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ABSTRACT  
 
A linear thermoelectric generation of a fundamental acoustic wave in organic conductors with two 
conducting channels, quasi-one dimensional (q1D) and quasi-two dimensional (q2D), is analyzed 

theoretically. Specifically, the case when an acoustic wave with a fundamental frequency ω is 

generated along the most conducting axis of the multi-band organic conductor α-(BEDT-

TTF)2KHg(SCN)4 is considered. The magnetic field and angular dependences of the wave amplitude 
for two boundary conditions, isothermal and adiabatic are obtained. Findings show that the wave 
amplitude for the isothermal boundary is much larger than the one for the adiabatic boundary 
although there is a heat flux through the conductor's surface in the former. This is completely different 
compared to the case of a wave generated along the least conducting axis and the possible reasons 
behind this behavior are discussed. The angular oscillations of the fundamental wave amplitude are 
associated with the charge carriers motion on both the cylindrical part and quasi-planar sheets of the 
Fermi surface in a tilted magnetic field. The changes in the wave amplitude with the field orientation 
are correlated with the corresponding angular changes in the in-plane thermoelectric coefficient and 
thermal conductivity. Following the magnetic field behavior of both the in-plane electromagnetic and 
thermal skin depth we find that the wave generation and propagation in the plane of the layers are 
determined mainly by the thermal wave as its skin depth is thousand times larger than the one of the 
electromagnetic wave. It is shown that both the q1D and q2D charge carriers contribute to the 
observation of the effect but the group of charge carriers with a q1D energy spectrum is significantly 
dominant in the generation of the fundamental acoustic wave in the plane of the layers. 
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1. INTRODUCTION  
 
Crystalline organic conductors have been among the most exciting objects in solid state physics and 
chemistry over the last two decades, providing a laboratory not only for studying virtually all the 
ground states known in condensed matter physics but also for discovering new ones. The organic 
conductors based on the bis(ethylenedithio)tetrath-iafulvalene molecule (BEDT-TTF, or, shorter, ET) 
have initially attracted attention due to the discovery of the ambient pressure superconductivity in a 

layered cation radical salt β-(ET)2I3 [1]. Further extensive efforts on the synthesis and studies of new 
salts of ET and its derivatives gave rise to a new generation of quasi-two-dimensional compounds [2] 
with properties ranging from magnetic dielectric to superconducting, depending on the chemical 
composition and external conditions such as temperature, pressure and magnetic field. 
 
In organic conductors large variations in the magnetoresistance are observed as the direction of the 
magnetic field is varied and are referred to as angular-dependent magnetoresistance oscillations 
(AMRO) [3]. These effects in quasi-one-dimensional systems are known as Danner [4], Lebed [5, 6], 
and third angular effects [7, 8], depending on whether the magnetic field is rotated in the ac, bc, or ab 
plane, respectively. (The a and c axes are the most- and least-conducting directions, respectively). 
Oscillations in quasi-two-dimensional systems include the Yamaji [9] oscillations and the anomalous 
AMRO in the low-temperature phase (LTP) of two-band organic conductors α-(BEDT-
TTF)2MHg(SCN)4 [M=K, Rb, Tl] [3]. The family α-(BEDT-TTF)2MHg(SCN)4 [M=K, Rb, Tl] are of 
particular interest because they have a rich phase diagram and coexisting quasi-one dimensional and 



 

quasi-two dimensional Fermi surface (FS) [10, 11]. Metallic, superconducting, and density wave 
phases are possible, depending on temperature, pressure, magnetic field, and anion type. At ambient 
pressure, the family with M=K, Rb, Tl undergo a transition from a metal to a charge density wave 
(CDW) phase at a temperature TCDW=8 [12], 10 [13], and 12 K [14], respectively. On passing through 
the "kink-field" transition at Bk=23 T (for M = K), the CDW is removed and is replaced by a metallic 
phase with a FS consisting of a quasi-two dimensional (q2D) hole cylinder, known as the α pocket, 
and a pair of quasi-one dimensional (q1D) electronic sheets [15, 16]. The low-dimensional character 
of the organic conductors leads to important consequences in their response to a magnetic field. In 
fact, numerous drastic deviations from the conventional three-dimensional behavior and even 
qualitatively new effects, in particular related to the field orientation, have been found in these 
materials (see Ref. [17]). 
 
Generation of acoustic oscillations in solids by an electromagnetic wave can occur in a linear regime, 
when the frequency of the incident wave is equal to the frequency of the excited wave, and in a 
nonlinear regime, when the frequency of the excited elastic waves is a multiple of the frequency of the 
electromagnetic wave. In materials that are good conductors, both linear and nonlinear 
electromagnetic excitations of ultrasound occur as a result of interaction of the electromagnetic wave 
with the conduction electrons. 
 
The mechanisms of linear transformation, which are responsible for the generation of high-frequency 
acoustic waves in conducting media at the frequency ω  of an electromagnetic wave incident on the 

surface of the metal, are a standard subject of investigation in electromagnetic-acoustic conversion 
problems. The induction [18-21] and deformation force [22-27] have been studied in greatest detail as 
sources of linear generation of acoustic waves, i.e., fundamental wave generation with frequency .ω  

Apart from the induction and deformation forces, longitudinal acoustic waves at fundamental 
frequency can also be generated by thermoelectric forces [28-31]. In conducting media, the 
mechanism occurs as follows: when an electromagnetic wave with frequency ω  is incident on the 

conductor, nonuniform temperature oscillations of the same frequency appear as a result of the 
thermoelectric effect. These oscillations, in turn, generate acoustic oscillations in the conductor with a 
frequency ω  that coincides with the frequency of the incident electromagnetic wave (contactless 

acoustic wave generation). 
 
The purpose of the present work is to study the magnetic field and angular dependence of the 

amplitude of a fundamental high-frequency acoustic wave )Hz10(
9=ω  generated through linear 

thermoelectric effect in the metallic phase of organic conductors with two conducting channels, quasi-
one dimensional (q1D) and quasi-two dimensional (q2D). By far, this phenomenon has been 
considered in organic conductors with only q2D group of charge carriers [32] and in two-band organic 
conductors for an acoustic wave that is generated along the least conducting axis, −z axis [33]. The 
present work analyzes the generation of a high-frequency acoustic wave in two-band organic 
conductors along the most conducting −x axis. The results obtained show that the amplitude of the 

fundamental acoustic wave is by far larger than the one of a wave that is generated along the least 
conducting axis. In addition, for generation along the most conducting axis the amplitude of the 
fundamental wave for the isothermal boundary is always larger than the one for the adiabatic 
boundary although there is a heat flux through the conductor's surface in the former. We suggest that 
the distinct behavior of the fundamental wave for both geometries is correlated with the high 
magnetotransport anisotropy in these materials. The changes in the amplitude of the induced acoustic 
wave with the magnetic field orientation are associated with the angular dependent changes in both 
the in-plane thermoelectric coefficient and thermal conductivity. The period of angular oscillations of 
the acoustic wave generated along the layers is half the period of angular oscillations of the wave 
generated across the layers indicating that generation of a fundamental acoustic wave in the plane of 
the layers is significantly affected by the q1D charge carriers. In highly anisotropic organic conductors 
due to the small electron mean free-path the thermoelectric generation of high-frequency fundamental 
acoustic waves can be observed in a wide range of fields and angles providing possibilities for 
experimental studies using non-contact ultrasonic techniques. Such studies will give new insights into 
the unusual electronic properties of these systems. 

 
 



 

2.  LINEAR FUNDAMENTAL ACOUSTIC WAVE GENERATION: FORMULATION OF THE 
PROBLEM 

 
A high-frequency fundamental acoustic wave with frequency ω  is generated as a result of 

temperature oscillations which are induced by an electromagnetic wave with the same frequency. 

Here we consider a case when an electromagnetic wave )0,,0( yE=E  with frequency ω is incident 

normally on the conductor’s surface along the most conducting axis ( −x axis), )0,0,(k=k of a multi-

band organic conductor. In that case, the only nonzero component of the current density is the 

−y component, ).0,,0( yj=j  The fundamental wave is generated and propagating along the most 

conducting axis ( −x axis), and therefore all of the quantities depend only on the −x component. The 

conductor is placed in magnetic field oriented at an angle θ  from the normal to the plane of the 

layers, in the xz  plane, ).cos,0,sin( θθ BBB =  A temperature oscillating with frequency ω  occurs 

only if the condition 1<<ωτ  is satisfied, where τ  is the relaxation time of the conduction electrons. 

We study the case of a normal skin effect when the condition ,1<<lkT  where l  is the electron mean-

free path length and Tk  is the thermal wave number, is fulfilled. 

 

2.1 System of equations. Calculation of the temperature distribution )(xΘ  

 
The complete system of partial differential equations, describing the generation of longitudinal 

fundamental wave at frequency ω  includes Maxwell's equations for the magnetic B  and electric 

E field, the kinetic equation for the nonequilibrium correctionΨ  to the electron distribution function 

)(0 εf , and the equations of heat conduction and the theory of elasticity for ionic displacement 

)0,0,( ωU=U : 
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Here 0µ  is the magnetic permeability of the vacuum, v  and p  are the electron velocity and 

momentum, e  is the electron charge, Q  is the heat flux, Θ  is the high-frequency addition to the 

mean temperature T of the crystal, µ  is the chemical potential, C  is the volumetric heat capacity, Bk  

is the Boltzmann constant, ikα  is the thermoelectric coefficient, ikκ  is the thermal conductivity, ρ is 

the density of the crystal, ikδ  is the Kronecker delta, s  is the fundamental acoustic wave velocity and 

β  is the volumetric expansion coefficient. 2/)//( lmmllm xUxUU ∂∂+∂∂=  is the deformation tensor 

and iklmλ  are components of the elastic tensor of the crystal. The subscripts in U  and x  describe the 

wave polarization and direction of wave propagation, respectively. The wave is taken to be 
monochromatic, so the differentiation with respect to the time variable is equivalent to multiplication by 

).( ωi−   

 
For the given geometry the above system of equations (2.1-2.4) takes the following form 
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Here Bt  is the time of motion of the conduction electrons in a magnetic field under the influence of the 

Lorentz force with a period cpT ωπ /2=  and cyclotron frequency .*/cos meBc θω =  xxκ  and xyα  are 

the in-plane thermal conductivity and thermoelectric coefficient and sq /ω= is the acoustic wave 

vector. 
 
The above system of equations must be supplemented with the corresponding boundary conditions 
for the temperature distribution and fundamental acoustic wave amplitude at the conductor’s surface. 
Two types of boundary are considered, isothermal and adiabatic for which the boundary conditions 
are defined as follows: 
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By using Maxwell’s equations one obtains the following expression for the current density  
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where EE ik δ/)1( +=  and 
2/1

0 )/2( ωµρδ yyE =  are the wave vector and skin depth of the 

electromagnetic field, respectively. 
 
Substituting eq. (2.11) into the heat conduction equation (2.7) we obtain the following partial 
differential equation for the temperature distribution within the conductor  
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where TT ik δ/)1( +=  and 
2/1)/2( CxxT ωκδ =  are the wave vector and skin depth of the thermal field 

under the conditions of a normal skin effect.  
 
Crucial part in further theoretical analysis is to obtain the solutions of the eq. (2.12) and substitute 
them in the eq. (2.8) for the amplitude of the generated fundamental acoustic wave to be determined. 
The linear acoustic wave generation due to thermoelectric effect, i.e., generation of an acoustic wave 
with fundamental frequency ,ω  can be observed only when the coupling between the electromagnetic 

and temperature oscillations is weak, i.e., when the parameter )/( 2
xxyyxyBTka κρα=  that determines 



 

the coupling between the two oscillations is much smaller than 1, .1<<a  In that case, the 

temperature distribution that results from the oscillations of the current density j  can be determined. 

 
Using the boundary conditions for the temperature (eq. (2.9)) the following solution for the 
temperature distribution within the conductor is obtained 
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where b  is 1 for an isothermal boundary condition, and ET kk /  for an adiabatic boundary condition. 

 

2.2 Calculation of the fundamental acoustic wave amplitude )(xUω  

 

By substituting the obtained expression for the temperature distribution )(xΘ (eq. (2.13)) and using 

the boundary conditions for the wave amplitude (eq. (2.10)) into the equation of the theory of elasticity 
(2.8), calculations yield the following expressions for the complex amplitude of the fundamental 
acoustic wave excited by the temperature oscillations for both the isothermal and adiabatic boundary: 
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The components of the conductivity tensor which relate the current density to the electric field can be 
calculated by using the Boltzmann transport equation for the charge carrier distribution function, 
based on the tight binding approximation band structure within the single relaxation time 
approximation τ  (eq. (2.6)) [34]. The components of the electrical conductivity and thermoelectric 

tensor are determined as follows 
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Here h  is the Planck’s constant divided by ,2π  constcossin =+= θθ zxB ppp  is the momentum 

projection in the magnetic field direction. 
 

We shall assume that the velocities 1v±  of the electrons belonging to the plane sheets of the FS, i.e., 

the q1D group of charge carriers are predominantly oriented in a direction determined by an angle φ  

so that their velocities are ,cos11 φvv x ±=  φsin11 vv y ±=  and the dispersion law for the charge 

carriers belonging to a weakly warped FS cylinder has the form 
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where *m  is the electron cyclotron effective mass, η  is the quasi-two dimensionality parameter, Fv  

is the characteristic Fermi velocity of the electrons along the layers and c  is the lattice constant. 



 

We shall assume that the angle  of deviation of the magnetic field from the direction normal to the 

layers is not too close to 2/π  so that all orbits of electrons with a quadratic dispersion law are closed 

and do not contain self-intersections. The components of the conductor’s kinetic coefficients ijσ  are a 

sum of the contributions of quasi-one dimensional q1D and quasi-two dimensional q2D charge 
carriers, which are calculated using the eq. (2.16). Specifically, the following expressions are obtained 
for the components of the conductivity tensor  
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Here 1σ  and 2σ  are the contributions to the electrical conductivity along the layers with 0=B  of q1D 

and q2D group of charge carriers, Fp pD 2=  is the averaged diameter of the FS along the −xp  axis, 

0J  is the zeroth order Bessel function and ./* τγ em=  

 
In −τ approximation, it is suffcient to calculate the components of the electrical conductivity tensor 

and the rest of the kinetic and thermoelectric coeffcients, describing the heat flux and thermoelectric 
effects, are obtained as follows 
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3. RESULTS AND DISCUSSION 
 
3.1 Angular oscillations of the fundamental acoustic wave (AOFAW) 
 
The amplitude of the generated acoustic wave with fundamental frequency due to thermoelectric 

effect is a function of the frequency of applied electric current ,ω  the magnetic field ,B  the angle 

between the normal to the layers and the magnetic field θ as well as of the kinetic and thermoelectric 

characteristics of the conductor: electrical and thermal conductivity as well as the thermoelectric 

coefficient. For the multi-band organic conductor α−(BEDT-TTF)2KHg(SCN)4 the cyclotron mass 



 

extracted from data on magnetic quantum oscillations is emm 5.3* =  ( em  is the free electron mass) 

and the relaxation time is of the order of s102 12−×=τ  [17]. We assume that the q1D plane sheets 

and q2D FS cylinder are not strongly corrugated and the quasi-two dimensionality parameter is of 

order .01.0=η  

 
The angular oscillations are characteristic of the kinetic and thermoelectric coefficients of layered 
organic conductors and do not occur in isotropic metals. Since the amplitude of the acoustic wave is 
determined by both the kinetic and thermoelectric coefficients angular oscillations of the amplitude of 
the generated fundamental acoustic wave are expected to emerging when a constant magnetic field 
is turned from the direction normal to conducting layers toward the plane of the layers. The angular 
oscillations are associated with the charge carriers motion on both the cylindrical part and quasi-
planar sheets of the FS in a tilted magnetic field. The existence of points at which the interaction with 
the wave is most effective on different trajectories leads to a resonant dependence of the acoustic 

wave amplitude on magnetic field B  and the angle between the normal to the layers and magnetic 

field .θ  Resonant oscillations of the amplitude ωU  on the tangent of the angle between the normal to 

the layers and magnetic field for both the isothermal and adiabatic boundary at K,30=T  T6.0=B  

and 
085=φ  are shown in Fig. 1. The amplitude )(tanθωU  exhibits giant oscillations as the value at 

the peaks is much larger (about two times larger) than the one at the minimum. The angular 
oscillations of the fundamental wave are observed when the field is tilted close to the plane of the 

layers, i.e., for )82(7tan 0>> θθ  as expected since we consider a wave generation in the plane of 

the layers. The amplitude of the wave increases very fast with tilting the angle towards the plane of 

the layers, i.e., towards the −x axis, in proportion to 
4)(tanθ  since 

ai
U

,
ω ∼ xxxyκα ∼ .)(tan 4θ  In 

addition, with tilting the field from the −z axis, the drift of charge carriers along the −z axis, ,zv  

decreases but the drift along the −x axis, ,tanθzx vv =  is rather large at angles close to .90
0=θ  

 

 
 

Fig. 1. Angular oscillations of the fundamental acoustic wave amplitude ωU  in the plane of the 

layers for isothermal (blue curve) and adiabatic (red curve) boundary at K,30=T  

0.01,=η T0.6=B  and .0
85=φφφφ  The dashed lines indicate the positions of the maxima 

ai,
ωU max,  

and minima
ai,

ωU min,  of the wave amplitude for both boundaries. 

 
An important feature to emphasize is that the amplitude of the fundamental wave for the isothermal 
boundary is larger than the one for the adiabatic boundary although there is a heat flux through the 
conductor's surface in the former. Our suggestion is that the reason for this behavior is the larger 
adiabatic resistivity in the case of a fundamental acoustic wave generated along the layers. In fact, 



 

when the thermoelectric coefficient is not too small (as in the case of the in-plane thermoelectric 

coefficient xyα ), a distinction must be made between isothermal iρ  and adiabatic aρ  resistivities, 

i.e., )./1( 2
xx

i
xyB

ia
Tk κραρρ +=  Due to the larger resistivity in the adiabatic case the fundamental 

wave generated under the conditions of adiabatic boundary is more strongly attenuated than in the 
isothermal case.  
 

The minima in the )(tanθωU  dependence correspond to the zero amplitude of the fundamental 

acoustic wave and their positions coincide with the positions of the zeros in the angular dependence 

of the in-plane thermoelectric coefficient )(tanθα xy  as shown in Fig. 2. The in-plane thermal 

conductivity is negative in the whole range of angles which indicates that the in-plane conductivity is 

also negative as xxκ ∼ xxσ  implying that the dominant carriers in the fundamental wave generation are 

the electron-like carriers, i.e., the q1D group of charge carriers. This is expected as in the multi-band 

organic conductor α−(BEDT-TTF)2KHg(SCN)4 the q1D charge carriers drift mainly along the −x axis 

and this is the direction along which the wave is generated.  
 

 
 

Fig. 2. Angular positions of the fundamental acoustic wave amplitude ωU  for isothermal 

boundary (blue curve), in-plane thermoelectric coefficient xyα  (green curve), in-plane thermal 

conductivity xxκ  (red curve) and the term xxxyκα  (black curve) at K,30=T  0.01,=η  

T0.6=B  and .0
85=φφφφ  The dashed lines indicate the positions of the peaks of the amplitude 

ωU  and in-plane thermal conductivity .xxκ  

 

The in-plane conductivity xxσ  is determined by the interlayer conductivity zzσ  (eq. 2.19) and the 

direction of the q1D charge carriers φ in the plane of the layers. When 1tan >>θ  electrons may 

execute many orbits before dephasing, resulting in the resonance. In that case, the first term in eq. 

(2.19) for the in-plane conductivity xxσ  is dominant. It follows from eq. 2.(19) that when h/tanθpcD  

equals a zero of the zeroth-order Bessel function, then at that angle the electrical conductivity along 

the less conducting axis, ),(θσ zz  will be negligible and consequently the in-plane conductivity )(θσ xx  

vanishes at the same angle. These are known as Yamaji angles [9]. If 1/tan >>hθpcD , then the 

zeros in )(θσ xx  and )(θκ xx  occur at angles ,min
nθθ =  given by ),4/1(/tan min −= ncD np πθ h  

...3,2,1,0=n  For )(θσ xx  and )(θκ xx  to be a maximum it should be ,max
nθθ =  where 

).4/1(/tan max += ncD np πθ h  The positions of the peaks in the )(tanθωU  dependence do not 

coincide with the position of the maxima of the thermal conductivity as seen in Fig. 2. Instead, their 



 

positions coincide with the positions of the extremes of the term  )(tanθκα xxxy  as expected since this 

term is the one that determines the field and angular behavior of the wave amplitude. The term  

xxxyκα  shows resonant like behavior which is existence of two close to each other extremes, with 

sign change at angles that correspond to the angles where the in-plane thermal conductivity has 

maximum or minimum, ., minmax
nn θθθ =  This, in turn, reflects as appearance of two close maxima in 

the )(tanθωU  dependence. In the vicinity of angles ,max
nθθ =  the drift velocity xv  of charge carriers 

along the acoustic wavevector coincides with the velocity s  of the acoustic wave, and their interaction 

with the wave is most effective. As a result, at these angles the amplitude is the largest (especially 

this trend is apparent for 1tan >>θ ) and )(tanθωU  exhibits giant oscillations. The narrow peaks that 

appear in the )(tanθωU dependence repeat with a period pcD/2)(tan hπθ =∆  which is the same as 

the period of oscillations of the in-plane thermal conductivity )(tanθκ xx  as evident from Fig. 2. This is 

different from the case of an organic conductor with only q2D charge carriers where the period of the 
acoustic wave amplitude generated along the least conducting axis is half the period of angular 

oscillations of the inverse interlayer conductivity )(tan1 θκ −
zz  [32]. This indicates that the presence of 

group of charge carriers with a q1D energy spectrum significantly affects the generation of the 
fundamental acoustic wave in the plane of the layers. 

 

3.2 Magnetic field dependence of the fundamental acoustic wave amplitude 
 
Fig. 3 shows the magnetic field dependence of the amplitude of the generated fundamental acoustic 

wave in α−(BEDT-TTF)2KHg(SCN)4 for both the isothermal and adiabatic boundary at 
0

85=θ and 

.890=φ  

 

 
 

Fig. 3. Magnetic field dependence of the fundamental acoustic wave amplitude )(BUω  for 

isothermal (blue curve) and adiabatic (red curve) boundary at K,30=T  0.01,=η  
0

85=θθθθ and 

.0
89=φφφφ  The dashed lines indicate the 

4−B  field dependence of the wave amplitude for both 

boundaries. The inset shows the magnetic field dependence of xxxyκα  (red dashed curve) 

compared to )(BUω  (blue solid curve). xxxyκα  is following the same 
4−B  field dependence as 

the amplitude )(BUω . 

 
The fundamental wave generation starts at zero field and the amplitude decreases with increasing 
field for both boundaries. It is obvious that the in-plane generated fundamental wave is strongly 

attenuated with increasing field and its amplitude decreases in proportion to .
4−

B  The observed field 



 

dependence originates from the magnetic field behavior of the term xxxyκα  (that determines the 

amplitude 
ai

U
,

ω ) which is also following the 
4−

B  dependence as seen from the inset in Fig. 3. This is 

completely different form the case of an acoustic wave generated along the least conducting axis, i.e., 
the interlayer fundamental wave previously considered in [33] where the wave amplitude is 

decreasing with increasing field approximately as .
1−

B  It is instructive to discuss here presented 

results in the context of previous studies on the interlayer acoustic wave generation. We first note that 
the amplitude of the in-plane wave is much larger than the one of the interlayer fundamental wave of 

order of .10
3−

 This is conditioned by the high magnetotransport anisotropy, i.e., by the high 

conductivity anisotropy ratio of the interlayer and in-plane conductivity in α−(BEDT-TTF)2KHg(SCN)4. 
It follows that the larger amplitude of the in-plane acoustic wave is due to the large in-plane electrical 
conductivity and consequently due to the large number of charge carriers (q1D and q2D) included in 
the process of the thermoelectric acoustic wave generation. Another difference between the two 
geometries is that the isothermal wave amplitude exceeds the adiabatic in a whole range of fields. 
This implies that when performing experiments on in-plane acoustic wave generation the isothermal 
boundary is preferable in the whole range of fields. For the interlayer wave generation the preference 
of one type of a boundary over another depends on the magnetic field strength. In addition, the in-
plane acoustic wave is more strongly attenuated with increasing field (despite the much larger 
amplitude) than the interlayer acoustic wave. This is evident from the stronger field dependence 

)( 4−
B  in the former compared to the 

1−
B  dependence in the latter [33] and is correlated with the 

magnetic field behavior of the thermal skin depth as well as the corresponding contributions from the 
q1D and q2D charge carriers as discussed below. 
 

3.3 In-plane electromagnetic and thermal skin depth  
 

Fig. 4 shows the magnetic field dependence of the total in-plane electromagnetic and thermal skin 
depth as well as the corresponding contributions from the q1D and q2D charge carriers.  The total 
electromagnetic skin depth is linear in field as it is the one for the q2D carriers but is field independent 
for the q1D carriers. On the other hand, the total thermal skin depth is decreasing with increasing field 
as it is one for the q2D carriers and is field independent for the q1D carriers as in the case of the 
electromagnetic skin depth. The field independence of both skin depths for the q1D carriers follows 
from the field independence of the in-plane electrical conductivities for the q1D carriers 

φφσσ sincos1
q1D =xy  and φσσ 2

1
q1D cos=xx  that determine the electromagnetic and thermal skin 

depth, respectively. 
 
Following the changes in skin depths with field allows to distinguish if the wave generation is deter 
mined by the thermal or electrodynamic characteristics of the conductor. As evident from Fig. 4 the 
thermal skin depth exceeds by far the electromagnetic one (it is about 20 times larger) indicating that 
the fundamental wave generated in the plane of the layers is mainly transmitted by the thermal 
waves. Our suggestion is that in the case of linear wave generation due to the weak coupling between 
electromagnetic and temperature oscillations the thermal skin depth is always larger than the 
electromagnetic one and the fundamental wave is transmitted mainly by the thermal wave that 

dissipates at distance ∼ .Tδ  We find that the thermal skin depth for the q1D charge carriers is larger 

than the one for the q2D charge carriers (except for very low fields T05.0≤B ) corroborating above 

mentioned that both the q1D and q2D charge carriers contribute to the observation of the effect but 
the q1D charge carriers are the dominant carriers in generation and propagation of a fundamental 

acoustic wave along the most conducting axis in α−(BEDT-TTF)2KHg(SCN)4. 
 



 

 
 

Fig. 4. Magnetic field dependence of the total in-plane a) electromagnetic and b) thermal skin 
depth (black curves) and the corresponding contributions from the q1D (blue curves) and q2D 

charge carriers (red curves) at K,30=T  0.01,=η  
0

85=θθθθ and .0
89=φφφφ  

 

The generation of fundamental waves is constraint by the condition .1<<ωτ In the organic conductor 

α−(BEDT-TTF)2KHg(SCN)4 this condition is always fulfilled, even at high frequencies )Hz10( 9=ω  

as the relaxation time of charge carriers τ  is very small s).102( 12−×=τ  In addition, for the 

generation of waves to be the most effective the condition 1<<Tlδ  must be satisfied. A Fermi 

velocity of m/s105.6 4×=Fv  [35] gives an electron mean free-path of order m.1013 8−×=l  We have 

obtained from Fig. 4 the following values for the electromagnetic and thermal skin depth at 

T,6.0=B mm03.0=Eδ  and mm,6.0=Tδ  respectively. It is evident that the electron mean free-

path l  is much smaller than both skin depths providing the fundamental wave generation to be 

studied in detail experimentally that will give new insights into the complex electronic properties of 
these systems. 
 

4. CONCLUSION 
 

The linear generation of high-frequency acoustic waves )Hz10( 9=ω  in layered organic conductors 

with two groups of charge carriers, q1D and q2D, due to thermoelectric effect is considered. Only a 
fundamental wave is generated due to the thermoelectric stresses caused by the non-uniform 

temperature oscillations and its amplitude is analyzed as a function of the magnetic field ,B  the angle 

θ  between the normal to the layers and the magnetic field as well as of the conductor's 

thermoelectric characteristics. Specifically, the parameter values for the organic conductor α−(BEDT-



 

TTF)2KHg(SCN)4 are used to obtain the fundamental wave amplitude ωU  at K30=T  and for not 

strongly warped open plane sheets and closed cylindrical FS. We find that the oscillatory dependence 
of the fundamental amplitude is determined mainly by the angular oscillations of both the in-plane 

thermoelectric coefficient thermal conductivity, i.e., by the angular behavior of the term xxxyκα  and 

are associated with the periodic charge carriers motion on both the cylindrical part and quasi-planar 

sheets of the FS in a tilted magnetic field. At angles where )(tanθωU  is maximum, the average drift 

velocity of charge carriers along the wave vector coincides with the wave velocity .s  Therefore narrow 

peaks appear in the angular dependence )(tanθωU  that correspond to the most effective interaction 

of the charge carriers with the wave. It has been shown that the positions of the peaks of the 
fundamental wave angular oscillations are shifted from those of the in-plane thermal conductivity and 

the positions of the peaks in the )(tanθωU  dependence coincide with the positions of the extremes of 

the term  ).(tanθκα xxxy  It is important to note that for a fundamental acoustic wave generated in the 

plane of the layers in organic conductors with two conducting channels the period of angular 
oscillations is larger compared to the one of a wave generated along the normal to the layers in 
organic conductors with only q2Dgroup of charge carriers. 
 
As regards the magnetic field behavior of the wave amplitude we find that the in-plane generated 
fundamental wave is strongly attenuated with increasing field and its amplitude decreases in 

proportion to .
4−

B  The observed field dependence originates from the magnetic field behavior of the 

term .xxxyκα  Comparison of the magnetic field dependence of the in-plane and interlayer generated 

fundamental wave shows that both waves exhibit different field dependence, 
4−B  in the former and 

1−
B  in the latter. We find that the thermal skin depth is larger than the electromagnetic one and the 

fundamental wave is transmitted mainly by the thermal wave that dissipates at distance ∼ .Tδ  Both the 

q1D and q2D charge carriers contribute to the observation of the effect but the q1D charge carriers 
are the dominant carriers in generation and propagation of a fundamental acoustic wave along the 

most conducting axis ( −x axis) in the multi-band organic conductor α−(BEDT-TTF)2KHg(SCN)4. 
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