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ABSTRACT 

The solutions of the Klein-Gordon equation with Manning-Rosen plus Yukawa potential (MRYP) have 

been presented using the Pekeris-like approximation of the coulomb term and parametric Nikiforov-

Uvarov (NU) method. The bound state energy eigenvalues and the corresponding un-normalized eigen 

functions are obtained in terms of Jacobi polynomials. Also, Yukawa, Manning-Rosen and coulomb 

potentials have been recovered from the mixed potential and their eigen values obtained. 
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1 INTRODUCTION 

Interestingly, the study of the relativistic wave equation in recent years, particularly the Klein–Gordon 

equation, has attracted the attention of many authors because the solutions of this equation plays the rule 

in getting the relativistic effect.It is well known that when a particle moves in a strong potential field, the 

relativistic effect yields the correction for non-relativistic quantum mechanics
 [1-3]

. Taking the relativistic 

effect into account, one could apply the Klein– Gordon equation to the treatment of a zero-spin particle 

and apply the Dirac equation to that of a 1/2-spin particle
 [3, 4]

. It contains of two major objects, the vector 

potential V(r) and the scalar potential S(r). The Klein-Gordon equation with the vector and scalar 

potentials can be written as follows: �− �� ��� − �(	)�� − ∇� + (�(	) + �)�� �(	, �, �) = 0 

where M is the rest mass, � ��� = energy eigen value, �(	) and �(	) are the vector and scalar potentials 

respectively
[5-7]

. However, the analytical solutions of the Klein-Gordon equation are possible only in the 

s-wave case with the angular momentum l = 0 for some well-known potential. Conversely, when l ≠ 0, 

one can only solve approximately the Klein-Gordon equation for some potential using a suitable 

approximation scheme
[8-10]

. Amongst the potentials studied with these techniques are Manning-Rosen 

Potential
[11-14]

 Hulthen Potential
 [15,16]

 Kratzer Potential
[17,18]

 Wood-Saxon Potential 
[19,20]

 Poschl-Teller 

Potential
[21]

. Different methods have been employed to obtain the bound state Klein-Gordon equation for 

these exponential-type potentials. These methods include the supersymmetric (SUSY) and shape 

invariance method 
[22,23]

, the asymptotic iteration method (AIM) 
[24,25]

, and the Nikiforov-Uvarov (NU) 

Method 
[26]

. The Klein-Gordon equation for the potential under studies is solved by using the parametric 

NU method to obtain the energy eigenvalues and eigen functions of the bound state. 

The purpose of the present paper is to solve the Klein-Gordon equation for the mixed potential 

MRYP defined as �(	) = − ����∝������∝�( !��∝�)� " − #$��∝�
%  using the parametric NU method. The paper is 

organized as follows: After a brief introduction in section 1, the NU method is reviewed in section 2. In 

section 3, we solve the radial Klein-Gordon equation using the NU method. Finally, we discuss our 

results in section 4 and a brief conclusion is then advanced in section 5. 

 

UNDER PEER REVIEW



2 

 

2 REVIEW OF PARAMETRIC NIKIFAROV-UVAROV METHOD 

The NU method is based on the solutions of a generalized second order linear differential 

equation with special orthogonal functions. The hypergeometric NU method has shown its power in 

calculating the exact energy levels of all bound states for some solvable quantum systems.  

 Ψ&′′ (s) + 
()(*)+ (*)Ψ&′ (s) + 

+ (*)+�(*)Ψ&(s) = 0   (2) 

Where σ(s) and -(s) are polynomials at most second degree and .̃(s) is first degree polynomials. The 

parametric generalization of the N-U method is given by the generalized hypergeometric-type equation 0′′(1) + 
23!2�**( !24*) 0′(1) + 

 *�( !24*)� 5−6 1�  + 6�1 − 6780(1) = 0 (3) 

Thus eqn. (2) can be solved by comparing it with equation (3) and the following polynomials are obtained .̃(1) =  (9 − 9�1), -(1) = 1(1 − 971), -(1) =  −6 1�  + 6�1 − 67 (4) 

The parameters obtainable from equation (4) serve as important tools to finding the energy eigenvalue 

and eigenfunctions. They satisfy the following sets of equation respectively 

c2n – (2n+1)c5+ (2n+1)(;9<+ c3;9=) + n(n-1)97 + 9> + 2979= + 2;9=9< = 0  (5) (c� − c7)n + 97n
2
 – (2n+1)9@ + (2n+1)(;9<+ c3;9=) + 9> + 2979= +2;9=9<= 0  (6) 

While the wave function is given as 

0A(1) = BA,C�23�(1 − 971)!23�!D34D4 EA�23$! ,D33D4 !23$!  �(1 − 2971)   (7) 

 

Where  9G =  � (1 − 9 ), 9@ = 
 � (9� − 297), 9H = 9@� + 6 , 9> = 29G9@ - 6�, 9= = 9G� +  67,  

9< =  979> + 97�9= + 9H, 9 I =  9 + 29G +  2;9=, 9  =  9� − 29@ +  2J;9< +  c3;9=L 9 � =  9G +  ;9= , 9 7 = 9@ − J;9< +  c3;9=L       (8) 

and EAis the orthogonal polynomials. 

 

Given that EA(M,N) = ∑ Γ(A�M� )Γ(A�N� )
Γ(M�%� )Γ(A�N!%� )(A!%)!%!A%QI �R! � �% �R� � �A!%

  (9) 

This can also be expressed in terms of the Rodriguez’s formula 

 EA(M,N)(S) =   �TA! (S − 1)!M(S + 1)!N � UUR�A J(S − 1)A�M(S + 1)A�NL   

 

3.SOLUTIONS OF THE RADIAL PART OF THE KLEIN-GORDON EQUATION WITH MRYP 

POTENTIAL 

 The radial part of the Klein-Gordon Equation with vector V(r) potential = scalar S(r) potential in atomic 

units (ħ = c = 1) is given as 

U� V(%)U%�  + 5(W� − ��) − 2(W + �)�(	)8X(	) = 0    (11) 

Substituting potential of Eq. (1) into the Klein-Gordon equation of eq. (11), we obtain 
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U� V(%)U%�  + �(W� − ��) − 2(W + �)(− ����∝������∝�( !��∝�)� " − #$��∝�

% )" X(	) = 0  (12) 

Where Z = [([ + 1) and �(	) is the Mixed potential energy function 

Since the Klein-Gordon equation with above combine potentials rarely has exact analytical solution, an 

approximation to the centrifugal term has to be made. The good approximation for 1 	�⁄  in the centrifugal 

barrier is taken as 

 
 %� = GM�( � ��]�)� ,         (13) 

Similar to other related work
[]
         

Making the transformation 1 = ^!M%equation (1) becomes 

�(1) = − ��_��_�( !_)� " − ∝#$_ !_          (14) 

To solve Eq.(12)  by the present method, we need to recast Eq. (13) and applying the transformation 

given as 1 = −^�M% 

U�V(*)U*� + ( !*)( !*)* UV(*)U* +  ( !*)�*� 5−(`� − a + b)1� + (2`� + c + b)1 − (`�)8X(1) = 0,  (15) 

Where 

−`� =  d�!e�
G∝� ;   b =  2 �d�eM � �I;  c =  2 �d�eM� � g;  a = 2 �d�eM� � h   (16)  

   

Comparing equation (12) with equation (3) yields the following parameters 9 = 9� = 97 = 1, 9G = 0, 9@ = −  � , 9H =  G + `� + b − a, 9> = −2`� − c − b, 9= = `�, 9< =  G −
(c + a), 9 I = 1 + 2;`�, 9  = 2 + 2 ij G − c − a + ;`�k , 9 � = ;`�, 9 7 = −  � − ij G − c − a +
;`�l , 6 = `� + b − a, 6� = 2`� + c + b, 67 = `�,      (17) 

Now using equations (5), (13) and (14) we obtain the energy eigen spectrum of the MRYP as 

  `� = mn�o!�A��A�3��!(�A� )j3p!n!q
(�A� )��j3p!n!q r

�
      (18) 

Equation (15) can be solved explicitly and the energy eigen spectrum of MRYP becomes 

 

W� − �� = −4 ∝� m��tuv]� �����tuv] �#$!�A��A�3��!(�A� )j3p!��tuv]� ��!��tuv]� ��
(�A� )��j3p!��tuv]� ��!��tuv]� �� r

�
,  (19) 

We now calculate the radial wave function of the MRYP as follows 

The weight function w(1) is given as 

w(1) = 123$! (1 − 971)D33D4 !23$! 
,        (20) 

Using equation (14) we get the weight function as w(1) = 1x(1 − 1)#,          (21) 

Where y = 2;`� and � = 2j G − c − a 
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Also we obtain the wave function z(1) as 

z(1) = EA23$! ,D33D4 !23$! (1 − 2971),        (22) 

Using equation (14) we get the function χ(s) as z(1) = EA(x,#)(1 − 21),          (23) 

Where EA(x,#)
 are Jacobi polynomials 

Lastly, 

{(1) = 123�(1 − 971)!23�!D34D4 ,         (24) 

And using equation (14) we get {(1) = 1x �| (1 − 1)#! �| ,         (25) 

We then obtain the radial wave function from the equation XA(1) = BA{(1)zA(1),          (26) 

As 

XA(1) = BA1x �| (1 − 1)(#! ) �| EA(x,#)(1 − 21),       (27) 

Where } is a positive integer and BA is the normalization constant.  

 

4 DISCUSSION: 

We have solved the radial Schrӧdinger equation and obtained the energy eigen values for the Manning-

Rosen plus Yukawa potential (MRYP) in equation (16).  

The following cases are considered: 

Case 1: If g = h = 0 in equation (10), the potential turns back into the Yukawa potential and 

equation (16) yields the energy eigen values of the Yukawa potential as 

W� − �� = −4 ∝� ~��tuv] �#$!(A� )�
�(A� ) ��

, 

W� − �� = -4
(d�e)(A� )� + 4�(W + �)�I −∝� (} + 1)�     (28) 

Case 2: If ∝→ 0 in equation (28), the energy eigen values for Coulomb potential becomes 

W� − �� =  -4
(d�e)(A� )�(29) 

 

 

Case 3: If �I = 0 the potential in equation (10) yields the Manning-Rosen potential with energy 

eigen values given as 

W� − �� = −4 ∝� m��tuv]� ��!�A��A�3��!(�A� )j3p!��tuv]� ��!��tuv]� ��
(�A� )��j3p!��tuv]� ��!��tuv]� �� r

�
    (30) 
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5 CONCLUSION: 

We have obtained the energy eigen values and the corresponding un-normalized wave function using the 

parametric NU method for the Schrӧdinger equation with MRYP. Special cases of the potential have also 

been considered.  
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