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ABSTRACT 
 

The effect of electroconductivity on MHD fluid flow through an even pore spaces on two parallel 
plates was carried out. Solution to the governing equations and analysis of the resulting parameters 
showed that an increase in Schmidt number and Chemical reaction result in an increase in both the 
concentration and velocity profiles of the fluid. The increase in Prandtl number and radiation 
parameter also led to a decrease in the temperature and velocity profiles of the fluid. An increase in 
Reynolds number, Grashof number due to temperature and concentration all led to an increase in 
velocity profile of the fluid while Hartmann number and electroconductivity bring about a decrease 
in the velocity profile of the fluid. Special cases of the fluid configuration, shear stress, Nusselt 
number and Sherwood number is also examined. 

Keywords: Porous parallel plates; MHD; viscous incompressible fluid; couette flow; poiseuille flow; 
electoconductivity. 
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NOMENCLATURES 
 

 : Fluid density                                                                                               

P : fluid pressure                                                                                                    
 : Constant fluid electroconductivity                                                             

  : Dimensionless fluid electroconductivity                                                   

  : Fluid conductivity                                                                                          
u  : Dimensionless fluid velocity                                                                      

  : Dimensionless fluid pressure                                                                       

  : Dimensionless coordinate                                                                        

a  : Thermal diffusivity                                                                 
 : Fluid concentration                                                                 
 : Characteristic concentration                                                                             

 : Characteristic temperature                                                                        

 : Free convection parameter due to 

temperature                                                   
 : Free convection parameter due to 

concentration                                               
 : Dimensionless fluid electroconductivity                                         

 : Planck’s function                                                                                      
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 : Frequency of radiation                                                                          
 : Dimensionless radiation term                                                                        

Sc  : Schmidt number                                                                                                      
 : Fluid velocity 

U  : Plate velocity 
  : Absolute viscosity 

 : Magnetic field 

Re  : Reynolds number 
Ha  : Magnetic Hartmann number 
x,y  : Coordinates 
D : Chemical molecular diffusivity   

  : Coefficient of volume expansion for 
temperature 

 : Coefficient of volume expansion for 

concentration 
T  : Fluid temperature 

 : Chemical reaction term 

 : Radiative term 

  : Dimensionless temperature 
 : Specific heat at constant pressure 

 : Absorption coefficient 

 : Stefan Boltzmann constant 

 : Dimensionless chemical reaction term 
Pr : Prandtl number 
1. INTRODUCTION 
 

Porous plates or surfaces are even or uneven 
holes that are found on plates or   Substances for 
fluids and other finely elements to flow through. 
The rate of flow depends on so many factors 
ranging from nature of pores, grain size or 
shape, sorting, clay and organic content to 
mention few. They are created as a result of 
anthropogenic activities intentional or 
unintentional and some clay particles which tend 
to electrostatically repel one another along the 
surface of the particles and create void spaces. 
In plasma dynamics such as the depletion of the 
ozone layer as reported in Ngiangia et. al [1] and 
decrease of granules by pressure dependent 
forces on isothermal and adiabatic fluids in 
Ngiangia and Orukari  [2]  are widely studied. 
The formulation and application of Darcy’s law is 
also depended on fluid through porous medium 
though for slow flow and small Reynolds number 
characteristics. The study of flow through porous 
plates or surfaces has been widely studied in 
recent times due to its applications in geothermal 
and oil recovery process, movement of fluid in 
xylem and phloem vessels in plants, 
perspirations through pore spaces in humans, 
and  tunneling. Others are Josephson junction, 
and construction of buildings. The viscosity and 
pressure of such flow has also been vigorously 
studied and its results documented. Orukari et al 

[3], studied the motion of fluid through porous 
medium and made useful findings. Anand et al 
[4] in their investigation of fluid flow in a porous 
medium with other parameters, opined that its 
effect have both physical and engineering value 
which must be investigated properly. Studies of 
the effect of MHD, porosity and radiation in 
conjunction with other parameters are also 
abounded [5-18] and their contributions are not 
only vital but far reaching. Recently, Ullah et al 
[19] considered squeezing flow in porous 
medium with MHD effect and showed using 
graphs that both imposed magnetic field and 
constant electroconductivity are directly 
proportional to the velocity field. The interplay of 
a combination of two or more of these 
parameters in this flow configuration has 
attracted researchers to it. Studies of the special 
cases in which the flow result into Couette flow 
and Poiseuille flow [20 and 21], is also very 
common with a combination of parameters.  
Therefore, our aim is to critically examine the 
effect of magnetic field and electroconductivity to 
the flow configuration and compare with existing 
results which we hope will add to the body of 
literatures. 
Please mention ref. no. 19 after ref. no. 18 
2. MATHEMATICAL MODEL FORMULA-

TION 
 
We consider steady laminar flow of viscous 
incompressible fluid between two infinite parallel 
porous plates separated by a distance 2h as 
shown in Fig. 1. 
 
Let  be the direction of the main flow,  be the 

direction perpendicular to the flow and the width 
of the plates parallel to the direction. We also 
assume the velocity component w to be zero 
everywhere and the velocity u as a function of  

alone.  The continuity equation reduces to 
  

                                                     (1) 

 
so that v does not vary with .  
 

The assertion implies that, the fluid enters the 
flow region through the lower plate at constant 
velocity  and leaves through the upper plate. 
 

The geometry of the fluid reduces the Navier-
Stokes equations into the form 
 

            

(2) 

                                                         (3) 
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where following Boricic et. al [22], the fluid 
electroconductivity is assumed to be of the form

 but for physical exigency and 

mathematical amenability, it is approximated to 
the form in equation (2). Using the no-slip 
condition, the boundary conditions are 
  
u(-h) = 0,   u(h) = U                                           (4) 

 
From equation (2), differentiate with respect to x, 
simplify and integrate with respect to x, we get 
  

                                                            (5) 

 

where the negative sign introduced, describe a 
decrease in p as x increases. 
 
If we put equation (5) into equation (2) and 
simplify, we get  
 

           

(6) 
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For optically thin medium with relatively low density in the spirit of Cogley et. al [23], equation (9) 
reduces to  
 

                                                                                                                  (10) 

 

where  

 
2.1 Dimensionless Analysis 
 
For dimensional homogeneity of the hydrodynamic equations, we substitute the following 
dimensionless numbers and parameters  
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Fig. 1. Physical model and coordinate system of the problem 



 
 
 

 
 

 

 
having employed the Buckingham-- Theorem, 
equations (6-8) can be rewritten as  
 

    (11) 

 

                               (12) 
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with the boundary conditions 
 

, ,  

                             (14) 

 
3. METHOD OF SOLUTION 
 
The solution of equation (13) after the imposition 
of the appropriate boundary conditions of 
equation (14) is  
 

               (15) 
where  

 

 

 

 

 

Considering equation (12), the solution following   
 

                (16) 
 

where              

 ,  

 

 
Equations (15) and (16) is substituted into 
equation (11), and the resulting solution after the 
imposition of the appropriate boundary conditions 
in (14) is,  

     (17) 
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3.1 Shear Stress 
 

                                   (18) 

 
This reveals that the shear stress at the wall of 
the plates is independent of the pressure 
gradient. 
 

3.2 Skin Friction 
 

The skin frictions at the plates and  

from equation (18) are given as  
 

                                                  (19) 

 

                                                    (20) 

 

3.3 Coefficient of Friction 
 
The mean fluid flow velocity for our study 
referring to Rasinghania [20] is 
  

                                              (21) 

 
The coefficient of friction  corresponding to 

 is  

Similarly,  corresponding to  is 

  

 

The mean   is extensively used in 

determining the energy losses in the porous 
channels through which the fluid flows. 
 
3.4 Nusselt Number 
 
The Nusselt number (Nu) which is the 
dimensionless heat transfer coefficient is given 
by  
 

                                  

(22) 
 
At the wall of the plates, Nu is given by  
 

                                                  (23) 

3.5 Sherwood Number 
 
The dimensionless mass transfer coefficient (Sh) 
of the fluid flow is given by  
 

                               

(24) 
 
At the plates, we have 
 

                                                 (25) 

 
Emperically, the rate of mass transfer coefficient 
is related to the Reynolds’ number and Schmidt 
number 
   

 where  is a constant  (26) 
 
It is therefore important to note that the transition 
from laminar flow to turbulence flow can also be 
determined by equation (26) 
 
3.6 Special Cases 
 
Case 1: Plane couette flow 
 
In this flow configuration, what drives the flow is 
the relative movement of the plates. Therefore, 
the pressure gradient is absent and reduces 
equation (17) to 
 

 

           (27) 
 
This affected the magnitude of the fluid velocity 
and by extension the shear stress and the skin 
friction. 
 
Case 2: Plane poiseuille flow  
 
The configuration for plane Poiseuille flow shows 
that the plates are at rest because what drives 
the motion is the pressure gradient. Therefore, U 
= 0 and the affected parameters in equation (17) 
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are   and  which also affected the flow 
velocity, shear stress and skin friction. 
 
4. RESULTS AND DISCUSSION 
 
The Schmidt number relates the relative 
thickness of the hydrodynamic boundary layer 
and mass boundary layer. It is a ratio of 
momentum diffusivity to mass diffusivity. Its 
increase as depicted on Figs. (2) and (8) showed 
a reduction in the boundary layers hence a 
decrease in the concentration and velocity 
profiles of the fluid.  The chemical reaction of the 
fluid, reduced the concentration boundary layers 
but unaffected by the momentum boundary 
layers. As a result of increase in chemical 
reaction parameter as shown on Figs. (3) and 
(9), the velocity and concentration profiles of the 
fluid are reduced considerably.  Increase in the 
Prandtl number decrease the thermal boundary 
thickness and also lower the mean temperature 
within the boundary layer. Therefore, increase in 
Prandtl number as shown in Figs. (4) and (13) 
respectively led to a decrease in the temperature 
and velocity profiles of the fluid. Figs. (5) and 
(14) showed increase in radiation parameter. 
Radiation which is brought about by thermal 
transfer, decrease both the temperature and 
velocity profiles of the fluid flow. Reynolds 
number examine the transition of fluid from 
laminar to turbulence from Reynolds number 0 to 
about 3000. Fig. (10) is clear that increase in 
Reynolds number shows a corresponding 

increase in the velocity profile of the fluid. The 
Hartmann number and electroconductivity are 
resistive type of forces which tend to impede the 
flow of fluid in a region where its effect is 
prevalent. As shown in Figs. (11) and (12) 
respectively, their increase, decrease or reduce 
the motion or velocity of the fluid flow. The 
Grashof number due to temperature which is the 
free convection effects correspond to cooling of 
the plate  by natural convection. Its 

effect, conduct heat away from the plates into the 
fluid thereby increasing the temperature of the 
fluid which in turn increases the velocity of the 
fluid as shown in Figure (6). A similar observation 
is also reported by an increase in the Grashof 
number due to concentration (Gc) as depicted in 
Figure (7). As the Grashof number due to 
concentration  increases, the ratio of 

the buoyancy force to the viscous hydrodynamic 
force increases, hence result in an increase in 
the velocity profile of the fluid. From equation 
(18), the shear stress at the wall of the plates 
only depicts an increase in magnitude of the fluid 
velocity considering the no-slip condition 
adopted. Increase in the material parameters 
considered will certainly result in the opposite of 
the heat transfer coefficient as shown in equation 
(25). Similar observation is also prevalent in the 
mass transfer coefficient as shown in equation 
(24). These observations are consistent with the 
works of [24], [25] and [26]. 

 
 

Fig. 2. Concentration profile  against boundary layer  for varying Schmidt number  
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Fig. 3. Concentration profile  against boundary layer  for varying chemical reaction   
 

 
 

Fig. 4. Temperature profile  against boundary layer  for varying Prandtl number   

 
 

Figure 5: Temperature profile  against boundary layer  for varying Radiation parameter R 
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Fig. 6. Velocity profile  against boundary layer for varying Grashof number  
 

 
 

Fig. 7. Velocity profile  against boundary layer  for varying Grashof number  

 
 

Fig. 8. Velocity profile  against boundary layer  for varying Schmidt number  
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Fig. 9. Velocity profile  against boundary layer  for varying chemical reaction   
 

 
 

Fig. 10. Velocity profile  against boundary layer  for varying Reynolds number Re 

 
 

Fig. 11. Velocity profile  against boundary layer  for varying Hartmann number Ha 
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Fig. 12. Velocity profile  against boundary layer  for varying Electrconductivity  

 

 
 

Fig. 13. Velocity profile  against boundary layer  for varying Prandtl number   
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Fig. 14. Velocity profile  against boundary layer  for varying Radiation parameter 
In order to get physical insight and numerical validation of the problem, an approximate values of   

 are chosen. The values of other parameters made use of are 
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5. CONCLUSIONS 
 
In this paper, the plates pore spaces are evenly 
spread and the flow considered, therefore the 
inclusion of the effect of porosity is ignored. The 
choice of the boundary conditions and the flow 
configuration, created two special cases which 
was discussed by the determination of the 
shearing stress and skin friction in both cases. 
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