
 

 1 

Hilbert scheme and multiplet matter 2 

content 3 

ABSTRACT  4 

 5 

Development of the concept of the Euler characteristic, beginning from the Euclidean geometry and 
ending with the algebraic geometry is considered. Within the framework of the algebraic geometry a 
singular toric variety is studied. Procedure of the blowing up of its singularities in terms of cones 
associated with the defragmentation of fan is represented by Hilbert scheme. Special cases of the 

blowing up of orbifold singularities of nZ
C

3

 using Nakamura’s algorithm are performed. Hilbert 
scheme and its physical interpretation in terms of the Euler characteristic as the number of particle 
generations of the Standard Model is given. 
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1. INTRODUCTION  11 
In the article [1], Atiyah presented the current researches in mathematics which are related to the 12 
global study and become important in the applications to topology that was predicted by Poincare. He 13 
lists a number of areas of mathematics - complex analysis, differential equations, number theory, 14 
when the global properties were additional to the local approach. Thus, implicit solutions of differential 15 
equations could not be resolved by the usual methods. Global solutions were associated with 16 
singularities of the space. The transition to such solutions is associated with the increasing role of the 17 
topological approach. 18 
 19 
Similar changes in the approaches for solving the problems were observed in physics, where the 20 
locality was associated with differential equations, and the transition to high-energy physics was 21 
connected with non-linear equations. The solution of non-linear equations became impossible by 22 
usual methods. The appearance of solitonic solutions in the form of D-branes [2] - objects in 23 
multidimensional space-time, gave the powerful impetus to the development of geometric methods in 24 
high energy physics, confirming Wheeler statement: "Physics is geometry". Due to the use of 25 
topological and algebraic-geometric methods in physics it has become possible to find solutions to 26 
physical problems in terms of topological invariants. 27 
 28 
The theory of superstrings and D-branes as the modern version of the unified theory of fundamental 29 
interactions, gives answer to the question, what happens in a short interval of time from the Big Bang. 30 
Among the many properties of the theory of D-branes are of particular importance the following three. 31 
First, gravity and quantum mechanics as essential principles of the universe, should be united. 32 
Secondly, the investigations over the last century have shown that there are key concepts for 33 
understanding the universe: the generations of particles, gauge symmetry, symmetry breaking, 34 
supersymmetry. All these ideas naturally flow from the theory of D-branes. Third, in contrast to the 35 
Standard model with 19 free parameters, D-brane theory is free of parameters.  36 
 37 
Since we are dealing with solitonic objects - D-branes, the space-time manifold is endowed with a 38 
certain structure. For a principal bundle representing D-brane is possible to construct vector bundle, 39 
which plays an important role for calculations of topological invariants characterizing the D-branes. 40 
The bases of such bundles are manifolds of extra dimensions such as Calabi-Yau or orbifolds. 41 
 42 
At every stage of researches in D-brane theory physicists searched for experimentally observable 43 
consequences of the theory. In this aspect, it was observed that the number of generations of quarks 44 
and leptons is connected with the structure of the manifold of extra dimensions. Thus, the number of 45 
generations is a topological invariant, associated with the structure of Calabi-Yau or orbifolds. 46 
 47 
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The article is devoted to the studying of the properties of such manifold of extra dimensions as 48 

orbifold. For its description are introduced complex differential forms 
qp,ω and Dolbeault cohomology 49 

group ( )MH
qp,

 defined by differential forms of degree ( )qp,  on the manifold M . As 50 

( ) qpqp
hMH

,,dim = , where 
qp

h
,

are Hodge numbers and the Euler characteristic is connected with 51 

Hodge numbers ( )( )
,1

,

,∑ +−=
qp

qpqp
hχ we can determine 52 

The number of generations .
2

1
χ=  53 

Studying of orbifold 
nZ

C
3

is carried out in our paper on the basis of Nakamura’s algorithm, which 54 

makes it possible to receive the Hilbert scheme. As Hilbert scheme is the blowing up of orbifold 55 
singularity, we can apply to it the technique of differential forms and can give an adequate 56 
interpretation of particle generation, characterizing orbifold. 57 
 58 

2. EULER CHARACTERISTIC IN EUCLIDEAN GEOMETRY  59 
Coxeter [3] considered new type of geometry, called elliptical geometry, where the lines and planes 60 
are replaced by circles and spheres. Since the elliptical geometry is a kind of non-Euclidean or 61 
projective geometry, it’s constructions will be important for us in the future. 62 
In the Euclidean geometry, the Euclidean plane can be covered with the simplest polyhedra - 63 
squares, equilateral triangles or pentagons, figure 1. 64 
 65 

 66 
 67 
Fig. 1. Coverage of the Euclidean plane by simplest figures 68 

 69 
It is interesting to note that for any surface covered with maps, the characteristic of Euler-Puankare is 70 
the following 71 

,FEV +−=χ  72 

where V - vertices of the polygon, E -geodesic curves or ribs, F - the number of polygonal areas or 73 
faces. 74 
 75 

3. PROJECTIVE GEOMETRY AND HILBERT SCHEME  76 
For the further it will be convenient to use the fact that projective geometry includes affine geometry 77 
and Euclidean geometry, [4]: 78 
 79 

Projective geometry ⊃  Affine geometry ⊃  Euclidean geometry. 80 
 81 

Since the projective geometry deals with projective spaces, let’s define an n-dimensional projective 82 

space [5]. n-dimensional projective space over the field k, 
n

kP - is set of classes of equivalent 83 

collections ( )naaa ,,, 10 K  with respect to the equivalence 84 

( ) ( )
.0,

,,,,~,,, 1010

≠∈ λλ

λλλ

k

aaaaaa nn KK

 85 

If f - homogeneous polynomial of degree d, then 86 

( ) ( ).,,,,,, 1010 n
d

n aaafaaaf KK λλλλ =  87 

We have a set of zeros 88 

( ) ( ){ }0| =∈= PfPPfZ n
 89 

in 
nP  of homogeneous polynomial f. Y of 

nP  is a projective algebraic set, if Y = Z(T) for the set T of 90 
homogeneous elements of the polynomial ring. Since the union and intersection of such algebraic 91 
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sets defines the Zariski topology, then we can talk about the projective algebraic variety as of 92 

irreducible closed (in the Zariski topology) subset of the projective space 
n

P . 93 
 94 
It is known that the schemes are an extension of the concept of manifolds [5]. They are determined by 95 

a topological space X and by a sheaf of rings over it, XO  (to each open set are mapped functions 96 

from which are built the rings of functions). In this case X, together with the open space covering, 97 

( )iXi XOX |, is isomorphic to the affine scheme ( )Xi OXSpec ,Γ of the ring of sections XO  over 98 

iX . One of the methods for generating of new schemes is the transition to the quotient space by the 99 

equivalence relation over scheme, the special case of which is the orbifold nZX / ( nZ  – is the cyclic 100 

group of order n). In this case, we have a flat family of closed subschemes in 
n

kP  [5], which is 101 

parameterized by the Hilbert scheme, ie the set of rational k-points of Hilbert scheme is in one-to-one 102 

correspondence with the set of closed submanifolds in 
n

kP . Thus, orbifold is a generalization of the 103 

concept of an algebraic variety. 104 
 105 
 106 

4. COMPACTIFICATION OF HILBERT SCHEME  107 
It is known that orbifolds are a special cases of a kind of an algebraic manifold  toric variety, [6]. Since 108 

the scheme ( )SXHilb / , as a direct sum of schemes ( )SXHilb p /  for all ( )zQP ∈  with rational 109 

coefficients, is not compact, it can be "compactified" by gluing different maps of algebraic varieties [7]. 110 
As an example, it is convenient to consider the projective space as a result of gluing of three maps, or 111 
as a result of compactification of the torus when gluing zero and "infinity" (orbits of the torus action), 112 
that is represented in figure 2. Gluing functions (functions of coordinates change) are monomials of 113 
Laurent. 114 
 115 

 116 
 117 
Fig. 2. Projective plane as the gluing of three complex planes [8] 118 

 119 
Laurent polynomial is determined by the set of lattice points 120 

,2ZM ⊂ psup { } 20| Zaf a ⊂≠= λ . With these points is constructed cone 121 

{ }MyyyMpos iikk ∈≥++= ,0:)( 11 λλλ K . To each map corresponds its own cone σ , and the 122 

glue a few maps gives the toric variety. At the same time the cones Σ∈σ  are glued to the fan, Σ , 123 

according to certain rules [7]. Thus, the toric variety can be represented as fan. 124 
 125 

5. BLOWING UP OF SINGULARITIES OF TORIC VARIETY  126 
An important structure that carries information about the algebraic variety is the ring of regular 127 

functions, [ ] [ ]zCzzCR n == ,,1 K , for multivariable ( )nzzz ,,1 K= and ( ) ,,,1
n

n Zaaa ∈= K  128 

na
n

aa zzz ⋅⋅= K

1
1 . This ring of regular functions allows to construct an algebraic variety X as a 129 

scheme =X Spec R . Since the toric variety has singularities, to remove them is used the procedure 130 

of blowing up of singularities associated with the defragmentation of fan Σ . An example of such a 131 
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blow-up procedure is Nakamura’s algorithm [9] demonstrated for blowing up of orbifold singularity 132 

3

3

Z
C . McKay quiver tessellated by tripods for the model ( )1,1,1

3

1
is illustrated in figure 3 133 

 134 

Fig. 3. McKay quiver for ( )1,1,1
3

1
 model 135 

The other model that demonstrate the blowing up of orbifold 
nZ

C
3

singularity is ( )10,2,1
13

1
. McKay 136 

quiver tesselated by tripods for this model is presented in figure 4 137 
 138 

 139 
 140 

Fig. 4. McKay quiver for ( )10,2,1
13

1
 model 141 

 142 
The corresponding monomial representation of this quiver is illustrated in figure 5. 143 
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 145 

Fig. 5. Monomial representation of McKay quiver for ( )10,2,1
13

1
 model 146 

The concept of a structure sheaf 
ΣXO is introduced to distinguish compact manifolds ΣX . This 147 

concept associates the ring of regular functions, ( ) UX RUO =
Σ

, to each open set. The structure 148 

sheaves or sheaves of rings are introduced to differ ΣX . Structure sheaf ( )UOX Σ
 is the sheaf of 149 

ΣXO  modules. For a sheaf F on a manifold ΣX , )(UFf ∈  is a section of sheaf F over U and the 150 

sections of sheaf F over ΣX  are global sections. At gluing the disjoint cones in the fan, set of global 151 

sections is empty, ie, there are no constant functions. It is useful to us for further physical 152 
interpretations. Thus, the local model of an algebraic variety over a field k is subset of algebraic 153 
variety defined by a system of algebraic equations or ringed space with a 154 
structure sheaf of rational functions together with the Zariski topology. The modern version of this 155 
definition is the variety defined by a scheme over a field k. 156 
 157 

6. DIFFERENTIAL FORMS AND THE EULER CHARACTERISTIC ON THE MANIFOLD  158 
Let’s consider the ringed space (X, O), equipped with a sheaf of holomorphic 159 
functions. Since the functions are tensor fields of rank 0, and the vector fields 160 
are tensors of rank 1, it will be natural to use tensor fields as the common 161 
types of functions. Among tensor fields differential forms are widely used in 162 
applications [10] 163 

.)(

,,1

1

1

k

k

k

i

ii

i
ii dxdxxa∑ ∧∧=

K

K

Kω  164 

These forms can be closed, 0=ωd , and exact, 
'ωω d= , for some form 

'ω . 165 

Factor group of closed forms over the subgroup of exact forms determines de 166 

Rham cohomology group ( ) CRKKMH k ,,, =  for real, R or complex, C  fields. 167 

 168 

It is interesting to note that the Euler characteristic of a manifold M, ( )Mχ  , is determined by the 169 

differential form  170 

NN

N

iiii
iiN

FF
N

21221
21

)4(!

1
−∧∧⋅= K

K

ε
π

η  171 
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or the Euler class in de Rham cohomology group ( )RMH N ,2
. There 

ijF  - the field strength of the 172 

Yang - Mills and 
Nii 21K

ε is antisymmetric tensor. Wherein 173 

( ) ∫=

M

M ηχ . 174 

Similarly, it is possible to enter Dolbeault cohomology group in the complex 175 
space through p, q - forms, [11] 176 

( ) ( ) ( ) ( ) ( ){ }MTMTzMAMA z
q

z
pnqp '*'*', : ∧⊗∧∈∈= ϕϕ  177 

Mzallfor ∈  178 

for the decomposition of the cotangent space at any point z 179 
 180 

( ) ( ) ( )( ).'*'*'*
, MTMTMT z

q
z

p
nqpzC

n ∧⊗∧⊕=∧ =+  181 

Factor of d-exact forms of type (p, q), ( )MZ
qp,

∂
 over exact forms ( )( ) ⊂∂ MA

qp,
 182 

( )MZ
qp 1, +

∂
 determines Dolbeault  cohomology group 183 

 184 

( ) =
∂

MH
qp, ( )MZ

qp,

∂
/ ( )( ).1,

MA
qp −∂  185 

 186 
Relation between cohomology groups of de Rham and Dolbeault is realized 187 

in the form of the Hodge decomposition 
qp

nqp
n
D HH

,
=+⊕= . This implies the relationship between 188 

the dimensions of the de Rham cohomology groups 189 

- Betti numbers, nb , and dimensions of the Dolbeault cohomology group - 190 

Hodge numbers, 
qph ,

 [12] 191 

∑=
=+ nqp

qp
n hb

,
. 192 

In this case the Euler characteristic is given by the expression 193 

( ) ( )( )
.11

,

,∑∑ +
−=−=

qp

qpqp

n

n

n
hbχ  194 

 195 

7. HILBERT SCHEME OF ( )1,1,1
3

1
 MODEL AND THE NUMBER OF GENERATIONS OF 196 

PARTICLES IN STANDARD MODEL  197 
The article of contemporary theorists in the field of high energy physics 198 
[13] make it possible to interpret the Hodge numbers in terms of particle 199 
multiplets 200 

( ) ( ) ( )
( )( )

( ) ,29

dimdim272

2

0
221

0
211

kbakn

HkGh

knHrankkGrankh

HHT

T

−−

−++=

+++=

 201 

where Ha  and Hb  encode the number of H-charged fields, Tn - tensor multiplets and gauge groups 202 

H and 
( )( ) )8(,,, 678
0

2 SOEEEkG =  for 2,3,4,6=k  and 
( )( ) )1(0
2 SUkG =  for 0,1=k of 88 EE ×  203 

heterotic string. Hence the obvious connection of multiplet content of the particles with the Euler 204 
characteristic, as was noted in [12]: 205 

( ) 2KNgen χ= , 206 

ie, the number of generations of particles in nature is determined by the Euler characteristic. 207 
 208 
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It will be important to calculate the Hilbert scheme for the considered as an example model ( )1,1,1
3

1
, 209 

since it contains important information about the number of generations of quarks and leptons in the 210 
Standard Model (SM). Hilbert scheme is a space related to representation theory and mathematical 211 
physics [14]. It was presented in the study of the instanton moduli space associated with Hilbert 212 
schemes through the moduli space of sheaves. In addition, the Hilbert scheme is a special case of the 213 
moduli space, as shown in [14]. In view of the fact that the spaces of modules in high-energy physics 214 
are associated with the multiplet content of matter fields [15], this information is encoded in the Hilbert 215 
schemes. 216 
The applicaton of The Nakamura’s algorithm to compute the Hilbert scheme for the D-brane model 217 

( )1,1,1
3

1
 gives us the cones of the fan  218 

 219 

)3,0,0()0,3,0()1,1,1(

)1,1,1()0,3,0()0,0,3(

)3,0,0()1,1,1()0,0,3(

===

===

===

RQP

RQP

RQP

 220 

The Hilbert scheme as the unifiication of fans is illustrated in figure 6. 221 
 222 

 223 
 224 

Fig. 6. Hilbert scheme of ( )1,1,1
3

1
model 225 

As we considered the blowing up of orbifold 
3

3

Z
C , where Z3 – subgroup of SU(3) [16], and group 226 

SU(3) classifies three possible quark states that realizes the fundamental representation of group of 227 

dimension three in the SM [17], then we can insist that Hilbert scheme for the model ( )1,1,1
3

1
 gives 228 

the number of generations of SM. This number of generations in SM is equal to three that agrees with 229 
the experimental data. 230 
 231 

The other example is Hilbert scheme for the model ( )10,2,1
13

1
, presented in figure 7. 232 
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 233 
 234 

Fig. 7. Hilbert scheme of ( )10,2,1
13

1
model 235 

 236 

8. CONCLUSION 237 
Within the framework of toric geometry, which is the subsection of projective geometry, we have 238 
considered orbifolds in terms of Hilbert scheme. It is 239 
shown that the blowing up of orbifold singularities is associated with grinding 240 
or gluing of several cones in fan, as demonstrated by two examples of orbifold 241 

nZ
C

3
. Interpretation of the Euler characteristic in terms of Hodge numbers or multiplet conetnt of 242 

particles, which gives the number of generations 243 
of quarks and leptons is presented. This theoretical result is confirmed by 244 
the specific example of the construction of the Hilbert scheme for two models 245 

( )1,1,1
3

1
and ( )10,2,1

13

1
. Thus, to sum up our research, we can prove that the construction of the 246 

Hilbert scheme, which is identical to the blow-up of singularities of orbifold is in accordance with 247 
Nakamura’s algorithm and makes it possible to calculate topological invariant of manifold, which is 248 
associated with the number of particle generations in physics. 249 
 250 
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