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ABSTRACT  5 

 6 

Previously, in the calculation of the internal energy of the ideal gas in statistical mechanics, it has been 
supposed that the volume is a constant, which does not depend on any arguments. However, the volume 
depends on pressure and temperature and its partial derivative is not equal to zero. In this paper, the 
dependence of the volume on pressure and temperature is taken into account, and the internal energy is 
calculated exactly. 
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1. INTRODUCTION  13 

 14 
The partition function of a discrete system in statistical mechanics is:  15 
 16 
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 18 
Here, k is the Boltzmann constant, T is temperature and Ui is the energy of the system in the respective 19 
microstate. The internal energy of a system can be obtained through the partition function: 20 
 21 
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 23 
It is important to note that the derivative in the above equation must be taken at constant energies, but 24 
not at a constant volume. The internal energy of the ideal gas was obtained from equation 2: 25 
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 27 
where N is the number of atoms.  28 
 However, the partition function of the ideal gas depends on the volume. In the previous 29 
calculation of the internal energy of the ideal gas, the derivative of the volume with respect to temperature 30 
was supposed to be zero, which is wrong. In the present paper, the exact calculation of the internal 31 
energy of the ideal gas has been performed taking this derivative into account. 32 
 33 
 34 

2. THEORY 35 

 36 
For a continuous system, the partition function is:  37 
 38 
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 40 

where h is the Planck constant, and Γ is the phase space. The average energy of such a system is: 41 
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 43 
This expression is equivalent to equation 2. It is important to note that both for discrete and continuous 44 
systems the only value being kept constant in the partial derivative in equation 2 is the energy U.  45 
 Let us perform a simplified derivation of the partition function for a monatomic ideal gas [1] (we 46 

omit h
3N

 for simplicity). The energy, U(Γ), equals the sum of the kinetic energies of the atoms: 47 
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 49 
Here, pi is the momentum of the i-th atom, and m is its mass. Introducing equation 6 into equation 4, one 50 
obtains a 6N-dimensional integral:  51 
 52 
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 54 
This integral equals:  55 
 56 
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 58 
Here, dp1 and dr1 are the elements of the momentum space and position space respectively of the first 59 
particle.  60 
 Introducing equation 8 into equation 2, one obtains: 61 
 62 
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 64 
In the previous calculations, it was supposed that V is a constant which does not depend on any 65 
arguments and the derivative in the right hand part of equation 9 equals zero. As is mentioned above, it is 66 
physically wrong to assume that the volume is a constant, which does not depend on any arguments. 67 

Even when the volume is constant, it depends on temperature and pressure, and the derivative V T∂ ∂  68 

is, in general, not zero. Let us take the partial derivative in equation 9 at a constant energy using the 69 
equation of state: 70 
 71 

     .PV NkT=                           (10) 72 

 73 
One can show that, in this case, equation 9 turns to: 74 
 75 
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 77 
If this result is correct, then the internal energy of the ideal gas (and may be that of all physical systems) 78 
has an intrinsic integral term PV. So, the internal energy of the ideal gas (or of a physical system) must be 79 
written like this: 80 
 81 

            
*

U U PV H= + =                            (12) 82 

 83 
where U is the traditional internal energy, and H is enthalpy. 84 
 One can immediately explain the following contradiction in thermodynamics. For the heating of a 85 
substance by compression, the first law of thermodynamics is: 86 
 87 

 d d .P V U= −  (13) 88 

 89 
From this equation, the following derivatives follow: 90 
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 93 
However, P and S cannot be constant simultaneously, and a contradiction occurs. It can be resolved 94 
using the result obtained. Equation 13 must look like: 95 
 96 

 d d d .P V U V P= − −  (16) 97 

 98 
From this, equation 14 follows, but equation 15 is not true. 99 
 100 
   101 
 102 

3. DISCUSSION AND CONCLUSIONS 103 

 104 
If the derivations performed in this paper are correct, then the first law of thermodynamics for heat 105 
exchange has the following form: 106 
 107 
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 109 

where δQ is the heat introduced into the system. For a constant volume, equation 17 turns to:  110 
 111 
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 113 
where dS is the change in entropy. For a constant pressure, equation 17 turns to: 114 
 115 
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 117 
 Let us prove that equation 19 is valid only for a constant pressure. Let us assume that the 118 

pressure is not constant in it. One can notice that δQ = TdS = dHP in equation 19 is a full differential, 119 

where dHP is the enthalpy change at a constant pressure. Therefore, the derivatives ( )1
UV

∂
∂

 and 120 

( )
V

P
U

∂
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 must be equal. However, for the ideal gas, they equal 0 and 2
3V

, respectively. In reality, 121 

these derivatives must also be taken at a constant pressure, thus both are equal to zero. 122 
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 From equations 18 and 19 it follows that the isochoric heat capacity, CV, equals the isobaric heat 123 
capacity, CP. In [2], the heat capacities of argon and nitrogen were measured experimentally, and it was 124 
found that CV = CP. Let us cite A. Guy [2]: "In a standard experiment in physical chemistry, students 125 
determine CP/CV = 1.4 for a diatomic gas such as nitrogen, but nowhere in the scientific literature is there 126 
a report on the direct experimental determination of both CP and CV for any gas." 127 
 There is a relation between the isobaric heat capacity and the isochoric heat capacity (Mayer’s 128 
relation) [3]: 129 

2
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 131 

where α is the coefficient of thermal expansion, ρ is density, and β is the isothermal compressibility. One 132 
can show that the derivation of Mayer’s relation is not correct. Let us consider the key part of this 133 
derivation and expand S as a function of T and V: 134 
 135 
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 141 
One can see that this consideration is equivalent to the following one. Let us take the following 142 
expansion: 143 
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 145 
and divide it by dT. The derivatives on the right hand side are equal to zero, and at a constant P the 146 
arguments V and T are not independent. 147 
 It is necessary to note that, from equation 19, the following derivative was obtained and given in 148 
the tables of thermodynamic derivatives, for example [4]:

 
149 

 150 
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 152 
Nevertheless, from equation 17, it follows that the partial derivative in equation 25 is taken also at a 153 

constant pressure, ( )
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, and should equal zero. From equation 18, it follows that equation 25 for 154 

heat exchange should be written like this: 155 
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 158 
The derivative of the pressure in equation 26 is given in [4]. For the ideal gas this equation turns to: 159 
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 The results of the present paper can explain a paradox in the ideal gas [5−8]. Two variables are 161 
necessary to determine the properties of a gas, such as its internal energy. In the kinetic theory, the 162 
internal energy of the ideal gas is given by equation 3. The paradox is that this energy depends only on 163 
one variable, T, but must depend on two. From equations 3 and (10) it follows that:  164 

3
( , ) .

2
U P V PV=               (28) 165 

 166 
Here, the energy depends on two variables. 167 
 This paradox is valid also for real gases because, in a wide range of temperatures and pressures, 168 
they only minimally deflect from the ideal gas. For example, the molar volumes of argon, helium, 169 
hydrogen, nitrogen, oxygen and methane deviate at about 0.1 percent of 22.414 litres at standard 170 
temperature and pressure and deviate even less for higher temperatures and lower pressures. For argon, 171 

the difference between the theoretical and experimental heat capacity is less than 0.1 percent [5−7,9]. For 172 
real gases, there will be a weak dependence of thermodynamic properties on volume in equation 3 and a 173 
strong dependence on volume in equation 10. 174 
 It is interesting to note that the obtained result explains the enthalpy paradox found in [6,7,10]. 175 
Thermodynamic potentials internal energy, U, and enthalpy, U + PV, are qualitatively different, but, for the 176 
ideal gas, they are identical thermodynamically and differ only in the multiplying factor in that U equals 177 
1.5PV, and H equals 2.5PV. If everything were correct in traditional thermodynamics, then U would not be 178 
thermodynamically identical to H even for the ideal gas. 179 
   180 
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