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ABSTRACT

The solutions of the klein-gordon equation with Meagy-Rosen plus Yukawa potential (MRYP) has been
presented using the Pekeris-like approximationhef ¢oulomb term and parametric Nikiforov-Uvarov
(NU) method. The bound state energy eigenvaluegtamdorresponding un-normalized eigen functions
were obtained in terms of Jacobi polynomials. So,a¥ukawa, Manning-Rosen and coulomb potentials
have been recovered from the mixed potentials lagid ¢igen values obtained.
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1INTRODUCTION

In recent years, the study of the relativistic waeggiation, particularly the Klein—-Gordon equatibas
attracted the attention of many authors becausedhaions to this equation plays an important fole
obtaining relativistic effect.It is well known thathen a particle moves in a strong potential figle
relativistic effect yields the correction for noelativistic quantum mechanifs’. Taking the relativistic
effect into account, one could apply the Klein— &&or equation to the treatment of a zero-spin gartic
and apply the Dirac equation to that of a 1/2-spamticle!® “. This therefore, contains two major
parameters which are, the vector potential V(r) iedscalar potential S(r). The Klein-Gordon ecdurati
with the vector and scalar potentials can be writtg follows:

[_ (i% - V(T))2 — V2 4+ (S(r) + M)Z] W(r,0,¢) =0

Where M is the rest mas'sa% = energy eigen valu&,(r) andS(r) are the vector and scalar potentials

respectively>”). However, the analytical solutions of the Kleins@on equation are possible only in the
s-wave case with the angular momentum | = O foresarall-known potentials. Conversely, whes 0,
one can only solve approximately, the Klein-Gordeguation for some potential using a suitable



approximation schem&*%. Some of the potentials studied with this teche&are; Manning-Rosen
Potential,***¥ Hulthen Potential*>® Kratzer Potentidt'” Wood-Saxon Potentidf*® and Poschl-
Teller Potentiaf”. Different methods have been employed to obtai libund state Klein-Gordon
equation for these exponential-type potentials tvhiwludes; the supersymmetric (SUSY) and shape
invariance methoé?? the asymptotic iteration method (AINf#** and the Nikiforov-Uvarov (NU)
Method®®!. The Klein-Gordon equation for the potential underdies is solved by using the parametric
NU method to obtain the energy eigenvalues anchdigections of the bound staf@ecently our group
made some attempts to study the bound state swdwibKlein-Gordon, Dirac and Schrodinger
equations using a combined or mixed potentials. &somwhich includes Woods-Saxon plus
Attractive Inversely Quadratic potential (WSAIQ®, Manning-Rosen plus a class of Yukawa
potential (MRYP)!"), generalized Woods-Saxon plus Mie-type potent@WSMP) 8 and
finally, the Kratzer plus Reduced Pseudoharmonicilagr potential (KRPHOPY*®. The
purpose of the present paper is to solve the KBordon equation for the mixed potential MRYP dedine
as,

—xr —2xT —xr
V@) = - [ S (1)
using the parametric NU method. The paper is omgahas follows: After a brief introduction in secti
1, the NU method was reviewed in section 2, théatdtlein-Gordon equation was solved using the NU
method in section 3, the result obtained was dgadisn section 4, and finally, a brief conclusioasw
given in section 5.

2 REVIEW OF PARAMETRIC NIKIFAROV-UVAROV METHOD

The NU method is based on the solutions of a géredasecond order linear differential equationhwit
special orthogonal functions. The hypergeometric iethod has shown its power in calculating the
exact energy levels of all bound states for sorheabte quantum systems.

Wa() + 22 W () + S2Wa(s) = 0 2)
Whereo(s) anda(s) are polynomials at most second degree #gjlis first degree polynomials. The
parametric generalization of the N-U method is gileg the generalized hypergeometric-type equation
1

Y(s) +ﬁ‘l/’(s) +m[—6152 + €5 —€3]¥(s) =0 (3)
Thus eqgn. (2) can be solved by comparing it withegign (3) and the following polynomials are obeain
#(s) = (c; — €35),0(s) =s(1 —c35),0(s) = —€;52 + €,5— €3 (4)

The parameters obtainable from equation (4) sesvienportant tools to finding the energy eigenvalue
and eigenfunctions. They satisfy the following sEtequations respectively

Con — (2n+1)e+ (2n+1)(\/c_9+ %\/C_s) +n(N-1F3 +¢; + 3¢ + 2/cgcg = 0 (5)
(c; — c3)n +c3n’ — (2n+1y5 + (2n+l)(/c_9+ CS\/C_S) +c7 + 2c30g +2,/cgCo= 0 (6)

While the wave function is given as:

€11
Cio—1—=—"—C10— 1)
( 10 c3 10

.o G13
W, () = Ny S2(1 — c35) 2 e P, (1 — 2c35) (7)

Where
1 1
Cy = 5(1 — 1), Cs :5(02 —2¢3), €6 =C5% + €1, 07 = 24C5 - €5, Cg = 4% + €3,

Cg = C3C7 + c32cg + ¢, C10 = €1 +2¢4 + 2\[cg, c11 = ¢ — 2¢5 + 2(,/09 + c3ﬂ/c8)



C12 = C4 + 4/Cg,C13 =C5 — (\/0_9"' C3\/C_8) (8)

andP,, is the orthogonal polynomials.

i (a.B) —yn F(n+a+1)I'(n+f+1) x-1 r x+1 n-r
Given thak, r=0 F(a+r+1)F(n+B—r+1)(n—r)!r!( 2 ) ( 2 ) 9)

This can also be expressed in terms of the Rodrigdiermula

PP = 5 = DG+ DF(5) (- DG+ D)

2nn! dx

3. SOLUTIONS OF THE RADIAL PART OF THE KLEIN-GORDON EQUATION WITH MRYP
POTENTIAL

The radial part of the Klein-Gordon Equation wittctor V(r) potential = scalar S(r) potential imtic
units b =c=1) is given as
d? R(r)

—— + [(E? =M*) = 2(E + M)V(")]R() =0 (11)
Substituting potential of Eq. (1) into the Klein-@on equation of eq. (11), we obtain
d? R(r) —XT L pe—2%T

D 4 [(B? = M) = 2(8 + M) (- [ - RS Re) = 0 (12)

Wheread = [(1 + 1) andV (r) is the Mixed potential energy function

Since the Klein-Gordon equation with the above comth potentials rarely has exact analytical sohytio
an approximation to the centrifugal term has teriagle. The good approximation fbfr? in the
centrifugal barrier is taken as

1 4a?
-rZ (1+ eZaT)Z 1
Similar to other related work,
Making the transformatiosn = e~*"equation (1) becomes
CS+D52] N

V(s) = - [(1—5)2 1-S

To solve Eq.(12) by the present method, we needdast Eqg. (13) and apply the transformation gagn
S = _eZar

d?R(s) , (1—s) dR(s) 1

(13)

(14)

w5 Taoos o T ase [—(B*—F +B)s*+ (2B*+ A+ B)s — (B)]R(s) = 0, (15)
Where,
2 _ E*-M?% _ E+M o E+M\ . . _ . (E+M
—pr= 20 ,B_z(T)VO,A_z(az)c,F_z(aZ)D (16)

Comparing equation (12) with equation (3) yields thllowing parameters

€L =C; =¢3 =1,C4=0,C5Z—%,C6=%+ﬁ2+B—F,C7=—2ﬁ2—A—B,C8=ﬂ2,C9=%—

1 1 1
(A+F),C10:1+2w/B2,C11:2+2< Z—A—F+1/ﬁ2>,clz=1/ﬁ2,C13:—E_< ’Z_A_F+

W),el=32+B—F,ez=2/32+A+B,eg=ﬁ2, (17)
Now using equations (5), (13) and (14) we obtameahergy eigen spectrum of the MRYP as



A+B-(n?+n+1)-(2n+1) [3-A-F

p? = - (18)
(2n+1)+2\/Z—A—F
Equation (15) can be solved explicitly and the gneigen spectrum of MRYP becomes
2
2(EM\ e 2(EMVy —(n2+n+2)-2n+1) [2—2(EM)c—2(EXM)p
5o gt = g ot | o) e a2 .
(2n+1)+2\/——2(E+M)C 2(E+M)D
We now calculate the radial wave function of the Y#Ras follows:
The weight functiomp(s) is given as
SRR
p(s) = se0 (1 —gzs) e 7, (20)
Using equation (14) we obtain the weight functisn a
p(s) =sY(1-9)", (21)
_ 2 — /l _A—
WhereU = 2,/$2 andV = 2 " A—F
So also, we obtain the wave functips) as
c10-1—¢ 01
x() =P " " (1-2c39), (22)
Using equation (14) we got the functig(s) as
x(s) = R (1 - 29), (23)
WhereP"") are Jacobi polynomials
And lastly,
—¢,,C13
0(s) = s72(1—cz5) %, (24)
And using equation (14) we obtain
p(s)=s"2(1-5)"1z, (25)
We then obtain the radial wave function from thaatpn
Rn(5) = Npop(s)xn(s), as, (26)
V-1

Ru(s) = Nps2(1 — )" P2pV (1 — 29), 27)

Wheren is a positive integer anid, is the normalization constant.

4 DISCUSSION:

We have solved the radial Séimger equation and obtained the energy eigen sdhrethe Manning-
Rosen plus Yukawa potential (MRYP) in equation (16)

The following cases are considered:
Case 1: IfC =D =0 in equation (10), the potential turns back inte tfiukawa potential and
equation (16) yields the energy eigen values ofrtlleawa potential as,

2(E+M)VO (n+1)2]

E? —M? = —4 oc? [
2(n+1)



E? — 4((::—1”’)) + 4a(E + M)V, —o (n+ 1)? (28)

Case 2: Ifx— 0 in equation (28), the energy eigen values for Gl potential becomes
2 _ 2 _ (E+M)
E M (n+1)2( )

Case 3: If; = 0 the potential in equation (10) yields the ManniRgsen potential with energy
eigen values given as

2
, 2(E+M)c (n?+4n+3)- (2n+1)\/——2 E“”)c 2(E+M)D

(12
(2n+1)+2JZ—2(E+M)C 2(E+M)D

E? -—M? = -4«

(30)

5 CONCLUSION:

We have obtained the energy eigen values and thespmnding un-normalized wave function using the
parametric NU method for the Seéldinger equation with MRYP. Special cases of thepil have also
been considered.The approximate analytical bound state energy emees and the
corresponding un-normalized wave functions haven lmetained. Interestingly, the Schrodinger
and Dirac equation with the arbitrary angular motaenvalues for this potential can be solved
by this method. The resulting eigen energy equatman be used to study the spectroscopy of
some selected diatomic atoms and molecules.
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