
E-mail address: istepanov2001@gmail.com. 

 1 

Maxwell Relations for Substances with 2 

Negative Thermal Expansion and Negative 3 

Compressibility  4 

 5 

Igor A. Stepanov1* 6 

 7 
1
 Institute of Science and Innovative Technologies, Liepaja University, Liela 14, Liepaja, 8 

LV−3401, Latvia 9 
 10 
 11 12 
.13 

ABSTRACT  14 

 15 

It is shown that taking into account the negative compressibility of substances changes Maxwell relations. 
The earlier results of the author indicating that these relations differ for substances with negative thermal 
expansion have received additional confirmation. Universal Maxwell relations have been derived. The 
results obtained have been confirmed experimentally by a number of authors. 
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1. INTRODUCTION  23 

 24 

Recently, negative compressibility materials were discovered [1−9]. For them, isothermal compressibility 25 

( )1
T

V V Pβ = − ∂ ∂  is negative. In this paper, it is shown that the Maxwell relations for such substances differ from 26 

normal relations. Moreover, additional evidences are found that Maxwell relations differ for substances with a negative 27 

thermal expansion coefficient ( )1
P

V V Tα = ∂ ∂ . General Maxwell relations have been derived which take into account 28 

the sign of compressibility and thermal expansion. Experiments show that the first and third general Maxwell relations are 29 
correct. 30 
 31 

2. THEORY  32 

 33 
The first Maxwell relation is: 34 

 

S V

T P

V S

∂ ∂   
= −   

∂ ∂   
 (1) 35 

where S is entropy. This relation stems from the first law of thermodynamics. This law for heat exchange can be written 36 
as: 37 

 δ d d dQ T S U P V= = +  (2) 38 

where δQ is the heat introduced into the system and U is internal energy. One introduces a quantity of heat into the 39 
system and it turns into the change in internal energy and work produced by the system. On the left-hand side, the motive 40 



 

force of the process is written, and its effect is written on the right-hand side. In [10−16] the general form of the first law of 41 
thermodynamics for the heat exchange was obtained: 42 

 δ d d sign( ) d .Q T S U P Vα= = +  (3) 43 

 44 
However, for the heating of substance by compression, the first law of thermodynamics cannot be derived from Eq. (2) 45 
and must be derived independently [10, 11, 13, 19]: 46 

 d dP V U= −  (4) 47 

(without the heat losses). Again, the motive force of the process is written on the left-hand side, and its effect is written on 48 
the right-hand side. One can prove this result very easily. Equation (2) cannot describe the compression of the 49 
substances with negative compressibility. The equation for that must be the following one: 50 

 d d .P V U=  (5) 51 

 52 
One can adduce another good argument. According to tables of thermodynamic derivatives [17], 53 

 .P

P

CU
P

V Vα

∂ 
= − + 

∂ 
 (6) 54 

This is the derivative for the heat exchange process. However, for mechanical compression this derivative must be 55 
obtained from Eq. (4), and it is: 56 

 .
P

U
P

V

∂ 
= − 

∂ 
 (7) 57 

Therefore, the thermodynamics of compression differs from the thermodynamics of the heat exchange. 58 
 59 
From Eq. (3) it follows that the first Maxwell relation will be as follows: 60 

 sign( ) .
S V

T P

V S
α

∂ ∂   
= −   

∂ ∂   
 (8) 61 

In the Appendix it is shown that this has been confirmed by many experiments and that Eq. (1) contradicts them.   62 
 63 
The second Maxwell relation is: 64 

 

S P

T V

P S

∂ ∂   
=   

∂ ∂   
. (9) 65 

Its traditional derivation is the following [18]. One introduces dU from Eq. (2) into the differential of enthalpy: 66 

 d d d dH U P V V P= + +  (10) 67 

and obtains: 68 

 d d d .H T S V P= +  (11) 69 

From this equation, Eq. (9) results. 70 
 71 
One can notice a mistake in this derivation. Let us prove that Eq. (2) is valid only for a constant pressure. Let us assume 72 

that the pressure is not constant in it. One can notice that δQ = TdS = dHP in Eq. (2) is a full differential, where dHP is the 73 

enthalpy change at a constant pressure. Therefore, the derivatives ( )1
U

V∂ ∂  and ( )
V

P U∂ ∂  must be equal. However, 74 

for the ideal gas, they equal 0 and 2
3V

, respectively. In reality, these derivatives must also be taken at a constant 75 

pressure, thus both are equal to zero. The differential dU from Eq. (2) does not equal dU from Eq. (10) because in Eq. (2) 76 
it is for constant pressure, but in Eq. (10) it is for varying pressure. (In Eq. (4), of course, the pressure can vary.) The 77 
correct derivation must be the following. For heat exchange with varying pressure and volume [19, 20]: 78 

 δ d d d d .Q T S U P V V P= = + +  (12) 79 

 80 
One can see that: 81 

 1 2d d dT S T S T S= +  (13) 82 

where 83 

 1 1 1δ d d dQ T S U P V= = +  (14) 84 

is the heat exchange at a constant pressure, and 85 

 2 2 2δ d d dQ T S U V P= = +  (15) 86 

is the heat exchange at a constant volume [19−21]. From Eq. (15), omitting the subscripts, the second Maxwell relation 87 
can be derived: 88 



 

 

S P

T V

P S

∂ ∂   
= −   

∂ ∂   
. (16) 89 

This equation has a different sign compared with Eq. (9). 90 
 91 
From the well-known thermodynamic identity [22], it follows that: 92 

 d d d d .
V P T

P V P
P T T T

T T V

α

β

∂ ∂ ∂     
= = − =     

∂ ∂ ∂     
 (17) 93 

This means that Eq. (15) will look like: 94 

 d d sign( ) d .T S U V Pαβ= +  (18) 95 

From this equation the general second Maxwell relation follows: 96 

 sign( )
S P

T V

P S
αβ

∂ ∂   
= −   

∂ ∂   
. (19) 97 

 98 
The third Maxwell relation is: 99 

 .
V T

P S

T V

∂ ∂   
=   

∂ ∂   
 (20) 100 

Consider its traditional derivation [18]. One introduces dU from Eq. (2) into the differential of Helmholtz energy: 101 

 d d d dF U T S S T= − −  (21) 102 

which results in: 103 

 d d d .F P V S T= − −  (22) 104 

From this, Eq. (20) is obtained. However, this derivation is non-strict: an equation which describes the heat exchange at a 105 
constant pressure with varying volume is introduced into the equation which describes a process with a constant volume 106 
and varying pressure. A more strict derivation should be one such as: 107 

 1 2d d  + dF F F=  (23) 108 

where 109 

 1 1 1 1 1d d d d dF U T S S T S T= − − = −  (24) 110 

corresponds to the quantity of heat introduced into the system at a constant volume (we introduce into Eq. (24) dU from 111 
Eq. (2) with dV = 0), and 112 

 2 2 2 2 2d d d d d d .F U T S S T P V S T= − − = − −  (25) 113 

corresponds to the expansion/compression of the system due to the heat exchange at a constant pressure (into Eq. (25) 114 
we introduce dU from Eq. (2)). Summing up Eqs. (24) and (25), one gets Eq. (22). 115 
 116 
Let us take the thermal expansion coefficient into account. Introducing Eq. (3) into Eq. (25), and summing Eqs. (24) and 117 
(25), one obtains: 118 

 d sign( ) d dF P V S Tα= − −  (26) 119 

and the third general Maxwell relation becomes: 120 

 sign( ) .
V T

P S

T V
α

∂ ∂   
=   

∂ ∂   
 (27) 121 

In the Appendix it is shown that this equation has been confirmed by many experiments and that Eq. (20) contradicts 122 
them.  123 
 124 
The fourth Maxwell relation is: 125 

 

P T

V S

T P

∂ ∂   
= −   

∂ ∂   
. (28) 126 

Consider its traditional derivation [18]. One introduces dU from Eq. (2) into the differential of Gibbs energy: 127 

 d d d d d dG U P V V P T S S T= + + − −  (29) 128 

and obtains: 129 

 d d d .G V P S T= −  (30) 130 

From this, Eq. (28) results. 131 
 132 



 

One can see that this derivation is non-strict: dU from Eq. (2) is at a constant pressure and does not equal dU from Eq. 133 
(29), which is at a varying pressure. Let us try to derive Eq. (28) more strictly. One introduces a quantity of heat (TdS) into 134 
the system at varying volumes and pressures and the Gibbs energy of the system changes: 135 

 1 2d d dG G G= +  (31) 136 

where dG1 is the change in the Gibbs energy at a constant pressure: 137 

 1 1 1 1d d d d dG U P V T S S T= + − −  (32) 138 

and dG2 is the change in it at a constant volume: 139 

 2 2 2 2d d d d d .G U V P T S S T= + − −  (33) 140 

Introducing Eq. (14) into Eq. (32), we obtain: 141 

 1 1d d .G S T= −  (34) 142 

One can note that one can obtain Eq. (20) from Eq. (34), assuming that 143 

 1d d .S T P V= −  (35) 144 

Introducing Eq. (15) into Eq. (33), we obtain: 145 

 2 2d d .G S T= −  (36) 146 

We can note that one can obtain Eq. (28) from Eq. (36), assuming that: 147 

 2d d .S T V P=  (37) 148 

 149 
For substances with negative thermal expansion or negative compressibility, it follows from Eqs. (17) and (37) that: 150 

 2d sign( ) dS T V Pαβ=  (38) 151 

and that the fourth general Maxwell relation is: 152 

  sign( ) .
P T

V S

T P
αβ

∂ ∂   
= −   

∂ ∂   
 (39)   153 

 154 
  155 

3. CONCLUSION 156 

 157 
It has been shown that the negative compressibility of substances effects the Maxwell relations. The earlier results of the 158 
author indicating that negative thermal expansion also effects these relations have been strongly confirmed. General 159 
Maxwell relations have been obtained which take into account the sign of compressibility and thermal expansion: Eqs. (8), 160 
(19), (27), and (39). Inaccuracies in the previous derivation of the Maxwell relations are shown and corrected. Previously, 161 
the dependence of the second, third, and fourth Maxwell relations on the sign of thermal expansion was published [11, 14, 162 
15, 20]. In the present paper, the dependence of all Maxwell relations on the sign of thermal expansion and 163 
compressibility is given. The first and third general Maxwell relations have been supported experimentally. It is shown that 164 
their previous versions fail to describe the experiments of a number of authors. 165 
 166 
 167 
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APPENDIX 225 

 226 

 227 
In [23, 24] and references therein, the tension of a rubber band as a function of temperature and length was measured. 228 

The tension τ is proportional to −P; hence the first Maxwell relation, Eq. (8), will be expressed as: 229 

 sign( ) .
S V

T

V S

τ
α

∂ ∂   
=   

∂ ∂   
 (A1) 230 

The sign of the left part must be negative because when one increases the temperature of a system, its entropy increases 231 
and for the entropy to remain constant the volume must decrease. The derivative in the right part of Eq. (A1) describes the 232 

change in the tension during heating and has the same sign as ( )
V

Tτ∂ ∂ , which was found experimentally to be 233 

positive. The rubber band contracts when heated under tension (the Gough–Joule effect) [23, 24]; hence α is negative. 234 
One can see that the traditional Maxwell relation, Eq. (1), contradicts the experiment.                                                                                                                              235 
 236 
The third Maxwell relation, Eq. (27), in this case will have the following form: 237 

 sign( ) .
V T

S

T V

τ
α

∂ ∂   
− =   

∂ ∂   
 (A2) 238 

The left part of it is positive. Its right part describes the following process: one introduces a quantity of heat into the system 239 
(dS > 0) and its volume decreases. If one wants to keep the temperature constant, one has to increase the volume, and 240 
hence this derivative is greater than zero. Again, the traditional Maxwell relation, Eq. (20), contradicts the experiment. 241 



 

 242 
Let us introduce a quantity of heat into a substance (Eq. (2)) and let us suppose that it expands. According to the 243 
definition of work in thermodynamics, P in Eq. (2) is the internal pressure (produced by the substance) and is positive in 244 
our case because it expands the substance [25]. Its absolute value equals the sum of the pressure caused by surface 245 
tension and atmospheric pressure, with the latter being negligibly small compared to the former. If the substance 246 
possesses negative thermal expansion, then the pressure produced by the substance is negative and Eq. (2) can be 247 
rewritten as: 248 

 ( ) ( )δ d d d sign( ) dQ U P V U P Vα= + − − = +  (A3) 249 

which coincides with Eq. (3). 250 

 251 


