
 

COMPARISON OF INTERCONTINENTAL AEROSOLS: DESERT AND MONSOON-INFLUENCED 1 

REGIONS 2 

 3 

AIM: 
     This work is to compare the optical and physical properties of aerosols at 
440µm,675µm,870µm and 1020µm spectral bands between Desert and Monsoon-
influenced regions. In this work Zinder and Beijing were chosen to represent desert and 
Monsoon influenced regions respectively.  
Place and Duration of Study:  
     Four years data of Aerosol Optical Depth (AOD) were extracted from level 2.0 quality 
assured almucantar version products of AERONET data, at both Beijing-CAM (116.3170E 
&39.9330N )  and Zinder Airport (8.9840E & 13.7750N) between 2012 and 2015.  
Methodology:  
      In this work, physical and optical properties of aerosols were determined using 
Angstrom equations. Angstrom exponent, Curvature, Turbidity coefficient and Spectral 
variation of the aerosols in each of Zinder Airport and Beijing-CAMP were determined  
and the results were then compared. Both the physical and optical properties of the 
aerosols were determined from the calculated values of Angstrom exponent, Curvature, 
Turbidity coefficient and spectral variation.   
Results:  

     The results obtained showed that there was dominant coarse-mode aerosols particles 
size in Zinder city, whereas domination of fine-mode aerosol particles in Beijing was 
found. The results also showed that the overall Aerosol Optical Depth (AOD) in Zinder is 
higher than that of Beijing but the atmosphere of Beijing was hazier than that of Zinder. 

Conclusion: 

     The prevalence of coarse-mode particles size in Zinder was due to desert dust 
particles in the region, whereas the prevalence of fine-mode particle in Beijing was due 
to anthropogenic aerosol particle in the region which may be resulted from heavy 
industrialization in China. The higher Aerosol loading in Zinder is responsible for 
absorbing light coming from the sun which, in turn, makes the atmosphere clear, 
whereas the lesser aerosol loading in Beijing is responsible for scattering light coming 
from the sun, thereby obstructing the atmospheric visibility in the region.  
 
 4 
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1.0 Introduction 8 

     Apart from green-house gases, aerosol is another important agent of radiative forcing 9 

that affects the planet Earth [1-3]. Aerosol affects our environment [1-3], influences cloud 10 

formation [4], and causes overall increase or decrease in atmospheric temperature [5]. 11 

Aerosol also affects human health by penetrating deep down into respiratory and 12 

cardiovascular system [6, 7]. These effects of aerosol make it necessary to monitor it via 13 

both ground-based observation and satellite [4, 8, and 9]. However, it is difficult to 14 

monitor aerosol properties via satellite because satellites always rely on backscattering 15 
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signals which are more often than not contaminated signals [10]. This is the reason why 16 

ground-based measurements are more commonly used to get accurate aerosol data 17 

since the ground-based instruments are mounted to take measurements directly facing 18 

the sun. 19 

     There are numerous number of ground-based Sun-photometer networks across the 20 

globe that are used for aerosol monitoring. These include SKY-Radiometer network 21 

(SKYNET) and Aerosol Robotic Network (AERONET). AERONET is a very popular and 22 

reliable source of aerosol data; it provides measurements in over 400 data stations 23 

worldwide for accurate retrieval of aerosol optical depth (AOD), single scattering albedo 24 

(SSA), aerosol particle size distribution (PSD) by taking into account direct solar 25 

measurement and scattering measurement[14,15 ]; and it became a yardstick for satellite 26 

AOD retrieval[16,17]. Two of the AERONET data stations are Beijing-CAM in China and 27 

Zinder Airport in Niger republic. 28 

     Beijing is the capital city of China; it is located in North-China, the East-Asian region, 29 

situated at longitude 116.3170E and latitude 39.9330N with a population of more than 19 30 

million [18]. Beijing belongs to the warm temperate zone, half moist continental monsoon 31 

climate, featuring four distinct seasons: Arid multi-windy spring, hot and multi-rain 32 

summer, sunny and fresh autumn and the cold and dry winter and has experienced rapid 33 

economic development over the past decades. Beijing shows distinct seasonal 34 

transition. Atmospheric pollution is a concerned problem in Beijing due to human 35 

activities and frequent dust storm events in the city. Zinder, on the other hands, is one of 36 

the most popular cities in Niger republic. It is located at Longitude 8.9840 E and Latitude 37 

13.7750 N in the West-African sub-region. It is typically characterized as a Sahara desert 38 

area with vertually no rainfall. The arid nature of zinder makes it possible for dust to 39 

prevail and likely to cause haze in the atmosphere.  Figures 1a and 1b respectively depict 40 

Beijing and Zinder cities. 41 

     This study intends to find correlation between aerosol particle size distribution, PSD; 42 

aerosol optical depth, AOD; and atmospheric visibilty in the two cities, using four years 43 

of level 2.0 AERONET data in Beijing-CAM and Zinder airport between 2012 to 2015.   44 

 45 
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 46 

Figure 1a: Map of Zinder 47 

        48 
   49 

    Figure 1b: Map of Beijing 50 

                    51 

2.0 Material and Method 52 

          Four years (2012-2015) of level 2.0, ‘the quality assured’ AOD data each of Zinder and Beijing 53 

were extracted from AERONET database using standard retrieval procedure of AERONET 54 

products. These raw data archive files were unpacked using WinRAR 4.11 wizard and viewed 55 

through the Microsoft excel windows. The AOD data used were measured at four spectral bands, 56 

namely: 440nm, 675nm, 870nm and 1020nm. 57 

   Annual median averages of the AODs alongside their corresponding wavelengths were computed 58 

and arranged in tabular forms. Statistical comparison between annual AOD in Zinder and that of 59 

Beijing was carried out. 60 

     The annual mean AODs of both Zinder and Beijing were plotted against their corresponding 61 

wavelengths and the graphs were fitted on the second order polynomial curve in natural 62 
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logarithmic coordinates using least square fitting procedure to determine the Angstrom coefficients 63 

in both Zinder and Beijing. The Angstrom coefficients determined were Curvature (α2) and 64 

Turbidity (β). 65 

Angstrom equation is given as: 66 

τ= λ-α ………………………………………. (1) 67 

     The linear equation that links the natural-logarithmic AOD and the corresponding 68 

natural-logarithmic wavelength is: 69 

   lnτ = −���� + � … … … … ………………..(2) 70 

     The second order polynomial equation relating the AOD and the wavelength in natural 71 

logarithmic form is: 72 

    lnτ = α2lnλ
2+α1lnλ

1+β…………………. (3) 73 

Where: τ is the AOD; α2 is the curvature; β is the turbidity coefficient; α is the Angstrom 74 

exponent. 75 

     Angstrom equation was also employed to determine the annual Angstrom exponents 76 

in each city. The expression for Angstrom equation is given as: 77 

   α = -   
����

����  ……………………................. (4) 78 

     Spectral variation of AOD (α’) was also determined using the expression of the second 79 

derivative of Angstrom exponent (α) 80 

   α'=    
��

���� = -2α2…………………………….(5) 81 

     The values of α2, β, R2 and α’ were presented in a tabular form. Where: R2 is the least 82 

square value of the residual. 83 

3.0 Results and Discussions 84 

     Values of annual median AODs in both Zinder and Beijing at four different spectral 85 

channels, from the year 2012 to the year 2015 were presented in table 1 below. The AODs 86 

in each case decreased with corresponding increase in wavelength. This decreasing 87 

trend of AOD with wavelength was presented in figures 2a-2b. Figure 2a compares AODs 88 

between Zinder and Beijing in 2012 at the four considered wavelengths. In each case, 89 

AOD in Zinder was higher than AOD in Beijing. At 440µm, the difference between Zinder 90 

and Beijing AODs was 0.028 which is a reasonably small value. At 1020µm, however, the 91 

difference in AODs in Zinder and Beijing was relatively high of value 0.126. This implies 92 

that 1020µm channel showed highest difference in AOD whereas 440µm channel showed 93 

lowest difference in AOD in the two cities in the year 2012. 94 
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     In 2013, Zinder also showed higher AOD values in all considered spectral channels 95 

except at 440µm. At 440µm, the AOD value in Beijing was 0.425, whereas that of Zinder 96 

was 0.412. This implies that the AOD in Beijing at 440µm channel is higher by 0.013. At 97 

1020µm and 675µm respectively, Zinder showed highest and lowest values of AOD more 98 

than Beijing with respective values of 0.307 and 0.357. 99 

     The case of year 2014 is similar to that of 2013. Value of AOD in Beijing at 440µm was 100 

0.273 which was higher than that of Zinder of   0.227 at the same spectral channel. The 101 

difference was 0.046 which was more significant than that of 2013. However, AOD of 102 

Zinder was higher than that of Beijing in the remaining three spectral channels in 2014. 103 

The difference was highest at 1020µm with value 0.022 and lowest at 870µm with value 104 

0.011. 105 

           In 2015, AOD in Zinder, was higher than that of Beijing throughout the spectral 106 

channels. The differences were 0.149, 0.232, 0.243 and0.241 at 440µm, 670µm, 870µm and 107 

1020µm respectively. 108 

Table 1: Annual Median AODs at Four Spectral Channels in Zinder and Beijing, 2012-109 

2015. 110 

λ( µm)    AOD (2012)          AOD (2013)            AOD (2014)                AOD (2015) 

λ( µm) Zinder  Beijing  Zinder       Beijing    Zinder       Beijing       Zinder       Beijing     

0.440     0.386     0.358     0.412          0.425       0.227          0.273          0.442         0.293 111 

0.675     0.301     0.208     0.357          0.247       0.171          0.160          0.406         0.174   112 

0.870     0.260     0.152      0.324         0.196       0.140          0.123          0.380         0.137 113 

1.020     0.243     0.117      0.307         0.173       0.124           0.102          0.360        0.119 114 

 

Table 2: Angstrom Parameters in Zinder and Beijing, 2012-2015. 

Year                α2                        β                        R2                          α                         α’ 

  Year     Zinder  Beijing  Zinder Beijing Zinder  Beijing Zinder Beinjing Zinder Beijing 

2012      0.329    0.570      0.640   0.792     0.999    0.996    0.580   1.256       -0.658  -1.140 

2013      0.154    0.844      0.561   0.988     1.000     0.995   0.354   1.135      -0.308   -1.688 

2014      0.172    0.506      0.382   0.632     1.000    0.0.995    0.710    1.170   -0.344   -1.012 

2015        -          0.540      0.502   0.663     0.998    0.996    0.222    1.115          -       -1.080 
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Figure 2b 116 

117 

 

 

 

UNDER PEER REVIEW



 

Figure 2c 118 

119 

Figure 2d 120 

 121 

Figure 2: Comparison of Annual AOD between Zinder and Beijing Cities122 
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Figure 3a 125 

Comparison of Annual AOD between Zinder and Beijing Cities
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Figure 3b 127 

128 

Figure 3c 129 

130 

Figure 3d 131 

Figure 3: Comparison of Curvature and Turbidity Coefficient between Zinder and Beijing 132 

Cities 133 
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Figure 4: Comparison of Angstrom Exponent between Zinder and Beijing Cities.137 
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particles. Besides in Beijing, dust storm is very common and it is possible that the dust 166 

events have dominated the influence of fine particles from anthropogenic sources. 167 

Throughout the considered four years, Beijing showed higher values of α2 than Zinder 168 

which can be seen from table 2. The curvature is also obvious on the curves in figures 169 

3a-3d. Nevertheless, in 2015, linear fit was found to be the best fit for AOD data in Zinder. 170 

This is because, the curvature in that case was found to be very small which was 171 

considered insignificant and this necessitated the use of linear fit, instead of the 172 

polynomial fit. In this case it was concluded that the small value of the curvature was due 173 

to bimodal aerosol size distribution dominated by coarse mode particles [22] 174 

      Moreover, the curvature is more significant under high turbidity condition. This 175 

implies low curvature, high AOD and high α’-values. Change in curvature in spectral AOD 176 

can be due to the existence of more than one type of aerosol present in the atmosphere 177 

[22]. From figure 3, curvature changes more rapidly in Beijing than in Zinder; this implies 178 

that in Beijing, aerosol types are more than one. This is expected in a mega city like 179 

Beijing with population of more than 19 million. Fine-mode aerosol particles are expected 180 

from human activities in the city; coarse–mode aerosols particles are expected from dust 181 

storm which is very frequent in Beijing.  182 

     Values of β<0.1 signify relatively clear atmosphere, whereas values of β>0.2 signify 183 

relatively hazy atmosphere [23]. Based on this convention, since values of β from table 2 184 

were all greater than 0.2, then it was concluded that the overall atmospheric status in 185 

both Zinder and Beijing was hazy from 2012 to 2015. From table 2, Beijing showed 186 

maximum haze status in 2012 with β-value 0.72 and minimum haze status in 2014 with β-187 

value 0.416. On the other hands, Zinder showed maximum haze status of β-value 0.640 in 188 

2012 and minimum haze status of β-value 0.300 in 2014. 189 

 190 

4.0 Conclusion 191 

     Based on observation and retrieval of aerosol data in two AERONET sites in Zinder 192 

and Beijing, from 2012 to 2015, aerosol optical depth (AOD), Angstrom exponent (α), 193 

Turbidity coefficient as well as curvature of each city were analyzed and compared to get 194 

the variability and similarity of physical and optical properties of aerosol in the two cities. 195 

The results found show that there is domination of coarse-mode particles in Zinder due 196 

to desert dust prevalence in all the four years of the study. The results, on the other 197 

hand, show that there is a mixture of fine-mode and coarse-mode particles in Beijing. The 198 

results also revealed that both Zinder and Beijing atmospheres where typically 199 

characterized with haze due to dust (as in the case of Zinder) and due to dust storm and 200 

excessive anthropogenic aerosol release in the atmosphere (as in the case of Beijing). In 201 

case of Zinder, the desert dust absorbs more light than it scatters, thereby causing less 202 

haze. In case of Beijing, the anthropogenic aerosols, which are dominant, scatter more 203 

light than it absorbs, thereby causing more haze in the region. 204 

 205 
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