## SCIENCEDOMAIN international

www.sciencedomain.org



# **SDI FINAL EVALUATION FORM 1.1**

#### PART 1:

| Journal Name:            | Physical Science International Journal                             |  |
|--------------------------|--------------------------------------------------------------------|--|
| Manuscript Number:       | Ms_PSIJ_37435                                                      |  |
| Title of the Manuscript: | Multi-Phonon Raman Scattering in GaAs/Al0.28Ga0.72As Super-lattice |  |
| Type of Article:         |                                                                    |  |

# PART 2:

| FINAL EVALUATOR'S comments on revised paper (if any)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Authors' response to final evaluator's comments |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| *Abstract We think that the peak at 290 cm-1 may be caused by emission of a longitudinal optical phonon in GaAs/Al0.28Ga0.72As super-lattice, Exclude assumption wordings such as we think as this is a scientific research paper and therefore the findings should be backed by scientific study.                                                                                                                                                                                                                         |                                                 |
| *Figure 1(b) shows result. Should be under Subsection 3.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |
| *Comparing it with transverse optical waves with wave number $269 \text{cm}^{-1}$ [8]not superscript for GaAs , obviously, there is a difference of $2 \text{cm}^{-1}$ , it is resulting from the influence of interface modes of GaAs/Al <sub>0.28</sub> Ga <sub>0.72</sub> As super-lattice <sup>(9)</sup>                                                                                                                                                                                                               |                                                 |
| References must be listed at the end of the manuscript and numbered in the order that they appear in the text. Every reference referred in the text must also present in the reference list and vice versa. In the text, citations should be indicated by the reference number in brackets [3].  Needs correction for the whole article. Refer <a href="http://www.sciencedomain.org/page/general-guideline-for-authors#Type_of_papers">http://www.sciencedomain.org/page/general-guideline-for-authors#Type_of_papers</a> |                                                 |
| (3) For the GaAs/Al <sub>0.28</sub> Ga <sub>0.72</sub> As super-lattice whose parameters are given as above, its band gap energy can be calculated to be $E_g(\sup.)=1.522 eV^{(10)}$ .                                                                                                                                                                                                                                                                                                                                    |                                                 |
| Send the article for proof reading before resubmitting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |

### **Reviewer Details:**

| Name:                    | Subrai                | naniam Jahanadan                               |
|--------------------------|-----------------------|------------------------------------------------|
| Department, University & | Country <b>Physic</b> | s Unit, Labuan Matriculation College, Malaysia |