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ABSTRACT  5 

 6 

It is shown that taking into account the negative compressibility of substances changes Maxwell 
relations. The earlier results of the author indicating that these relations differ for substances with 
negative thermal expansion have received additional confirmation. Universal Maxwell relations have 
been derived. The results obtained have been confirmed experimentally by a number of authors. 
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1. INTRODUCTION  12 

 13 

Recently, negative compressibility materials were discovered [1−9]. For them, isothermal 14 

compressibility ( )1
T

V V Pβ = − ∂ ∂  is negative. In this paper, it is shown that the Maxwell relations 15 

for such substances differ from normal relations. Moreover, additional evidences are found that 16 
Maxwell relations differ for substances with a negative thermal expansion coefficient 17 

( )1
P

V V Tα = ∂ ∂ . General Maxwell relations have been derived which take into account the sign 18 

of compressibility and thermal expansion. Experiments show that the first and third general Maxwell 19 
relations are correct. 20 
 21 

2. THEORY  22 

 23 
The first Maxwell relation is: 24 

 

S V

T P

V S

∂ ∂   
= −   

∂ ∂   
 (1) 25 

where S is entropy. This relation stems from the first law of thermodynamics. This law for heat 26 
exchange can be written as: 27 

 δ d d dQ T S U P V= = +  (2) 28 

where δQ is the heat introduced into the system and U is internal energy. One introduces a quantity of 29 
heat into the system and it turns into the change in internal energy and work produced by the system. 30 
On the left-hand side, the motive force of the process is written, and its effect is written on the right-31 

hand side. In [10−16] the general form of the first law of thermodynamics for the heat exchange was 32 
obtained: 33 

 δ d d sign( ) d .Q T S U P Vα= = +  (3) 34 

 35 
However, for the heating of substance by compression, the first law of thermodynamics cannot be 36 
derived from Eq. (2) and must be derived independently [10, 12]: 37 

 d d .P V U= −  (4) 38 

Again, the motive force of the process is written on the left-hand side, and its effect is written on the 39 
right-hand side. One can prove this result very easily. Equation (2) cannot describe the compression 40 
of the substances with negative compressibility. The equation for that is: 41 

 d d .P V U=  (5) 42 

 43 
One can adduce another good argument. According to tables of thermodynamic derivatives [17], 44 

 .P

P

CU
P

V Vα

∂ 
= − + 

∂ 
 (6) 45 
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This is the derivative for the heat exchange process. However, for mechanical compression this 46 
derivative must be obtained from Eq. (4), and it is: 47 

 .
P

U
P

V

∂ 
= − 

∂ 
 (7) 48 

Therefore, the thermodynamics of compression differs from the thermodynamics of the heat 49 
exchange. 50 
 51 
From Eq. (3) it follows that the first Maxwell relation will be as follows: 52 

 sign( ) .
S V

T P

V S
α

∂ ∂   
= −   

∂ ∂   
 (8) 53 

In the Appendix it is shown that this has been confirmed by many experiments and that Eq. (1) 54 
contradicts them.   55 
 56 
The second Maxwell relation is: 57 

 

S P

T V

P S

∂ ∂   
=   

∂ ∂   
. (9) 58 

Its traditional derivation is the following [18]. One introduces dU from Eq. (2) into the differential of 59 
enthalpy: 60 

 d d d dH U P V V P= + +  (10) 61 

and obtains: 62 

 d d d .H T S V P= +  (11) 63 

From this equation, Eq. (9) results. 64 
 65 
One can notice a mistake in this derivation. Let us prove that Eq. (2) is valid only for a constant 66 

pressure. Let us assume that the pressure is not constant in it. One can notice that δQ = TdS = dHP in 67 
Eq. (2) is a full differential, where dHP is the enthalpy change at a constant pressure. Therefore, the 68 

derivatives ( )1
U

V∂ ∂  and ( )
V

P U∂ ∂  must be equal. However, for the ideal gas, they equal 0 and 69 

2
3V

, respectively. In reality, these derivatives must also be taken at a constant pressure, thus both 70 

are equal to zero. The differential dU from Eq. (2) does not equal dU from Eq. (10) because in Eq. (2) 71 
it is for constant pressure, but in Eq. (10) it is for varying pressure. (In Eq. (4), of course, the pressure 72 
can vary.) The correct derivation must be the following. For heat exchange with varying pressure and 73 
volume [19]: 74 

 δ d d d d .Q T S U P V V P= = + +  (12) 75 

 76 
One can see that: 77 

 1 2d d dT S T S T S= +  (13) 78 

where 79 

 1 1 1δ d d dQ T S U P V= = +  (14) 80 

is the heat exchange at a constant pressure, and 81 

 2 2 2δ d d dQ T S U V P= = +  (15) 82 

is the heat exchange at a constant volume [19, 20]. From Eq. (15), omitting the subscripts, the second 83 
Maxwell relation can be derived: 84 

 

S P

T V

P S

∂ ∂   
= −   

∂ ∂   
. (16) 85 

This equation has a different sign compared with Eq. (9). 86 
 87 
From the well-known thermodynamic identity [21], it follows that: 88 

 d d d d .
V P T

P V P
P T T T

T T V

α

β

∂ ∂ ∂     
= = − =     

∂ ∂ ∂     
 (17) 89 

This means that Eq. (15) will look like: 90 
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 d d sign( ) d .T S U V Pαβ= +  (18) 91 

From this equation the general second Maxwell relation follows: 92 

 sign( )
S P

T V

P S
αβ

∂ ∂   
= −   

∂ ∂   
. (19) 93 

 94 
The third Maxwell relation is: 95 

 .
V T

P S

T V

∂ ∂   
=   

∂ ∂   
 (20) 96 

Consider its traditional derivation [18]. One introduces dU from Eq. (2) into the differential of 97 
Helmholtz energy: 98 

 d d d dF U T S S T= − −  (21) 99 

which results in: 100 

 d d d .F P V S T= − −  (22) 101 

From this, Eq. (20) is obtained. However, this derivation is non-strict: an equation which describes the 102 
heat exchange at a constant pressure with varying volume is introduced into the equation which 103 
describes a process with a constant volume and varying pressure. A more strict derivation should be 104 
one such as: 105 

 1 2d d  + dF F F=  (23) 106 

where 107 

 1 1 1 1 1d d d d dF U T S S T S T= − − = −  (24) 108 

corresponds to the quantity of heat introduced into the system at a constant volume (we introduce into 109 
Eq. (24) dU from Eq. (2) with dV = 0), and 110 

 2 2 2 2 2d d d d d d .F U T S S T P V S T= − − = − −  (25) 111 

corresponds to the expansion/compression of the system due to the heat exchange at a constant 112 
pressure (into Eq. (25) we introduce dU from Eq. (2)). Summing up Eqs. (24) and (25), one gets Eq. 113 
(22). 114 
 115 
Let us take the thermal expansion coefficient into account. Introducing Eq. (3) into Eq. (25), and 116 
summing Eqs. (24) and (25), one obtains: 117 

 d sign( ) d dF P V S Tα= − −  (26) 118 

and the third Maxwell relation becomes: 119 

 sign( ) .
V T

P S

T V
α

∂ ∂   
=   

∂ ∂   
 (27) 120 

In the Appendix it is shown that this equation has been confirmed by many experiments and that Eq. 121 
(20) contradicts them.  122 
 123 
The fourth Maxwell relation is: 124 

 

P T

V S

T P

∂ ∂   
= −   

∂ ∂   
. (28) 125 

Consider its traditional derivation [18]. One introduces dU from Eq. (2) into the differential of Gibbs 126 
energy: 127 

 d d d d d dG U P V V P T S S T= + + − −  (29) 128 

and obtains: 129 

 d d d .G V P S T= −  (30) 130 

From this, Eq. (28) results. 131 
 132 
One can see that this derivation is non-strict: dU from Eq. (2) is at a constant pressure and does not 133 
equal dU from Eq. (29), which is at a varying pressure. Let us try to derive Eq. (28) more strictly. One 134 
introduces a quantity of heat (TdS) into the system at varying volumes and pressures and the Gibbs 135 
energy of the system changes: 136 

 1 2d d dG G G= +  (31) 137 

where dG1 is the change in the Gibbs energy at a constant pressure: 138 
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 1 1 1 1d d d d dG U P V T S S T= + − −  (32) 139 

and dG2 is the change in it at a constant volume: 140 

 2 2 2 2d d d d d .G U V P T S S T= + − −  (33) 141 

Introducing Eq. (14) into Eq. (32), we obtain: 142 

 1 1d d .G S T= −  (34) 143 

One can note that one can obtain Eq. (20) from Eq. (34), assuming that 144 

 1d d .S T P V= −  (35) 145 

Introducing Eq. (15) into Eq. (33), we obtain: 146 

 2 2d d .G S T= −  (36) 147 

We can note that one can obtain Eq. (28) from Eq. (36), assuming that: 148 

 2d d .S T V P=  (37) 149 

 150 
For substances with negative thermal expansion or negative compressibility, it follows from Eqs. (17) 151 
and (37) that: 152 

 2d sign( ) dS T V Pαβ=  (38) 153 

and that the fourth Maxwell relation is: 154 

  sign( ) .
P T

V S

T P
αβ

∂ ∂   
= −   

∂ ∂   
 (39)   155 

 156 
  157 

3. CONCLUSION 158 

 159 
It has been shown that the negative compressibility of substances effects the Maxwell relations. The 160 
earlier results of the author indicating that negative thermal expansion also effects these relations 161 
have been strongly confirmed. General Maxwell relations have been obtained which take into account 162 
the sign of compressibility and thermal expansion: Eqs. (8), (19), (27), and (39). The first and third 163 
general Maxwell relations have been supported experimentally. It is shown that their previous 164 
versions fail to describe the experiments of a number of authors. 165 
 166 
 167 
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APPENDIX 228 

 229 

 230 
In [22, 23] and references therein, the tension of a rubber band as a function of temperature and 231 

length was measured. The tension τ is proportional to −P; hence the first Maxwell relation, Eq. (8), will 232 
be expressed as: 233 

 sign( ) .
S V

T

V S

τ
α

∂ ∂   
=   

∂ ∂   
 (A1) 234 

The sign of the left part must be negative because when one increases the temperature of a system, 235 
its entropy increases and for the entropy to remain constant the volume must decrease.  The 236 
derivative in the right part of Eq. (A1) describes the change in the tension during heating and has the 237 

same sign as ( )
V

Tτ∂ ∂ , which was found experimentally to be positive. The rubber band contracts 238 

when heated under tension (the Gough–Joule effect) [22, 23]; hence α is negative. One can see that 239 
the traditional Maxwell relation, Eq. (1), contradicts the experiment.                                                                                                  240 
 241 
The third Maxwell relation, Eq. (27), in this case will have the following form: 242 

 sign( ) .
V T

S

T V

τ
α

∂ ∂   
− =   

∂ ∂   
 (A2) 243 

The left part of it is positive. Its right part describes the following process: one introduces a quantity of 244 
heat into the system (dS > 0) and its volume decreases. If one wants to keep the temperature 245 
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constant, one has to increase the volume, and hence this derivative is greater than zero. Again, the 246 
traditional Maxwell relation, Eq. (20), contradicts the experiment. 247 
 248 
Let us introduce a quantity of heat into a substance (Eq. (2)) and let us suppose that it expands. 249 
According to the definition of work in thermodynamics, P in Eq. (2) is the internal pressure (produced 250 
by the substance) and is positive in our case because it expands the substance [24]. Its absolute 251 
value equals the sum of the pressure caused by surface tension and atmospheric pressure, with the 252 
latter being negligibly small compared to the former. If the substance possesses negative thermal 253 
expansion, then the pressure produced by the substance is negative and Eq. (2) can be rewritten as: 254 

 ( )( )δ d d d sign( ) dQ U P V U P Vα= + − − = +  (A3) 255 

which coincides with Eq. (3). 256 
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