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ABSTRACT  5 

 6 

Previously, in the calculation of the internal energy of the ideal gas in statistical mechanics, it has been 
supposed that the volume is a constant, which does not depend on any arguments. However, the volume 
depends on pressure and temperature and its partial derivative is not equal to zero. In this paper, the 
dependence of the volume on pressure and temperature is taken into account, and the internal energy is 
calculated exactly. It differs from the traditional internal energy by the product of the pressure and volume. 
This explains three paradoxes in thermodynamics. It follows that the isochoric heat capacity equals the 
isobaric one. It is shown that the derivation of the Mayer’s relation which connects the isochoric and 
isobaric heat capacities, is wrong. 
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1. INTRODUCTION  13 

 14 

The canonical partition function of a classical and discrete system in statistical mechanics is [1−4]:  15 
 16 
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 18 
Here, k is the Boltzmann constant, T is temperature and Ui is the energy of the system in the respective 19 
microstate. The internal energy of a system can be obtained through the partition function: 20 
 21 
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 23 
It is important to note that the derivative in the above equation must be taken at constant energies, but 24 
not at a constant volume. In [2,3] it was taken at a constant volume. This is a mistake, one can check that 25 
by simple calculation. The internal energy of the ideal gas was obtained from equation 2 for a continuous 26 
case: 27 
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 29 
where N is the number of atoms.  30 
 31 
However, the partition function of the ideal gas depends on the volume. In the previous calculation of the 32 
internal energy of the ideal gas, the derivative of the volume with respect to temperature was supposed to 33 
be zero, which is wrong. In the present paper, the exact calculation of the internal energy of the ideal gas 34 
has been performed taking this derivative into account. 35 
 36 
 37 
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2. THEORY 38 

 39 
For a continuous system of N particles, the partition function is [1,5]:  40 
 41 
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 43 

where h is the Planck constant, and Γ is the phase space. The average energy of such a system is: 44 
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 47 
This expression is equivalent to equation 2. It is important to note that both for discrete and continuous 48 
systems the only value being kept constant in the partial derivative in equation 2 is the energy U.  49 
  50 
Let us perform a simplified derivation of the partition function for a monatomic ideal gas [1] (we omit h

3N
 51 

for simplicity). The energy, U(Γ), equals the sum of the kinetic energies of the atoms: 52 
 53 
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 55 
Here, pi is the momentum of the i-th atom, and m is its mass. Introducing equation 6 into equation 4, one 56 
obtains a 6N-dimensional integral:  57 
 58 
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 60 
This integral equals:  61 
 62 
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 64 
Here, dp1 and dr1 are the elements of the momentum space and position space respectively of the first 65 

particle.  66 
 67 
Introducing equation 8 into equation 2, one obtains: 68 
 69 
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 71 
In the previous calculations, it was supposed that V is a constant which does not depend on any 72 
arguments and the derivative in the right hand part of equation 9 equals zero. As is mentioned above, it is 73 
physically wrong to assume that the volume is a constant, which does not depend on any arguments. 74 

Even when the volume is constant, it depends on temperature and pressure, and the derivative V T∂ ∂  75 
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is, in general, not zero. Let us take the partial derivative in equation 9 at a constant energy using the 76 
equation of state: 77 
 78 

     .PV NkT=                           (10) 79 

 80 
One can show that, in this case, equation 9 turns to: 81 
 82 
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 84 
If this result is correct, then the internal energy of the ideal gas (and may be that of all physical systems) 85 
has an intrinsic integral term PV. So, the internal energy of the ideal gas (or of a physical system) must be 86 
written like this: 87 
 88 
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 90 
where U is the traditional internal energy, and H is enthalpy. 91 
 92 
One can immediately explain the following contradiction in thermodynamics. For the heating of a 93 
substance by compression without the heat losses, the first law of thermodynamics is: 94 
 95 
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 97 
From this equation, the following derivatives follow: 98 
 99 
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 103 
However, P and S cannot be constant simultaneously, and a contradiction occurs. It can be resolved 104 
using the result obtained. The first law of thermodynamics for the heating of a system by compression 105 
must look like: 106 
 107 

 d d d .P V U V P= − −  (16) 108 

 109 
From this, equation 14 follows, but equation 15 is not true. 110 
 111 

3. DISCUSSION AND CONCLUSIONS 112 

 113 
If the derivations performed in this paper are correct, then the first law of thermodynamics for heat 114 
exchange has the following form: 115 
 116 
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where δQ is the heat introduced into the system. For a constant volume, equation 17 turns to:  119 
 120 
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where dS is the change in entropy. Previously, it has been supposed that the last term in this equation is 123 
absent. For a constant pressure, equation 17 turns to: 124 
 125 
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 127 
Previously, it has been supposed that this equation is valid also for varying pressure [4,6]. Let us prove 128 
that equation 19 is valid only for a constant pressure. Let us assume that the pressure is not constant in 129 

it. One can notice that δQ = TdS = dHP in equation 19 is a full differential, where dHP is the enthalpy 130 

change at a constant pressure. Therefore, the derivatives ( )1
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However, for the ideal gas, they equal 0 and 2
3V

, respectively. In reality, these derivatives must also be 132 

taken at a constant pressure, thus both are equal to zero. 133 
 134 
From equations 18 and 19 it follows that the isochoric heat capacity, CV, equals the isobaric heat 135 
capacity, CP. In [7], the heat capacities of argon and nitrogen were measured experimentally, and it was 136 
found that CV = CP. Let us cite A. Guy [7]: "In a standard experiment in physical chemistry, students 137 
determine CP/CV = 1.4 for a diatomic gas such as nitrogen, but nowhere in the scientific literature is there 138 
a report on the direct experimental determination of both CP and CV for any gas." 139 
 140 
There is a relation between the isobaric heat capacity and the isochoric heat capacity (Mayer’s relation) 141 
[6]: 142 
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 144 

where α is the coefficient of thermal expansion, ρ is density, and β is the isothermal compressibility. One 145 
can show that the derivation of Mayer’s relation is not correct. Let us consider the key part of this 146 
derivation and expand S as a function of T and V: 147 
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whence 151 
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 155 
One can see that this consideration is equivalent to the following one. Let us take the following 156 
expansion: 157 
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 159 
and divide it by dT. The derivatives on the right hand side are equal to zero, and at a constant P the 160 
arguments V and T are not independent. 161 
 162 
It is necessary to note that, from equation 19, the following derivative was obtained and given in the 163 
tables of thermodynamic derivatives, for example [8]:

 
164 
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Nevertheless, from equation 17, it follows that the partial derivative in equation 25 is taken also at a 168 

constant pressure, ( )
,V P

S
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, and should equal zero. From equation 18, it follows that equation 25 for 169 

heat exchange should be written like this: 170 
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 173 
The derivative of the pressure in equation 26 is given in [8]. For the ideal gas this equation turns to: 174 
 175 
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 177 

The results of the present paper can explain a paradox in the ideal gas [9−12]. Two variables are 178 
necessary to determine the properties of a gas, such as its internal energy. In the kinetic theory, the 179 
internal energy of the ideal gas is given by equation 3. The paradox is that this energy depends only on 180 
one variable, T, but must depend on two. From equations 3 and (10) it follows that:  181 
 182 
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 184 
Here, the energy depends on two variables. 185 
 186 
This paradox is valid also for real gases because, in a wide range of temperatures and pressures, they 187 
only minimally deflect from the ideal gas. For example, the molar volumes of argon, helium, hydrogen, 188 
nitrogen, oxygen and methane deviate at about 0.1 percent of 22.414 litres at standard temperature and 189 
pressure and deviate even less for higher temperatures and lower pressures. For argon, the difference 190 

between the theoretical and experimental heat capacity is less than 0.1 percent [9−11,13]. For real gases, 191 
there will be a weak dependence of thermodynamic properties on volume in equation 3 and a strong 192 
dependence on volume in equation 10. 193 
 194 
It is interesting to note that the obtained result explains the enthalpy paradox found in [10,11,14]. 195 
Thermodynamic potentials internal energy, U, and enthalpy, U + PV, are qualitatively different, but, for the 196 
ideal gas, they are identical thermodynamically and differ only in the multiplying factor in that U equals 197 
1.5PV, and H equals 2.5PV. If everything were correct in traditional thermodynamics, then U would not be 198 
thermodynamically identical to H even for the ideal gas. 199 
   200 
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