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ABSTRACT  4 
 5 
Development of the concept of Euler characteristic, from the Euclidean geometry to the algebraic 
geometry is considered. A singular toric variety is studied within the framework of the algebraic 
geometry. Procedure of the blowing up of its singularities in terms of cones is represented by Hilbert 

scheme. Special cases of the blowing up of orbifold singularities of nZ
C3

 using Nakamura’s 
algorithm are performed. Hilbert schemes and their physical interpretation in terms of Euler 
characteristic are presented. 
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1. INTRODUCTION  11 
In the article [1], Atiyah presented the current researches in mathematics which are related to the 12 
global study and become important in the applications to topology that was predicted by Poincare. He 13 
lists a number of areas of mathematics - complex analysis, differential equations, number theory, 14 
where the global properties were additional to the local approach. Thus, implicit solutions of 15 
differential equations could not be resolved by the usual methods. Global solutions were associated 16 
with singularities of the space. The transition to such solutions is associated with the increasing role of 17 
the topological approach. 18 
 19 
Similar changes in the approaches for solving the problems were observed in physics, where the 20 
locality was associated with differential equations, and the transition to high-energy physics was 21 
connected with non-linear equations. The solution of non-linear equations became impossible by 22 
usual methods. The appearance of solitonic solutions in the form of D-branes [2] - objects in 23 
multidimensional space-time, gave the powerful impetus to the development of geometric methods in 24 
high energy physics, confirming Wheeler statement: "Physics is geometry". Due to the use of 25 
topological and algebraic-geometric methods in physics it has become possible to find solutions to 26 
physical problems in terms of topological invariants. 27 
 28 
The theory of superstrings and D-branes as the modern version of the unified theory of fundamental 29 
interactions, gives answer to the question, what happens in a short interval of time from the Big Bang. 30 
Among the many properties of the theory of D-branes are of particular importance the following three. 31 
First, gravity and quantum mechanics as essential principles of the Universe should be united. 32 
Secondly, the investigations over the last century have shown that there are key concepts for 33 
understanding the Universe: the generations of particles, gauge symmetry, symmetry breaking, 34 
supersymmetry. All these ideas are naturally flowing from the theory of D-branes. Third, in contrast to 35 
the Standard model with 19 free parameters, D-brane theory is free of parameters.  36 
 37 
Since we are dealing with solitonic objects - D-branes, the space-time manifold is endowed with a 38 
certain structure. For a principal bundle representing D-brane it is possible to construct vector bundle, 39 
which plays an important role for calculations of topological invariants characterizing the D-branes. 40 
The bases of such bundles are manifolds of extra dimensions such as Calabi-Yau or orbifolds. 41 
 42 
At every stage of researches in D-brane theory physicists searched for experimentally observable 43 
consequences of the theory. In this aspect, it was observed that the number of generations of quarks 44 
and leptons is connected with the structure of the manifold of extra dimensions. Thus, the number of 45 
generations is a topological invariant, associated with the structure of Calabi-Yau or orbifolds. 46 
 47 



 

The article is devoted to the studying of the properties of such manifold of extra dimensions as 48 

orbifold. For its description complex differential forms qp,ω and Dolbeault cohomology group 49 

( )MH qp,  defined by differential forms of degree ( )qp,  on the manifold M  are introduced. As 50 

( ) qpqp hMH ,,dim = , where qph , are Hodge numbers and the Euler characteristic is connected with 51 

Hodge numbers ( )( ) ,1
,

,∑ +−=
qp

qpqp hχ we can determine 52 

The number of generations .
2

1 χ=  53 

The purpose of our paper is the studying of orbifold 
nZ

C 3
which is carried out on the basis of 54 

Nakamura’s algorithm. This algorithm makes it possible to receive the Hilbert scheme. Hilbert scheme 55 
is common mathematical object that is very actively studied by mathematicians and physicists. The 56 
last of such papers are, for example, PhD thesis of Ádám Gyenge “Hilbert schemes of points on some 57 
classes surface singularities” [3] and the article of Zheng  [4].  As Hilbert scheme is the blowing up of 58 
orbifold singularity, we can apply to it the technique of differential forms and can give an adequate 59 
interpretation of particle generation, characterizing orbifold. The task of the paper is not only the 60 
application of the Nakamura algorithm, but also a deeper understanding of the physical 61 
consequences from the mathematical structure of the space of extra dimensions such as orbifolds. 62 
 63 
2. EULER CHARACTERISTIC IN EUCLIDEAN GEOMETRY  64 
Coxeter [5] considered new type of geometry, called elliptical geometry, where the lines and planes 65 
are replaced by circles and spheres. Since the elliptical geometry is a kind of non-Euclidean or 66 
projective geometry, we’ll consider the constructions that will be important for us in the future. 67 
In the Euclidean geometry, the Euclidean plane can be covered with the simplest polyhedra - 68 
squares, equilateral triangles or pentagons, figure 1. 69 
 70 

 71 
 72 
Fig. 1. Simplest figures for coverage of the Euclidean plane   73 

 74 
It is interesting to note that for any surface covered with maps, the characteristic of Euler- Poincare is 75 
the following 76 

,FEV +−=χ  77 
where V - vertices of the polygon, E - the number of edges, F - the number of polygonal areas or 78 
faces. 79 
 80 
3. PROJECTIVE GEOMETRY AND HILBERT SCHEME  81 
For the further it will be convenient to use the fact that projective geometry includes affine geometry 82 
and Euclidean geometry, [6]: 83 
 84 

Projective geometry ⊃  Affine geometry ⊃  Euclidean geometry. 85 
 86 

In the future we will deal with n-dimensional projective space [7]. n-dimensional projective space over 87 

the field k, n
kP - is set of classes of equivalent collections ( )naaa ,,, 10 K  with respect to the 88 

equivalence 89 
( ) ( )

.0,

,,,,~,,, 1010

≠∈ λλ
λλλ
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 90 

If f - homogeneous polynomial of degree d, then 91 

( ) ( ).,,,,,, 1010 n
d

n aaafaaaf KK λλλλ =  92 

We have a set of zeros 93 



 

( ) ( ){ }0| =∈= PfPPfZ n  94 

in nP  of homogeneous polynomial f. Y of nP  is a projective algebraic set, if Y = Z(T) for the set T of 95 
homogeneous elements of the polynomial ring. Since the union and intersection of such algebraic 96 
sets defines the Zariski topology, then we can talk about the projective algebraic variety as of 97 

irreducible closed (in the Zariski topology) subset of the projective space nP . 98 
 99 
It is known that the schemes are an extension of the concept of manifolds [7]. They are determined by 100 
a topological space X and by a sheaf of rings over it, XO  (to each open set are mapped functions 101 
from which are built the rings of functions). In this case X, together with the open space covering, 102 

( )iXi XOX |, is isomorphic to the affine scheme ( )Xi OXSpec ,Γ of the ring of sections 103 

XO over iX . One of the methods for generating of new schemes is the transition to the quotient 104 

space by the equivalence relation over scheme, the special case of which is the orbifold nZX / ( nZ  – 105 

is the cyclic group of order n). In this case, we have a flat family of closed subschemes in n
kP  [7], 106 

which is parameterized by the Hilbert scheme. It means that the set of rational k-points of Hilbert 107 

scheme is in one-to-one correspondence with the set of closed submanifolds in n
kP . Thus, orbifold is 108 

a generalization of the concept of an algebraic variety. 109 
 110 
 111 
4. COMPACTIFICATION OF HILBERT SCHEME  112 
It is known that orbifolds are a special cases of a kind of an algebraic manifold, called toric variety, [8]. 113 

Since the scheme ( )SXHilb / , as a direct sum of subschemes ( )SXHilb p /  for all ( )zQP ∈  with 114 
rational coefficients, is not compact, it can be "compactified" by gluing different maps of algebraic 115 
varieties [9]. As an example, it is convenient to consider the projective space as a result of gluing of 116 
three maps, or as a result of compactification of the torus when gluing zero and "infinity" (orbits of the 117 
torus action), that is represented in figure 2. Gluing functions (functions of coordinates change) are 118 
monomials of Laurent. 119 
 120 

 121 
 122 
Fig. 2. Projective plane as the gluing of three complex planes [10] 123 

 124 

Laurent polynomial is determined by the set of lattice points ,2ZM ⊂  125 

psup { } 20| Zaf a ⊂≠= λ . With these points is constructed the cone 126 

{ }MyyyMpos iikk ∈≥++= ,0:)( 11 λλλ K . To each map corresponds its own cone σ , and the 127 

glue a few maps gives the toric variety. At the same time the cones Σ∈σ  are glued to the fan, Σ , 128 
according to certain rules [9]. According to  Batyrev's technique [11], a toric variety is represented as 129 

a polyhedron ∆ , which is  determined by the set of convex in Rd  cones σ , 130 

rnn RR 010 ≥≥ ++= Kσ  for some linearly independent vectors Ζ∈ d
rnn ,,

1
K satisfying the 131 

following conditions: 1) any of two cones  intersect along a common face 2) for any cone belonging to 132 



 

polyhedron ∆ , all its faces also belong to ∆ .To each reflexive polyhedron there corresponds a dual 133 

polyhedron ∇ . According to the Theorem 4.2.2 of [11], there exist at least one toroidal 134 
desingularization of any projective toric variety  which corresponds to any maximal projective 135 
triangulation. 136 
 137 
5. BLOWING UP OF SINGULARITIES OF TORIC VARIETY  138 
An important structure that carries information about the algebraic variety is the ring of regular 139 

functions, [ ] [ ]zCzzCR n == ,,1 K , for multivariable ( )nzzz ,,1 K= and ( ) ,,,1
n

n Zaaa ∈= K  140 

na
n

aa zzz ⋅⋅= K

1
1 . This ring of regular functions allows the construction of an algebraic variety X as 141 

a scheme =X Spec R . Since the toric variety, studied in the paper, has singularities, to remove 142 
them is used the procedure of blowing up of singularities associated with the defragmentation of 143 
fan Σ . An example of such a blow-up procedure is Nakamura’s algorithm [12] demonstrated for 144 

blowing up of orbifold singularity 
3

3

Z
C . McKay quiver tessellated by tripods for the model ( )1,1,1

3

1
is 145 

illustrated in figure 3 146 

 147 

Fig. 3. McKay quiver for ( )1,1,1
3

1
 model 148 

The other model that demonstrates the blowing up of orbifold 
nZ

C 3
singularity is ( )10,2,1

13

1
. McKay 149 

quiver tesselated by tripods for this model is presented in figure 4 150 
 151 

 152 
 153 

Fig. 4. McKay quiver for ( )10,2,1
13

1
 model 154 

 155 
The corresponding monomial representation of this quiver is presented in our article [12]. 156 
 157 



 

The concept of a structure sheaf 
ΣXO is introduced to distinguish compact manifolds ΣX . This 158 

concept associates the ring of regular functions, ( ) UX RUO =
Σ

, to each open set. The structure 159 

sheaves or sheaves of rings are introduced to differ ΣX . Structure sheaf ( )UOX Σ
 is the sheaf of 160 

ΣXO  modules. For a sheaf F on a manifold ΣX , )(UFf ∈  is a section of sheaf F over U and the 161 

sections of sheaf F over ΣX  are global sections. After gluing the disjoint cones in the fan, set of 162 
global sections is empty, ie, there are no constant functions. It is useful for further physical 163 
interpretations. Thus, the local model of an algebraic variety over a field k is subset of algebraic 164 
variety defined by a system of algebraic equations or ringed space with a structure sheaf of rational 165 
functions together with Zariski topology. The modern version of this definition is the variety defined by 166 
a scheme over a field k. 167 
 168 
6. DIFFERENTIAL FORMS AND THE EULER CHARACTERISTIC ON THE MANIFOLD  169 
Let’s consider the ringed space (X, O), equipped with a sheaf of holomorphic 170 
functions. Since the functions are tensor fields of rank 0, and the vector fields 171 
are tensors of rank 1, it will be natural to use tensor fields as the common 172 
types of functions. Among tensor fields differential forms are widely used in 173 
applications [13] 174 

.)(
,,1

1
1

k

k

k

i

ii

i
ii dxdxxa∑ ∧∧=

K

K

Kω  175 

These forms can be closed, 0=ωd , and exact, 'ωω d= , for some form 'ω . 176 
Factor group of closed forms over the subgroup of exact forms determines de 177 

Rham cohomology group ( ) CRKKMH k ,,, =  for real, R or complex, C  fields. 178 
 179 
It is interesting to note that Euler characteristic of a manifold M, ( )Mχ  , is determined by the 180 
differential form  181 

NN
N

iiii
iiN

FF
N

21221
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1 −∧∧⋅= K

K

ε
π

η  182 

or the Euler class in de Rham cohomology group ( )RMH N ,2 . There ijF  - the field strength of the 183 

Yang - Mills and 
Nii 21K

ε is antisymmetric tensor. Wherein 184 

( ) ∫=
M

M ηχ . 185 

Similarly, it is possible to enter Dolbeault cohomology group in the complex 186 
space through p, q - forms, [14] 187 

( ) ( ) ( ) ( ) ( ){ }MTMTzMAMA z
q

z
pnqp '*'*', : ∧⊗∧∈∈= ϕϕ  188 

Mzallfor ∈  189 
for the decomposition of the cotangent space at any point z 190 
 191 

( ) ( ) ( )( ).'*'*'*
, MTMTMT z

q
z

p
nqpzC

n ∧⊗∧⊕=∧ =+  192 

Factor of d-exact forms of type (p, q), ( )MZ qp,
∂  over exact forms ( )( ) ⊂∂ MA qp,  193 

( )MZ qp 1, +
∂  determines Dolbeault  cohomology group 194 

 195 

( ) =∂ MH qp, ( )MZ qp,
∂ / ( )( ).1, MA qp −∂  196 

 197 
Relation between cohomology groups of de Rham and Dolbeault is realized 198 

in the form of the Hodge decomposition qp
nqp

n
D HH ,

=+⊕= . This implies the relationship between 199 



 

the dimensions of the de Rham cohomology groups - Betti numbers, nb , and dimensions of the 200 

Dolbeault cohomology group - Hodge numbers, qph ,  [15] 201 

∑=
=+ nqp

qp
n hb , . 202 

In this case the Euler characteristic is given by the expression 203 

( ) ( )( ) .11
,

,∑∑ +−=−=
qp

qpqp

n
n

n hbχ  204 

It is also important to stress the existence of an alternative formula for Euler characteristic,  205 
 206 

)()()(
2

1 1,21,1
fff ZhZhZ −=χ ,  207 

where the Hodge numbers of toric variety, Zf are defined by Laurent polynomial. These Laurent 208 
polynomials defines Newton polyhedron of such toric variety [11].   209 
 210 

7. HILBERT SCHEME OF ( )1,1,1
3

1
 MODEL AND THE NUMBER OF GENERATIONS OF 211 

PARTICLES IN STANDARD MODEL  212 
The article of contemporary theorists in the field of high energy physics 213 
[16] make it possible to interpret the Hodge numbers in terms of particle 214 
multiplets 215 

( ) ( ) ( )
( )( )

( ) ,29

dimdim272

2
0

221
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211
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HHT
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 216 

where Ha  and Hb  encode the number of H-charged fields, Tn - tensor multiplets and gauge groups 217 

H and ( )( ) )8(,,, 678
0

2 SOEEEkG =  for 2,3,4,6=k  and ( )( ) )1(0
2 SUkG =  for 0,1=k of 88 EE ×  218 

heterotic string. Hence the obvious connection of multiplet content of the particles with the Euler 219 
characteristic is presented by formula [15]: 220 

( ) 2KNgen χ= , 221 

ie, the number of generations of particles in nature is determined by the Euler characteristic. 222 
 223 

It will be important to calculate the Hilbert scheme for the considered model ( )1,1,1
3

1
, since it contains 224 

important information about the number of generations of quarks and leptons in the Standard Model 225 
(SM). Hilbert scheme is a space related to representation theory and mathematical physics [17]. This 226 
fact was presented in the study of the instanton moduli space associated with Hilbert schemes 227 
through the moduli space of sheaves. In addition, the Hilbert scheme is a special case of the moduli 228 
space, as shown in [17]. The spaces of modules in high-energy physics are associated with the 229 
multiplet content of matter fields [18], what is encoded in the Hilbert schemes. 230 
The applicaton of The Nakamura’s algorithm for computation of the Hilbert scheme for the D-brane 231 

model ( )1,1,1
3

1
 gives us the cones of the fan  232 

 233 
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RQP

RQP

 234 

 235 
The Hilbert scheme as the unifiication of fans is illustrated in figure 5. 236 
 237 



 

 238 
 239 

Fig. 5. Hilbert scheme of ( )1,1,1
3

1
model 240 

As we considered the blowing up of orbifold 
3

3

Z
C , where Z3 – subgroup of SU(3) [19], and group 241 

SU(3) classifies three possible quark states that realizes the fundamental representation of group of 242 

dimension three in the SM [20], then we can insist that Hilbert scheme for the model ( )1,1,1
3

1
 gives 243 

the number of generations of SM. This number of generations in SM is equal to three that agrees with 244 
the experimental data. 245 
 246 

The other example is Hilbert scheme for the model ( )10,2,1
13

1
, presented in figure 6. 247 

 248 
 249 

Fig. 6. Hilbert scheme of ( )10,2,1
13

1
model 250 



 

 251 
8. CONCLUSION 252 
We have considered orbifolds in terms of Hilbert scheme within the framework of toric geometry, 253 
which is the subsection of projective geometry. It is shown that the blowing up of orbifold singularities 254 
is associated with grinding or gluing of several cones in fan, as demonstrated by two examples of 255 

orbifold 
nZ

C 3
. The interpretation of the Euler characteristic in terms of Hodge numbers expressed 256 

in two different formulas for reflexive polyhedron on the one hand and for the matter content on the 257 
other hand is of importance for the physical interpretation of the mathematical constructions of this 258 
paper, as multiplet content of particles gives the number of generations of quarks and leptons. This 259 
theoretical result is confirmed by the specific example of the construction of the Hilbert scheme for two 260 

models ( )1,1,1
3

1
 and ( )10,2,1

13

1
. Thus, to sum up our research, we can prove that the construction of 261 

the Hilbert scheme in accordance with Nakamura’s algorithm is identical to the blow-up of singularities 262 
of orbifold. The blowing up of singularities makes it possible to calculate topological invariant of 263 
manifold, which is associated with the number of particle generations in physics. 264 
 265 
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