(q,0). Thus, the Berry phase for an arbitrary state becomes

1 1 1
ap = — + = d — Mp?w? — Mp*) . 1
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III. MESOSCOPIC RLC CIRCUIT

Let us now consider the quantization of the mesoscopic RLC circuit using the invariant operator method. We will
quantize the mesoscopic RLC circuit using two different choices for the solution to the auxiliary equation: The first
solution will be determined by solving the Ermakov equations and the second solution will be to choose a particular
solution to the Milne-Pinney equation. We can then compare the two solutions and point out differences in each in
terms of the instantaneous occupation number and the Berry phase.

The classical Hamiltonian associated with the RLC circuit, which is known as the Caldirola-Kanai Hamiltonian
[11, 12], is given by

2 1
H(t) = eth/Lﬁ + ieRt/LLwQQQ, (18)

where ¢ is the charge, ® is the magnetic flux (which is the conjugate momentum to the charge, p = ® = L%)7 Lis

the inductance, R is the resistance, and w? = 7 is the frequency (C is the capacitance). (Comparing (18) with (1);

we can see that the structure of the Carirola-Kanai Hamiltonian is that of a time-dependent harmonic oscillator with

3 Equivalently one can consider the number of ¢, particles in the ground state |0)4.
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a time dependent mass; identified as M () = Le®/ ' and constant frequency: From (13) and (18), we can determine
the equation of motion for the charge to be*

q(t) = Be /2L gin(Qt + 6),

2
where B and # are constants to be determined by initial conditions and Q2 = w? — (%)
We can now determine the solution to the auxiliary equation p. From the Ermakov equations, the auxiliary equation

is then given by

L
pE = |q| = Ae B 2L in(Qt + 0) = A4/ 77 Sn(Qt +0). (20)
From [5], a particular solution to the Milne-Pinney equation is given by

1
=4/ —. 21
pp 7 (21)
From (20) and (21), one can then determine the wave functional (8), coherent states, and the uncertainty product
for the coherent states (A2) for each of the two cases. However, as stated above, we are mostly interested in the
occupation number and the Berry phase.

A. Occupation Number

Using (20) and (15), we can determine the occupation number associated with the solution to the Ermakov equations
to be

1 , (R — 2L cot (U + 0))2 1 2
Ng(w,t) = ~B*LQsin?(Qt + 0 —1 22
Blw,t) =7 sin”(Q2 +6) 40202 T\ BLasni 1) ’ (22)

which is an oscillatory function of time. Hence, the number of quasi-particles present varies over time, but repeats
itself from period to period, with a period of T' =

4 Interestingly, we can redefine the amplitude ¢(t) as x = v/ Mg, so that we may rewrite (13) as

d?x o2
ﬁ‘f' Hx =0, (19)
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Now, using our definition of M, we can then write the angular frequency as
1R? 1R?
~2 2
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C=w stz
2
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hence the angular frequency is simply equal to a constant. Of course, this is to be expected since the general solution to (19) with
constant angular frequency is
X = Dsin(Q2t + 0),

since the solution is just that of a harmonic oscillator. Transforming back to g, we then have

q= ?VI sin(Qt + 0) = AeFt/2L 5in(Qt + ),

where A =

Sk


ericgreenwood
Highlight


Using (21) and (15), we can determine the occupation number associated with the particular solution to the Milne-
Pinney equation to be

R2

NP(w) = 16L2927

(23)
which is constant in time. That is, regardless of the time, the number of induced quasi-particles stays the same
regardless of the time.

Therefore, if we measure the occupation number of the induced quasi-particles that are produced over one-period
of oscillation for the RLC circuit, we can then provide a direct insight into the time-dependence of the harmonic
oscillator and the method to use to determine the solution for the auxiliary equation.

B. Berry Phase

From (17), one may also determine the Berry phase for the mesoscopic RLC circuit for each of the two cases. Using
(20), we can determine the Berry phase associated with the solution to the Ermakov equations to be

1\ 2B2Lrw?
= - —. 24
aB,E (n + 2) q (24)

Hence, there is an associated Berry phase with the solution to the Ermakov equations. Moreover, notice that in the
limit the resistance goes to zero, hence the system reduces to that of a mesoscopic LC circuit, (24) reduces to

1
OB E = (n + 2) 2nwL B?

1 | L
= Z)2rB? —;
(n + 2) ™ C
that is, even the mesoscopic LC circuit has an associated Berry phase.

Using (21), we can then determine the Berry phase associated with the particular solution to the Milne-Pinney
equation to be

app =0, (25)

hence there is no associated Berry phase since the system is not periodic.

Thus, just like in the case of the occupation number, we can in principle use the Berry phase to establish the
auxiliary equation for the time-dependent system; that is, by measuring a Berry phase one can establish if one must
use the Ermakov equations to solve for the solution to the auxiliary equation or use the particular solution to the
Milne-Pinney equation or some other method.

C. Numerical Results

We can put these results into more context by considering typical values of the resistance, capacitance and inductance
used in mesoscopic RLC circuits [17, 18]. With inductance of 150 nH, resistance of 360 2, capacitance of 166 fF, and
initial amount of charge B = 1.66 pC (with 6 = 0), so that 2 = 6.22 x 10° rad/s (period of T = 1.01 ns), we plot the
occupation number associated with the solution to the Ermakov equation (blue curve), as well as its root-mean-square
value (green curve), and the occupation number associated with the particular solution to the Milne-Pinney equation
(red curve) for one period in Fig. 1. The Berry phase associated with the solution to the Ermakov equation is then

app =823 x1072%

IV. CONCLUSION

In this paper, we investigated the quantization of a general time-dependent harmonic oscillator using the instanta-
neous diagonalization and invariant operator methods and showed that these two methods are related by aBogoliubov
type transformation. We also constructed the occupation number for the induced quasi-particles that are produced
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FIG. 1: Here we plot the occupation number (15) vs. time for both (22) (blue curve), as well as its root-mean-square value
(green curve), and (23) (red curve).

at any moment in time. Finally, we showed that the Lewis phase may be decomposed into a dynamic phase and the
well-known Berry phase in the adiabatic limit. Furthermore, if the invariant operator is T-periodic, the Berry phase
is the integral over the period of a single oscillation, (9). In order to determine the exact solution of the Schrédinger
equation and the Berry phase, one must first determine the solution of the auxiliary equation, which, in general, is
a non-linear differential equation. In the literature, there are different methods for handling such a non-linear differ-
ential equation. One such method is to consider a particular solution of the Milne-Pinney equation. Another is, for
a set, of initial conditions, to solve the auxiliary equation numerically. Finally, using the Ermakov equations, one can
determine the solution by solving a much simpler equation for the time-dependent coordinate and then use the fact
that the auxiliary solution is related to the time-dependent coordinate by taking the modulus of the time-dependent
coordinate. Measurement of the instantaneous occupation number and associated Berry phase will, in principle, give
a method for determining the appropriate method for solving the auxiliary equation.

As a concrete example, we consider the mesoscopic RLC circuit, which is described by the Caldirola-Kanai Hamilto-
nian. The Caldirola-Kanai Hamiltonian has a time-dependent “mass” term, represented as an exponentially increasing
inductance, and a constant angular frequency. First, we showed that the solution to the Ermakov equations leads to
a time-dependent quasi-particle occupation number (22), while the particular solution to the Milne-Pinney solution
leads to a time-independent quasi-particle occupation number (23). Next, we showed that the solution to the Ermakov
equations leads to an associated Berry phase, (24), however, the particular solution to the Milne-Pinney solution leads
to no associated Berry phase, (25).
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Therefore, measurements of the occupation number and associated Berry phase, can, in principle, lead to a direct
method for determining the appropriate method for determining the solution to the auxiliary equation.

Appendix A: Coherent and Squeezed States

Even though the coherent and squeezed states are not necessary for our purposes of deriving the generalized
Berry phase for the time-dependent harmonic oscillator, and hence the mesoscopic RLC circuit, they are germane to
quantization of the time-dependent harmonic oscillator. Therefore here, we construct coherent states for the quantized
time-dependent harmonic oscillator for completeness. Let us define the annihilation and creation operators of the
time-dependent harmonic oscillator as

1 1
b=\/7{pp—iq], bT:\[[ppﬂ'q}y
2 P 2 p

where [b,b'] = 1, so that the invariant operator may be written as I’ = (bb+ ). The coherent states associated
with I’ are then

ot) = 10225 B iy ()
palot) 3 T )

where ( is an arbitrary complex number. The coherent states for the time-dependent harmonic oscillator are given
by

These states must satisfy the eigenvalue equation
cdp(q,t) = a(t)dp(q, 1), (A1)
where ¢ and b are related by
c=u'vu.

Thus, the invariant operator takes the form I = (cTc + %) as above.
We can now consider the expectation value of the coordinate ¢ in the state ¢g(q,t). Here, we find that the
expectation value of the coordinate is given by

{q) = V2|B*psin(aot + )

where ¢ is the argument of 8. The uncertainty product is given by,

(Aq)(Ap) = 3/ T+ M2, (A2)

From (A1), (11) and (12), we can see the states ¢g(g,t) are in fact the well-known squeezed states. In terms of the
Bogoliubov coefficients, the quantum fluctuations in ¢ and p in the squeezed states may be written as

1

Mw
— o 2 A 2: 2
o m vl (Bp) = —=lu+ vl

(Ag)?

and hence the uncertainty product takes the form

1
(Aq)(Ap) = 5lu —vllp+ v,

which is the same as in (A2).
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