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Abstracts 

The effect of electroconductivity on MHD  fluid flow through an even pore spaces on two  

parallel plates was carried out. Solution to the governing equations and analysis of the resulting  

parameters showedthat an increase in Schmidt number and Chemical reaction result in  an  

increase in both the concentration and velocity profiles of the fluid. The increase in Prandtl  

number and radiation parameter also led to a decrease in the temperature  and velocity profiles  

of the fluid. An increase in Reynolds number, Grashof number due to temperature and  

concentration all led to an increase in velocity profile of the fluid while  Hartmann number and  

electroconductivity bring about a decrease in the velocity profile of the fluid. Special cases of the  

fluid configuration, shear stress, Nusselt number and Sherwood number is also examined. 

Keywords: Porous parallel plates, MHD, Viscous Incompressible Fluid, Couette flow, Poiseuille  

flow, Electoconductivity 
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1. Introduction 

Porous plates or surfaces are even or uneven holes that are found on plates or  

  Substances for fluids and other finely elements to flow through. The rate of flow  

depends on so many factors ranging from nature of pores, grain size or shape, sorting,  

clay and organic content to mention few. They are created as a result of anthropogenic  

 activities intentional or unintentional and some clay particles which tend to  

 electrostatically repel one another along the surface of the particles and create void  

 spaces. In plasma dynamics such as the depletion of the ozone layer as reported in  

Ngiangia et. al [1] and decrease of granules by pressure dependent forces on isothermal   

and adiabatic fluids in Ngiangia and Orukari  [2]  are widely studied. The formulation and  

application of Darcy’s law is also depended on fluid through porous medium though for  

slow flow and small Reynolds number characteristics. The study of flow through porous  

plates or surfaces has been widely studied in recent times due to its  applications in geothermal  

and oil recovery process,  movement of fluid in xylem and phloem vessels in plants ,  

perspirations through pore spaces in humans, and  tunneling. Others are Josephson junction, 

and construction of buildings. The viscosity and pressure of such flow has also been vigorously 

studied and its results documented. Orukari et al [3], studied the motion of fluid through porous 

medium and made useful findings. Anand et al [4] in their investigation of fluid flow in a porous 

medium with other parameters, opined that its effect have both physical and engineering value 

which must be investigated properly. Studies of the effect of MHD, porosity and radiation in 

conjunction with other parameters are also abounded [5-15] and their contributions are not 

only vital but far reaching. Recently, Ullah et al [16] considered squeezing flow in porous 



medium with MHD effect and showed using graphs that both imposed magnetic field and 

constant electroconductivity are directly proportional to the velocity field. The interplay of a 

combination of two or more of these parameters in this flow configuration has attracted 

researchers to it. Studies of the special cases in which the flow result into Couette flow and 

Poiseuille flow [17 and 18], is also very common with a combination of parameters.  Therefore, 

our aim is to critically examine the effect of magnetic field and electroconductivity to the flow 

configuration and compare with existing results which we hope will add to the body of 

literatures.  

 

 

Nomenclature 

ρ  = Fluid  density                                                     u′ = fluid velocity 

P= fluid pressure                                                          U = plate velocity 

∞σ = constant fluid electroconductivity                  µ  = absolute viscosity 

0σ  = dimensionless fluid electroconductivity            2
0B  = Magnetic field 

σ  = fluid conductivity                                                   Re = Reynolds number 

u = dimensionless fluid velocity                               Ha = Magnetic Hartmann number 

p′  = dimensionless fluid pressure                         x,y = coordinates 

η  = dimensionless coordinate                               D= Chemical molecular diffusivity   

a = thermal diffusivity                                  Tβ  = coefficient of volume expansion for temperature 

  C ′ =  fluid concentration                            cβ = coefficient of volume expansion for concentration  

  oC = characteristic  concentration                     T = fluid temperature       

   oT = characteristic  temperature                               
2
rK  = chemical reaction term 

TGr  = free convection parameter due to temperature       
yq = radiative term    

cGr = free convection parameter due to concentration       θ  = dimensionless temperature       

0σ  = dimensionless fluid electroconductivity      
pC = specific heat at constant pressure 



∧ = Planck’s function                                              ∗K
α  = absorption coefficient  

∗κ = frequency of radiation                                cσ = Stefan Boltzmann constant 

R = dimensionless radiation term                 k = dimensionless chemical reaction term            

Sc = Schmidt number                                                Pr= Prandtl number  

 

2. Mathematical Model Formulation 

We consider steady laminar flow of viscous incompressible fluid between two infinite 
parallel porous plates separated by a distance 2h as shown in figure 1. 

 

 

Let x  be the direction of the main flow, y  be the direction perpendicular to the flow and 

the width of the plates parallel to the −z direction. We also assume the velocity 
component w to be zero everywhere and the velocity u as a function of y  alone.  

The continuity equation reduces to  

0=
∂

′∂
y

u
                                                                                                      (1) 

so that v does not vary with y .  

The assertion implies that, the fluid enters the flow region through the lower plate at 

constant velocity 0v  and leaves through the upper plate. 
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Figure 1: Physical model and coordinate system of the problem 



The geometry of the fluid reduces the Navier-Stokes equations into the form 
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where following Boricic et. al [19], the fluid electroconductivity is assumed to be of the form  








 ′
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u
1σ  but for physical exigency and mathematical amenability, it is approximated to the 

form in equation (2). Using the no-slip condition, the boundary conditions are  

                             u(-h) = 0,   u(h) = U                                                         (4) 

From equation (2), differentiate with respect to x, simplify and integrate with respect to x, 
we get  
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where the negative sign introduced, describe a decrease in p as x increases. 

If we put equation (5) into equation (2) and simplify, we get  
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For optically thin medium with relatively low density in the spirit of Cogley et. al [20], equation 

(9) reduces to  
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2.1 Dimensionless analysis 

For dimensional homogeneity of the hydrodynamic equations, we substitute the following 
dimensionless numbers and parameters  
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having employed the Buckingham-- −π Theorem, equations (6-8) can be rewritten as  
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with the boundary conditions 

  Uuu ==− )1(,0)1( , 
yθθθ ==− )1(,0)1( ,  

yCCC ==− )1(,0)1(                      (14) 

3 Method of Solution 

The solution of equation (13) after the imposition of the appropriate boundary 
conditions of equation (14) is  
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Considering equation (12), the solution following the same method employed in equation  

(13), is  
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Equations (15) and (16) is substituted into equation (11) , and  the resulting   

solution after the imposition of the appropriate boundary conditions in (14) is,  
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EDCBA +−+−+−+−= 214311 expexpexpexp ααααϕ  

EDCBA ++++= 214312 expexpexpexp ααααϕ  

3.1 Shear stress 
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This reveals that the shear stress at the wall of the plates is independent of the pressure 
gradient. 

3.2 Skin friction 

The skin frictions at the plates 1−=η and 1=η  from equation (18) are given as  
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3. 3 Coefficient of friction 

The mean fluid flow velocity for our study referring to Rasinghania [17] is  
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the porous channels through which the fluid flows. 

 3.4 Nusselt number 

The Nusselt number (Nu) which is the dimensionless heat transfer coefficient is given by  
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At the wall of the plates, Nu is given by  
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 3.5 Sherwood number 

The dimensionless mass transfer coefficient (Sh) of the fluid flow is given by  
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At the plates, we have  
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Emperically, the rate of mass transfer coefficient is related to the Reynolds’ number 
and Schmidt number   

ScSh Reξ=  where ξ  is a constant                                                              (26) 

It is therefore important to note that the transition from laminar flow to turbulence 
flow can also be determined by equation (26) 

3.6 Special cases 

 Case 1. Plane Couette flow 

In this flow configuration,  what drives the flow is the relative movement of the plates. 
Therefore, the  pressure gradient is absent  and  reduces equation (17)  to  

ηαηαηαηαηαηα 2143612511 expexpexpexpexpexp DCBACCu +++++=    (27) 

This affected the magnitude of the fluid velocity and by extension the shear stress and 
the skin friction. 

 Case 2: Plane Poiseuille flow  

The configuration for  plane Poiseuille flow shows that  the plates are at rest 
because what drives the motion is the pressure gradient. Therefore, U = 0 and the 

affected parameters in equation (17) are  11C  and 12C  which also affected the flow 

velocity, shear stress and skin friction. 

4.0 Results and discussion 
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Figure 2: Concentration profile C  against boundary layerη  for varying Schmidt number 
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Figure 3: Concentration profile C  against boundary layerη  for varying chemical 

reaction  k  
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Figure 4: Temperature profile θ  against boundary layerη  for varying Prandtl number  

Pr  
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Figure 5: Temperature profile θ  against boundary layerη  for varying Radiation 

parameter R  

 

Figure 6: Velocity profile u  against boundary layerη for varying Grashof numberGr  

 

Figure 7: Velocity profile u  against boundary layerη  for varying Grashof numberGc  



 

Figure 8: Velocity profile u  against boundary layerη  for varying Schmidt number Sc  

 

Figure 9: Velocity profile u  against boundary layerη  for varying chemical reaction  k   

 

Figure 10: Velocity profile u  against boundary layerη  for varying Reynolds number Re 

 

 



 

Figure 11: Velocity profile u  against boundary layerη  for varying Hartmann number Ha 

 

Figure 12: Velocity profile u  against boundary layerη  for varying Electrconductivity 

0σ  

 

Figure 13: Velocity profile u  against boundary layerη  for varying Prandtl number  Pr  



 

Figure 14: Velocity profile u  against boundary layerη  for varying Radiation parameter  

In order to get physical insight and numerical validation of the problem, an approximate values 
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The Schmidt number relates the relative thickness of the hydrodynamic boundary layer and 

mass boundary layer. It is a ratio of momentum diffusivity to mass diffusivity. Its increase as 

depicted on Figures (2) and (8) showed a reduction in the boundary layers hence a decrease in 

the concentration and velocity profiles of the fluid.  The chemical reaction of the fluid, reduced 

the concentration boundary layers but unaffected by the momentum boundary layers. As a 

result of increase in chemical reaction parameter as shown on Figures (3) and (9), the velocity 

and concentration profiles of the fluid are reduced considerably.  Increase in the Prandtl number 

decrease the thermal boundary thickness and also lower the mean temperature within the 

boundary layer. Therefore, increase in Prandtl number as shown in Figures (4) and (13) 

respectively led to a decrease in the temperature and velocity profiles of the fluid. Figures (5) 

and (14) showed increase in radiation parameter. Radiation which is brought about by thermal 

transfer, decrease both the temperature and velocity profiles of the fluid flow. Reynolds number 

examine the transition of fluid from laminar to turbulence from Reynolds number  0 to about 

3000. Figure (10) is clear that increase in Reynolds number shows a corresponding increase in 

the velocity profile of the fluid. The Hartmann number and electroconductivity are resistive type 



of forces which tend to impede the flow of fluid in a region where its effect is prevalent. As 

shown in Figures (11) and (12) respectively, their increase, decrease or reduce the motion or 

velocity of the fluid flow. The Grashof number due to temperature which is the free convection 

effects correspond to cooling of the plate ( )0>Gr  by natural convection. Its effect, conduct 

heat away from the plates into the fluid thereby increasing the temperature of the fluid which in 

turn increases the velocity of the fluid as shown in Figure (6). A similar observation is also 

reported by an increase in the Grashof number due to concentration (Gc) as depicted in Figure 

(7). As the Grashof number due to concentration ( )0>Gc  increases, the ratio of the buoyancy 

force to the viscous hydrodynamic force increases, hence result in an increase in the velocity 

profile of the fluid. From equation (18), the shear stress at the wall of the plates only depicts an 

increase in magnitude of the fluid velocity considering the no-slip condition adopted. Increase in 

the material parameters considered will certainly result in the opposite of the heat transfer 

coefficient as shown in equation (22). Similar observation is also prevalent in the mass transfer 

coefficient as shown in equation (24). These observations are consistent with the works of [21] , 

[22] and [23] 

5.0 Conclusions 

 In this paper, the plates pore spaces are evenly spread and the flow considered, 
therefore the inclusion of the effect of porosity is ignored. The choice of the boundary 
conditions and the flow configuration, created two special cases which was discussed by 
the determination of the shearing stress and skin friction in both cases.  
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