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ABSTRACT 

The solutions of the klein-gordon equation with Manning-Rosen plus Yukawa potential (MRYP) has been 
presented using the Pekeris-like approximation of the coulomb term and parametric Nikiforov-Uvarov 
(NU) method. The bound state energy eigenvalues and the corresponding un-normalized eigen functions 
were obtained in terms of Jacobi polynomials. So also, Yukawa, Manning-Rosen and coulomb potentials 
have been recovered from the mixed potentials and their eigen values obtained. 
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1 INTRODUCTION 

In recent years, the study of the relativistic wave equation, particularly the Klein–Gordon equation, has 
attracted the attention of many authors because the solutions to this equation plays an important role in 
obtaining relativistic effect.It is well known that when a particle moves in a strong potential field, the 
relativistic effect yields the correction for non-relativistic quantum mechanics [1-3]. Taking the relativistic 
effect into account, one could apply the Klein– Gordon equation to the treatment of a zero-spin particle 
and apply the Dirac equation to that of a 1/2-spin particle [3, 4]. This therefore, contains two major 
parameters which are, the vector potential V(r) and the scalar potential S(r). The Klein-Gordon equation 
with the vector and scalar potentials can be written as follows: �− �� ��� − �(	)�� − ∇� + (�(	) + �)�� �(	, �, �) = 0    

Where M is the rest mass, � ��� = energy eigen value, �(	) and �(	) are the vector and scalar potentials 

respectively [5-7]. However, the analytical solutions of the Klein-Gordon equation are possible only in the 
s-wave case with the angular momentum l = 0 for some well-known potentials. Conversely, when l ≠ 0, 
one can only solve approximately, the Klein-Gordon equation for some potential using a suitable 
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approximation scheme [8-10]. Some of the potentials studied with this techniques are; Manning-Rosen 
Potential, [11-14] Hulthen Potential, [15,16] Kratzer Potential,[11,17] Wood-Saxon Potential,[18,19] and Poschl-
Teller Potential[20]. Different methods have been employed to obtain the bound state Klein-Gordon 
equation for these exponential-type potentials which includes; the supersymmetric (SUSY) and shape 
invariance method [21,22], the asymptotic iteration method (AIM) [23,24], and the Nikiforov-Uvarov (NU) 
Method [25]. The Klein-Gordon equation for the potential under studies is solved by using the parametric 
NU method to obtain the energy eigenvalues and eigen functions of the bound state. Recently our group 
made some attempts to study the bound state solutions of Klein-Gordon, Dirac and Schrodinger 
equations using a combined or mixed potentials. Some of which includes Woods-Saxon plus 
Attractive Inversely Quadratic potential (WSAIQP) [26], Manning-Rosen plus a class of Yukawa 
potential (MRYP) [27], generalized Woods-Saxon plus Mie-type potential (GWSMP) [28], and 
finally, the Kratzer plus Reduced Pseudoharmonic Oscillator potential (KRPHOP) [39]. The 
purpose of the present paper is to solve the Klein-Gordon equation for the mixed potential MRYP defined 
as, 

 �(	) = − ����∝������∝�
( !��∝�)� " − #$��∝�

%     (1) 

using the parametric NU method. The paper is organized as follows: After a brief introduction in section 
1, the NU method was reviewed in section 2, the radial Klein-Gordon equation was solved using the NU 
method in section 3, the result obtained was discussed in section 4, and finally, a brief conclusion was 
given in section 5. 
 

2 REVIEW OF PARAMETRIC NIKIFAROV-UVAROV METHOD 

The NU method is based on the solutions of a generalized second order linear differential equation with 
special orthogonal functions. The hypergeometric NU method has shown its power in calculating the 
exact energy levels of all bound states for some solvable quantum systems.  

 Ψ&′′ (s) + 
()(*)+ (*)Ψ&′ (s) + 

+ (*)+�(*)Ψ&(s) = 0     (2) 

Where σ(s) and -(s) are polynomials at most second degree and .̃(s) is first degree polynomials. The 
parametric generalization of the N-U method is given by the generalized hypergeometric-type equation 0′′(1) + 

23!2�**( !24*) 0′(1) + 
 *�( !24*)� 5−6 1�  + 6�1 − 6780(1) = 0  (3) 

Thus eqn. (2) can be solved by comparing it with equation (3) and the following polynomials are obtained .̃(1) =  (9 − 9�1), -(1) = 1(1 − 971), -(1) =  −6 1�  + 6�1 − 67   (4) 

The parameters obtainable from equation (4) serve as important tools to finding the energy eigenvalue 
and eigenfunctions. They satisfy the following sets of equations respectively 

c2n – (2n+1)c5+ (2n+1)(;9<+ c3;9=) + n(n-1)97 + 9> + 2979= + 2;9=9< = 0  (5) (c� − c7)n + 97n2 – (2n+1)9@ + (2n+1)(;9<+ c3;9=) + 9> + 2979= +2;9=9<= 0   (6) 

While the wave function is given as: 

0A(1) = BA,C�23�(1 − 971)!23�!D34D4 EA�23$! ,D33D4 !23$!  �(1 − 2971)   (7) 
 

Where  9G =  � (1 − 9 ), 9@ = 
 � (9� − 297), 9H = 9@� + 6 , 9> = 29G9@ - 6�, 9= = 9G� +  67,  

9< =  979> + 97�9= + 9H, 9 I =  9 + 29G +  2;9=, 9  =  9� − 29@ +  2J;9< +  c3;9=L 
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9 � =  9G +  ;9= , 9 7 = 9@ − J;9< +  c3;9=L       (8) 

and EA, is the orthogonal polynomials. 

Given thatEA(M,N) = ∑ Γ(A�M� )Γ(A�N� )
Γ(M�%� )Γ(A�N!%� )(A!%)!%!A%QI �R! � �% �R� � �A!%

  (9) 

This can also be expressed in terms of the Rodriguez’s formula 

 EA(M,N)(S) =   �TA! (S − 1)!M(S + 1)!N � UUR�A J(S − 1)A�M(S + 1)A�NL   

 

3. SOLUTIONS OF THE RADIAL PART OF THE KLEIN-GORDON EQUATION WITH MRYP 
POTENTIAL 

 The radial part of the Klein-Gordon Equation with vector V(r) potential = scalar S(r) potential in atomic 
units (ħ = c = 1) is given as 

U� V(%)U%�  + 5(W� − ��) − 2(W + �)�(	)8X(	) = 0    (11) 

Substituting potential of Eq. (1) into the Klein-Gordon equation of eq. (11), we obtain 

 
U� V(%)U%�  + �(W� − ��) − 2(W + �)(− ����∝������∝�( !��∝�)� " − #$��∝�

% )" X(	) = 0  (12) 

Where Z = [([ + 1) and �(	) is the Mixed potential energy function 

Since the Klein-Gordon equation with the above combined potentials rarely has exact analytical solution, 
an approximation to the centrifugal term has to be made. The good approximation for 1 	�⁄  in the 
centrifugal barrier is taken as 

 
 %� = GM�( � ��]�)� ,         (13) 

Similar to other related work,         

Making the transformation 1 = ^!M%equation (1) becomes 

�(1) = − ��_��_�
( !_)� " − ∝#$_ !_          (14) 

To solve Eq.(12)  by the present method, we need to recast Eq. (13) and apply the transformation given as 1 = −^�M% U�V(*)U*� + ( !*)( !*)* UV(*)U* +  ( !*)�*� 5−(`� − a + b)1� + (2`� + c + b)1 − (`�)8X(1) = 0,  (15) 

Where, 

−`� =  d�!e�
G∝� ;   b =  2 �d�eM � �I;  c =  2 �d�eM� � g;  a = 2 �d�eM� � h   (16)  

   

Comparing equation (12) with equation (3) yields the following parameters 9 = 9� = 97 = 1, 9G = 0, 9@ = −  � , 9H =  G + `� + b − a, 9> = −2`� − c − b, 9= = `�, 9< =  G −
(c + a), 9 I = 1 + 2;`�, 9  = 2 + 2 ij G − c − a + ;`�k , 9 � = ;`�, 9 7 = −  � − ij G − c − a +
;`�l , 6 = `� + b − a, 6� = 2`� + c + b, 67 = `�,      (17) 

Now using equations (5), (13) and (14) we obtain the energy eigen spectrum of the MRYP as 
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  `� = mn�o!�A��A�3��!(�A� )j3p!n!q
(�A� )��j3p!n!q r

�
      (18) 

Equation (15) can be solved explicitly and the energy eigen spectrum of MRYP becomes 

 

W� − �� = −4 ∝� m��tuv]� �����tuv] �#$!�A��A�3��!(�A� )j3p!��tuv]� ��!��tuv]� ��
(�A� )��j3p!��tuv]� ��!��tuv]� �� r

�
,  (19) 

We now calculate the radial wave function of the MRYP as follows: 

The weight function w(1) is given as 

w(1) = 123$! (1 − 971)D33D4 !23$! 
,        (20) 

Using equation (14) we obtain the weight function as w(1) = 1x(1 − 1)#,          (21) 

Where y = 2;`� and � = 2j G − c − a 

So also, we obtain the wave function z(1) as 

z(1) = EA23$! ,D33D4 !23$! (1 − 2971),        (22) 

Using equation (14) we got the function χ(s) as z(1) = EA(x,#)(1 − 21),          (23) 

Where EA(x,#) are Jacobi polynomials 

And lastly, 

{(1) = 123�(1 − 971)!23�!D34D4 ,         (24) 

And using equation (14) we obtain {(1) = 1x �| (1 − 1)#! �| ,         (25) 

We then obtain the radial wave function from the equation XA(1) = BA{(1)zA(1),  as,         (26) 

XA(1) = BA1x �| (1 − 1)(#! ) �| EA(x,#)(1 − 21),       (27) 

Where } is a positive integer and BA is the normalization constant.  

 

4 DISCUSSION: 

We have solved the radial Schrӧdinger equation and obtained the energy eigen values for the Manning-
Rosen plus Yukawa potential (MRYP) in equation (16).  

The following cases are considered: 

Case 1: If g = h = 0 in equation (10), the potential turns back into the Yukawa potential and 
equation (16) yields the energy eigen values of the Yukawa potential as, 

W� − �� = −4 ∝� ~��tuv] �#$!(A� )�
�(A� ) ��

, 
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W� − �� = -4
(d�e)(A� )� + 4�(W + �)�I −∝� (} + 1)�     (28) 

Case 2: If ∝→ 0 in equation (28), the energy eigen values for Coulomb potential becomes 

W� − �� =  -4
(d�e)(A� )�(29) 

Case 3: If �I = 0 the potential in equation (10) yields the Manning-Rosen potential with energy 
eigen values given as 

W� − �� = −4 ∝� m��tuv]� ��!�A��A�3��!(�A� )j3p!��tuv]� ��!��tuv]� ��
(�A� )��j3p!��tuv]� ��!��tuv]� �� r

�
    (30) 

 

5 CONCLUSION: 

We have obtained the energy eigen values and the corresponding un-normalized wave function using the 
parametric NU method for the Schrӧdinger equation with MRYP. Special cases of the potential have also 
been considered. The approximate analytical bound state energy eigenvalues and the 
corresponding un-normalized wave functions have been obtained. Interestingly, the Schrödinger 
and Dirac equation with the arbitrary angular momentum values for this potential can be solved 
by this method. The resulting eigen energy equations can be used to study the spectroscopy of 
some selected diatomic atoms and molecules. 
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