
THE COHERENT STATES AND LUCAS NUMBERS

Abstract. In this paper we consider the coherent states which play an im-

portant role in quantum optics, especially in laser physics and much work in
this field. Here we connect the coherent states with the Lucas numbers and
Fibonacci numbers.

1. Introduction

The term coherent state, also called
Glauber state, has been introduced by
Roy J. Glauber [4] in 1963 year. It is
not strongly related to the classical term
coherence, and refers to a special sort
of pure quantum mechanical state of the
light field corresponding to a single res-
onator mode.

We describe a dynamical system in
terms of a pair of complex operators a
and a†, which we call them as the an-
nihilation and creation operators. These
operators, which obey the following com-
mutation relation

[a, a†] = 1,

play a fundamental role in descriptions
of systems of harmonic oscillators and
quantized fields. It is obvious from the
algebraic properties of the operators a
and a† that we may construct a sequence
of states for the harmonic oscillator sys-
tem. These states labeled by |n〉 satisfy
the identity

a|n〉 =
√
n|n− 1〉,

a†|n〉 =
√
n+ 1|n+ 1〉,

a†a|n〉 = n|n〉
(1)

for an nonnegative integer n. They are
generated from the state |0〉 by the rule

(2) |n〉 =
(a†)n√
n!
|0〉.

Let us now define for each complex
number α the displacement operator

(3) D(α) = exp(αa† − ᾱa),

which is unitary and obeys the relation

D†(α) = D−1(α) = D(−α).

When a and b commute with their com-
mutator c := [a, b] we have the well-
known Kermack-McCrae identity

exp(a+ b)

=



exp(−1

2
c) exp(a) exp(b),

if ab-ordered,

exp(
1

2
c) exp(b) exp(a),

if ba-ordered,

therefore we are led to

D(α)

= exp(−|α|
2

2
) exp(αa†) exp(−ᾱa).

(4)

For each complex number α the coherent
state |α〉 is defined by
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(5) |α〉 = D(α)|0〉.
We note that the state |α〉 is an eigen-
state of the operator a with eigenvalue
α,

(6)
a|α〉 = α|α〉 and 〈α|a† = 〈α|ᾱ.

By using Eqs. (2), (4), (5), and the
fact a|0〉 = 0, we may relate the coherent
states to the states |n〉 :

|α〉
= D(α)|0〉

= exp(−|α|
2

2
) exp(αa†) exp(−ᾱa)|0〉

= exp(−|α|
2

2
) exp(αa†)|0〉

= exp(−|α|
2

2
)

∞∑
n=0

αn

√
n!
|n〉

(7)

(see [3, (2.23)]).
In this paper we consider the coherent

states as the special states, that is, the
eigenvalues α and β of the eigenstates
|α〉 and |β〉 respectively, satisfy the co-
efficients conditions appearing in Lucas
numbers as follows :

(8) α+β =
1

2
(1+
√

5)+
1

2
(1−
√

5) = 1,

(9) αβ =
1

2
(1 +

√
5) · 1

2
(1−

√
5) = −1,

(10)
α2 = 1 + α, and β2 = 1 + β.

We can set the Lucas numbers [5] by

(11) Ln = αn + βn,

where

(12)

α =
1

2
(1 +

√
5), β =

1

2
(1−

√
5).

Depending on the above properties we
obtain :

Lemma 1.1. Let α and β be in (12).
And let the operator a apply to the co-
herent states |α〉 and |β〉. Then

(a)

〈β|α〉 = exp(−5

2
),

(b)

〈β| exp(
5

2
a†) exp(

5

2
a)|α〉 = 1.

Theorem 1.2. Let n ∈ N. Then

〈β|
(
an + (a†)n

)
|α〉 = Ln exp(−5

2
).

Theorem 1.3. Let n ∈ N. Then

n∑
m=0

〈α|
(
an−m + (a†)n−m

)
|β〉

× 〈β|
(
am + (a†)m

)
|α〉

= e−10 ((n+ 1)Ln + 2Fn+1) ,

where Fn :=
αn − βn

α− β
is the Fibonacci

number.

2. Proofs of Lemma 1.1, Theorem
1.2, and Theorem 1.3

Let N be the set of positive integers.
Then we define the Lucas numbers, Ln

with n ∈ N, by

L0 = 2, L1 = 1,

and

Ln+2 = Ln+1 + Ln.

The very general functions studied by
Lucas and generalized by Bell [1], [2], are
essentially the Ln defined by (11) with α,
β being the roots of the quadratic equa-
tion x2 = Px−Q so that α+β = P and
αβ = Q.

UNDER PEER REVIEW



Proof of Lemma 1.1. (a) First
from the definition of α and β in
(12) we note that

ᾱ = α and β̄ = β.

Then by (7), (8), (9), and (10)
we have

〈β|α〉

= 〈m| exp(−|β|
2

2
)

∞∑
m=0

β̄m

√
m!

× exp(−|α|
2

2
)

∞∑
n=0

αn

√
n!
|n〉

= exp(−β
2

2
− α2

2
)

×
∞∑

m,n=0

βmαn

√
m!n!

〈m|n〉

= exp(−1

2
(β + 1 + α+ 1))

×
∞∑

m,n=0

βmαn

√
m!n!

δm,n

= exp(−3

2
)
∞∑

n=0

(αβ)n

n!

= exp(−3

2
) exp(−1)

= exp(−5

2
).

(b) By (6) and Lemma 1.1 (a) we
have

〈β| exp(
5

2
a†) exp(

5

2
a)|α〉

= exp(
5

2
β̄) exp(

5

2
α)〈β|α〉

= exp(
5

2
(β + α))〈β|α〉

= exp(
5

2
) exp(−5

2
)

= 1.

�

Proof of Theorem 1.2. From (6) and
Lemma 1.1 (a) we obtain

〈β|
(
an + (a†)n

)
|α〉

= 〈β|an|α〉+ 〈β|(a†)n|α〉
= αn〈β|α〉+ β̄n〈β|α〉
= (αn + βn)〈β|α〉

= Ln exp(−5

2
).

�

In Figure 1, Figure 2, and Figure 3 we
depict

〈β|
(
an + (a†)n

)
|α〉 = Ln exp(−5

2
)

in Theorem 1.2. Here we can know that
as n approaches to a large positive in-
teger, the value 〈β|

(
an + (a†)n

)
|α〉 is

bigger. And a transition from the |α〉
state to |β〉 state behaves like a step
function. If 〈β|

(
an + (a†)n

)
|α〉 stands

for the probability then physically we
should restrict n = 0, 1, 2, 3, 4, 5 since
the probability is greater or equal to 0
and less than or equal to 1.

Figure 1. Lne
−5/2

versus n (0 ≤ n ≤ 5)
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Figure 2. Lne
−5/2

versus n (5 ≤ n ≤ 10)

Figure 3. Lne
−5/2

versus n (10 ≤ n ≤ 15)

To obtain the sums of the coherent
states

〈α|
(
an−m + (a†)n−m

)
|β〉

× 〈β|
(
am + (a†)m

)
|α〉

in Theorem 1.3 we request the following
identity :

(13)
n∑

m=0

LmLn−m = (n+ 1)Ln + 2Fn+1

(see [6]).

Proof of Theorem 1.3. From Theo-
rem 1.2 and (13) we have

n∑
m=0

〈α|
(
an−m + (a†)n−m

)
|β〉

× 〈β|
(
am + (a†)m

)
|α〉

=

n∑
m=0

〈α|
(
an−m + (a†)n−m

)
|β〉

× Lm exp(−5

2
)

=
n∑

m=0

Ln−m exp(−5

2
) · Lm exp(−5

2
)

= e−10
n∑

m=0

LmLn−m

= e−10 ((n+ 1)Ln + 2Fn+1) .

�

In Figure 4, Figure 5, Figure 6 , and
Figure 7 we draw

n∑
m=0

〈α|
(
an−m + (a†)n−m

)
|β〉

× 〈β|
(
am + (a†)m

)
|α〉

= e−10 ((n+ 1)Ln + 2Fn+1)

in Theorem 1.3. In a similar manner to
Figure 1, they are bigger as n is larger
and the pictures jump abruptly at in-
teger position but they grow linearly at
non-integer spot. And if

n∑
m=0

〈α|
(
an−m + (a†)n−m

)
|β〉

× 〈β|
(
am + (a†)m

)
|α〉

implies the sum of transition probabil-
ities then physically we should choose
n = 0, 1, 2, · · · , 14 because the sum of
probabilities is greater or equal to 0 and
less than or equal to 1. Furthermore if
the number of transition occurs many
times then the probability variation be-
comes smoothly compared to Figure 1,
Figure 2, and Figure 3.
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Figure
4. e−10 ((n+ 1)Ln + 2Fn+1)
versus n (0 ≤ n ≤ 5)

Figure
5. e−10 ((n+ 1)Ln + 2Fn+1)
versus n (5 ≤ n ≤ 10)

Figure
6. e−10 ((n+ 1)Ln + 2Fn+1)
versus n (10 ≤ n ≤ 15)

Figure
7. e−10 ((n+ 1)Ln + 2Fn+1)
versus n (15 ≤ n ≤ 20)

Next we analogize the coherent state
|α2〉 and estimate the occupation num-
ber in Lemma 2.1. In advance by refer-
ring to (7) we note that

(14) |α2〉 = exp(−|α
2|2

2
)
∞∑

n=0

α2n

√
n!
|n〉

is adequate since

〈α2|α2〉

= 〈m| exp(−|α
2|2

2
)
∞∑

m=0

ᾱ2m

√
m!

× exp(−|α
2|2

2
)
∞∑

n=0

α2n

√
n!
|n〉

= exp(−α4)
∞∑

m,n=0

α2mα2n

√
m!n!

δm,n

= exp(−α4)

∞∑
n=0

α4n

n!

= exp(−α4 + α4)

= 1.

Lemma 2.1. Let n ∈ N. Then

(a)

〈β|a|α2〉 = α2 exp(−2α− 2),

(b)

〈β|a†a|α2〉 = −α exp(−2α− 2).
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Proof. (a) By (1) and (14) we ob-
serve that

〈β|a|α2〉

= 〈m| exp(−|β|
2

2
)

∞∑
m=0

β̄m

√
m!
· a

× exp(−|α
2|2

2
)

∞∑
n=0

α2n

√
n!
|n〉

= exp(−β
2

2
− α4

2
)

×
∞∑

m,n=0

βmα2n

√
m!n!

〈m|a|n〉

= exp(−β
2

2
− α4

2
)

×
∞∑

m=0

∞∑
n=1

βmα2n

√
m!n!

〈m|
√
n|n− 1〉

= exp(−β
2 + α4

2
)

×
∞∑

m=0

∞∑
n=1

βmα2n

√
m!n!

√
nδm,n−1

= exp(−β
2 + α4

2
)

×
∞∑

n=1

βn−1α2n√
(n− 1)!n!

√
n

= exp(−β
2 + α4

2
)α2

∞∑
n=1

(βα2)n−1

(n− 1)!

= α2 exp(−β
2 + α4

2
+ βα2)

then by (8), (9), (10) and the
fact

α4 = (α2)2

= (α+ 1)2

= α2 + 2α+ 1

= 3α+ 2,

(15)

the above equation shows that

〈β|a|α2〉

= α2 exp(−β + 1 + 3α+ 2

2
− α)

= α2 exp(−β + 5α+ 3

2
)

= α2 exp(−2α− 2).

(b) In a similar style, by (1), (8), (9),
(10), (14), and (15) we interpret

〈β|a†a|α2〉

= 〈m| exp(−|β|
2

2
)

∞∑
m=0

β̄m

√
m!
· a†a

× exp(−|α
2|2

2
)

∞∑
n=0

α2n

√
n!
|n〉

= exp(−β
2

2
− α4

2
)

×
∞∑

m,n=0

βmα2n

√
m!n!

〈m|a†a|n〉

= exp(−β
2

2
− α4

2
)

×
∞∑

m,n=0

βmα2n

√
m!n!

〈m|n|n〉

= exp(−β
2 + α4

2
)

×
∞∑

m,n=0

βmα2n

√
m!n!

· nδm,n

= exp(−β
2 + α4

2
)

∞∑
n=0

βnα2n

√
n!n!

· n

= exp(−β
2 + α4

2
)βα2

×
∞∑

n=1

(βα2)n−1

(n− 1)!

= −α exp(−β
2 + α4

2
+ βα2)

= −α exp(−2α− 2).

�
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3. Conclusion

A product of quantum fields, or equiv-
alently their creation and annihilation
operators, is usually said to be normal
ordered, also called Wick order, when
all creation operators(= a†) are to the
left of all annihilation operators(= a) in
the product. On the other hand, if the
annihilation operators are placed to the
left of the creation operators then we
define antinormal order. Even though
the Wick order and Lucas numbers are
recursively, they are strictly different.
Wick order gives operators a sequence
but Lucas numbers do not provide an or-
der, instead they present an eigenvalue,
an expectation value, etc., as a sort of
scalar quantity.
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