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Abstract

This paper presents a novel explanation of the cause of quantum probabilities and the Born
rule based on the intuitionistic interpretation of quantum mechanics where propositions obey
constructive (intuitionistic) logic. Being the objects of belief bearing logical (truth) values,
propositions allow for the entrance of a probabilistic concept into quantum theory. Addition-
ally, the use of constructive logic makes it possible (through a replacement of the concept of
truth with the concept of constructive provability) to abandon the law of excluded middle in
the intuitionistic interpretation so that it does not fall victim to Schrödinger’s cat and the like.
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1 Introduction

Whence comes indeterminism in physics? Really, assuming that the Schrödinger dynamics is uni-
versally valid, i.e., that each process in physics is governed by the (linear differential) Schrödinger
equation and so is continuous, causal, and reversible, how is that there are processes involved in
measurement that are indeterministic, i.e., whose outcomes are probabilities? It is no exaggeration
to say that the problem this question relates to is the most difficult in the foundation of quantum
mechanics.

Under the Copenhagen interpretation, quantum probabilities enter physics through the Born rule,
which cannot be investigated as it is a postulate of the theory (the same one as the Schrödinger
equation is). However, the problem with such an ab initio postulation is not that it does not offer
any deeper understanding of how probabilities come into existence. The real problem here is that
there is nothing inherent in the Copenhagen interpretation that can either reject the mutual appli-
cation of the Schrödinger equation and the Born rule to a system of interest or select one postulate
over another [1].
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Hence, attempts to understand the cause of indeterminism in quantum physics are being made
beyond the Copenhagen interpretation.

For example, in the relative state (also referred to as many-worlds) interpretation (henceforward
RS/MWI for short), the behavior of a rational agent in quantum-mechanical situations is thought
to provide a natural account of the probability concept [2, 3, 4, 5, 6]. As it is argued in the
quantum-mechanical version of decision theory, being strongly constrained in their behavior the
rational agents would quantify their subjective uncertainty in the face of the wave function “split-
ting” (or “branching”) by the use of probability given by the Born rule.

But then the fact that the RS/MWI contains neither element nor quality nor attribute related to a
notion of belief makes a doubt if there be a way to derive probabilities – i.e., degrees of beliefs – from
such an interpretation. 1 What is more, even if this notion had been added to the RS/MWI, it still
would be flatly inconsistent with the universally applicable (deterministic) Schrödinger dynamics
and the splitting picture [9]. Such an argumentation may explain why no decisive conclusion on
the possibility of emergent probabilities and randomness in the RS/MWI has been reached yet.

Meanwhile, the decoherence program tries to find the solution to the problem of the origin of
quantum probability by including the environment but without relying on the key elements of de-
coherence that presume the Born rule and would thus render the contention circular [10, 11]. For
example, as it has been proposed in the decoherence program, the Born rule is originated from the
environment-assisted invariance (in other words, from a symmetry of composite quantum states)
[12, 13, 14].

But then again, it hard to see how probabilities can emerge within the framework, in which only
unitary evolutions (without collapse mechanism) are allowed and thus there do not exist measure-
ment outcomes, that is, the bearers of probabilities. 2

So, the intention of this paper is to give explanation of the cause of quantum probabilities and
the Born rule using a completely different approach. The key idea is to employ the intuitionistic
interpretation of quantum mechanics [17] in which propositions concerning quantum-mechanical
situations obey constructive (intuitionistic) logic. As the objects of belief that bear logical values
(‘true’ � and ‘false’ ⊥) [18], propositions let one pave the way for the entrance of a probabilistic
concept into quantum theory. Also, the use of intuitionistic logic makes it possible (through a re-
placement of the concept of truth with the concept of constructive provability) for the assumption
of the universal validity of the Schrödinger dynamics to become weaker. Such a deregulation allows
one to drop the law of excluded middle in the intuitionistic interpretation so that the last-named
does not “fall victim to Schrödinger’s cat and the like” [19].

The rest of the paper is structured as follows: The essence of the points maintained in the paper
is put in the next Section 2, while the Section 3 concludes the arguments of this paper.

1The concept of an agent’s degree of confidence, a graded belief, is one of the main concepts of probability. See
papers [7, 8] that analyze in depth this and other concepts of probability.

2According to the propensity, subjective, and logical interpretations of probability, measurement outcomes (or
events) are the bearers of probabilities; see, for example [15, 16].
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2 How irreducible probabilities appear in the intuitionistic inter-

pretation

Assume that a (typical microscopic) system S, whose pure quantum states are determined by the
eigenstates |a1〉 and |a2〉 of the observable A (that takes on only two possible values a1 and a2),
interacts for the duration of the measurement t with a (typical macroscopic) apparatusM designed
to measure (observe) A.

Suppose that the state of the system S is a superposition |ψ〉 = c1|a1〉+ c2|a2〉 where coefficients c1
and c2 meet with the normalization condition c1

2 + c2
2 = 1 (whose reason will be explained later).

In this case, the sample space of the measurement – i.e., the set of all possible outcomes of the
measurement of the observable A – can be defined as Ω ≡ {a1, a2}. Let us evaluate the following
proposition: 3

({a1, a2}) ≡
(
({a1})⊕ ({a2})

) ≡ ((
({a1}) ∨ ({a2})

) ∧ (¬ ({a1}) ∨ ¬ ({a2})
))

, (1)

where ⊕ stands for the logical operation of exclusive disjunction (corresponding to the construct
“either ... or”) that outputs ‘true’ only when its inputs – i.e., the propositions of elementary events
{a1} and {a2} (subsets of {a1, a2}) – differ, namely, ({a1}) 	= ({a2}). The proposition ({a1, a2})
is logically equivalent to the assertion that there is a final (i.e., at the moment t in the last part
of the measurement) state |Ψt〉 of the composite system S +M in which the observable A has a
definite value, in other words, there is an event which contains only a single outcome – either {a1}
or {a2} – in the sample space {a1, a2} of the measurement.

Consider the first part of the compound expression (1), that is, the proposition (({a1}) ∨ ({a2})).
In view of the fact that this proposition contains the logical constant ∨, constructive logic [20]
(adopted in the intuitionistic interpretation of quantum mechanics presented here) requires that
if this proposition is asserted to be true, then witness must be given, which chooses ({a1}) or
({a2}) and provides (an explicit, constructive) proof for it. 4 What counts as “witness” is open to
interpretation though. In the said case, witness can be understood as an outcome of either an
actual measurement of A or a decision problem that determines the logical value of the proposition
(({a1}) ∨ ({a2})) before the actual measurement of A.

This decision problem can be defined as the following propositional formula:

(
({a1}) ∨ ({a2})

) ≡ (
|Ψt〉 = |a1〉|M1〉 ∨ |Ψt〉 = |a2〉|M2〉

∣∣∣P (|Ψt〉)
)

, (2)

3In this paper, propositions and statements are used interchangeably and denoted (if not stated otherwise) as
enclosed in parentheses expressions (·) which are capable of being true or false.

4Another logical constant whose interpretation requires constructive proof is ∃.
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where |M1〉 and |M2〉 represent mutually orthogonal quantum states ofM , both orthogonal to |M0〉
(which is the initial – i.e., at the moment t = 0 preceding the measurement – quantum state of M ,
so-called ready state), corresponding to different macroscopic configurations of M similar to differ-
ent positions of a pointer along a scale, while P (|Ψt〉) represents a statement – i.e., a predicate –
that may be true or false depending on the particular final state |Ψt〉 of the composite system S+M .

By contrast, when the state of the system S is just one of the eigenstates |an〉 of the observable
A, that is, |ψ〉 = |an〉 (where n ∈ {1, 2}), the sample space of the measurement correspondingly
consists of a single element, i.e., Ω ≡ {an}. In the given case, a witness for the proposition of
the elementary event ({an}) (asserting that in the final state |Ψt〉 = |an〉|Mn〉 the observable A
has the definite value an) is required to do nothing but only exist if ({an}) is true. Therefore, the
proposition ({an}) can be treated in accordance with the laws of classical logic [21]. In particular,
the following propositional expression

({an}) ≡ (|an〉|Mn〉) = � (3)

(where symbol = positioned after the parentheses defines the notion of evaluation) can be taken as
a postulate assuming the eigenvector-eigenvalue link – the perfect correlation between the initial
state |an〉 of the system S and the final state |Mn〉 of the apparatus M . 5

Let us return to the propositional formula (2). Since the quantum evolution of the system S +M
is given as |Ψt〉 = Û(t)|ψ〉|M0〉, where Û(t) stands for the time evolution operator, namely, Û(t) =
exp(−itHS+M/�), the predicate P (|Ψt〉) is defined such

P (|Ψt〉) ≡
((

|Ψt〉 = Û(t)|Ψ0〉
)
∧
(
|ψ〉 = c1|a1〉+ c2|a2〉

)
∧
(
∃|M0〉∈H P (|M0〉)

))
(4)

that it includes the statement (|Ψt〉 = . . . ) asserting the validity of the Schrödinger dynamics for
the measurement process, the statement (|ψ〉 = . . . ) declaring the validity of the quantum super-
position principle for the system S, and the statement (∃|M0〉 . . . ) affirming the existence of the
ready state of the apparatus M as a quantum state vector |M0〉, in which H denotes an abstract
(separable, infinite-dimensional) Hilbert space and P (|M0〉) stands for the propositional function
of the vector |M0〉.

As follows, to assign a logical value to the proposition (({a1}) ∨ ({a2})) in advance of the mea-
surement, the predicate P (|Ψt〉) must be calculated. But to do so, a witness is required that can
provide computational evidence supporting the statement (∃|M0〉 . . . ) since this is the one in the
formula (4) that involves the existential quantification ∃.

Were the state vector |M0〉 to exist, it would be a vector of the Hilbert space HM ⊆ H of the
apparatus M (as much as the state vectors |M1〉 and |M2〉 would be). From another side, the
eigenvectors |Mn〉 of the Hamiltonian operator HM corresponding to the total energy of the appa-
ratus M must provide an orthonormal basis {|Mn〉} for the Hilbert space HM they span. For this

5Here it is also assumed the absence of degeneracy meaning there is only one eigenstate for each eigenvalue.
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reason, let us consider the decision problem of the Schrödinger equation Π(HM ) for the Hamiltonian
operator HM

Π(HM ) ≡ ({|Mn〉} 	= ∅) (5)

whose output is taken to be ‘true’ if the solution set {|Mn〉}

{|Mn〉} ≡
{
|Mn〉∈H

∣∣∣ i� ∂
∂t

|Mn〉 = HM |Mn〉
}

(6)

(i.e., the set of all vectors |Mn〉 for which the Schrödinger equation with HM holds) is not empty
and ‘false’ otherwise.

Most generally, the decision problem of the Schrödinger equation can be presented in the form

Π(HC) ≡
(∃|u〉 ∈ H P (|u〉,HC)

)
, (7)

where the predicate P (|u〉,HC) encloses the general time-dependent Schrödinger equation

P (|u〉,HC) ≡
(
i�
∂

∂t
|u〉 = HC |u〉

)
, (8)

in which HC symbolizes a completely arbitrary Hamiltonian operator (which means that the term
HC is free for substitution for any element in the set of all allowable Hamiltonian operators H) and
the vector |u〉 represents the exact solution to this equation.

Contrary to microsystems, a typical macroscopic object with its uncontrolled and unlimited degrees
of freedom cannot be assigned a specific (i.e., explicit, detailed and unambiguous) Hamiltonian
operator HM . This means that the truthfulness of the statement (∃|M0〉∈H P (|M0〉)) would be
secured if and only if the solution set {|u〉} of the Schrödinger equation was in no case empty, that
is, the decision problem of this equation had to be universally true (i.e., had the ‘truth’ output for
all physical systems), namely,

Π(HC) ↔
(∃|M0〉∈H P (|M0〉)

)
(9)

(where – in line with the notion of constructiveness – the symbol ↔ may be viewed as an abbrevi-
ation of “can be replaced in a proof with”).

Let us consider the following claim

Π(HC) = � . (10)
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It is clear that this claim (logically equivalent to the assertion of the universal validity of the
Schrödinger dynamics) could be proved if the Schrödinger equation was capable of being exactly
solved by a generic algorithm, i.e., for the Hamiltonian operator HC .

However, such an algorithm does not exist (at least as it is known in the present state of our
knowledge [22]). To be exact, the decision problem Π(HC) is known to be undecidable, i.e., there
does not exist a single (generic) method that can in a finite number of steps correctly solve this
problem for any allowable Hamiltonian operator H (even though methods of finding the solution
set {|u〉} of the Schrödinger equation with some particular H are known).

Indeed, as it is argued in [17], the decision problem of the Schrödinger equation is parallel to the
general spectral gap problem that asks whether or not a given Hamiltonian operator H has a spectral
gap (i.e. the energy difference between the ground state and the first excited state of the system
in the thermodynamic limit). To be sure, if there were a generic algorithm capable of obtaining
the solution set {|u〉} of the Schrödinger equation for all allowable Hamiltonian operators H, then
such an algorithm would be able to answer not only the question whether this solution set {|u〉}
is empty or not but also the question whether the spectrum of the eigenvalues corresponding to
{|u〉} is discrete and gapped or continuous and gapless. Yet, according to the result of the paper
[23], the general spectral gap problem is undecidable. One can infer from this conclusion that the
generic algorithm for solving the Schrödinger equation with an arbitrary HC does not exist and
consequently the decision problem Π(HC) is undecidable.

In order to ensure the general undecidability of this problem, in the intuitionistic interpretation
of quantum mechanics the declaration of the universal validity of the Schrödinger dynamics is
weakened (in comparison with other interpretations that are based on classical or quantum logic).
Specifically, it is asserted that unless one has a proof that for the particular system Π(H) = �, the
Schrödinger dynamics can be considered only being possibly valid for this system. Symbolically,
this can be written down as the following entailment

(
∃H Π(H) = �

)
�
(
♦Π(HC) = �

)
, (11)

where ♦ stands for the modal operator of possibility [24]. This entailment assigns the truth value
� to the proposition “it is possible that Π(HC)” as a logical consequence of the fact that for
some Hamiltonian operators H the solution set of the Schrödinger equation can be explicitly
demonstrated 6.

By the axioms of seriality and reflexivity of modal logic, i.e., �Π(HC) → ♦Π(HC) and �Π(HC) →
Π(HC) respectively (where � is the operator of necessity), the equality ♦Π(HC) = � suggests

6In contrast to the intuitionistic interpretation, the RS/MWI and the decoherence program infer the universal
validity of the Schrödinger dynamics from the same fact, i.e., (∃H Π(H) = �) � (Π(HC) = �). Indeed, as it is stated
for example in [25], since “there is satisfactory and often excellent evidence” that the quantum mechanical (QM)
framework “is quantitatively valid” and at the same time “there is, at least at present, no positive experimental
evidence that it is not valid in other regions where it has not been directly tested”, then “the principle of Occam’s
razor would certainly suggest that the intellectually economical attitude is to assume that the general conceptual
scheme embodied in QM is in fact valid for the whole of the physical universe without restriction”.
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Π(HC) = � but it equally may be Π(HC) = ⊥. This means that the entailment (11) declares
contingency of the decision problem Π(HC) (in other words, the outcome of Π(HC) is asserted to
be uncertain). As a result, from the formula (9) one infers the following evaluation

(∃|M0〉∈H P (|M0〉)
)
= {} , (12)

where symbol {} represents “neither true nor false”. The meaning of the evaluation (12) is that
the statement asserting the existence of the state vector |M0〉 cannot be decided computationally,
i.e., by means of the Schrödinger equation.

This implies that the predicate P (|Ψt〉) presented in the formula (4) simply cannot be known: Its
truth or falsehood cannot be analyzed (computed). The unknowingness of the predicate P (|Ψt〉)
in turn implies that it is impossible to assign a definite logical value to (({a1}) ∨ ({a2})) – and
so to the proposition ({a1, a2}) – in advance of the actual measurement of the observable A. In
other words, because of the undecidability of the decision problem Π(HC), the logical values of the
propositions of elementary events ({a1}) and ({a2}) cannot be decided (and thus exist) ahead of
the measurement.

In passing, let us note that postulating the the universal validity of the Schrödinger dynamics and
in this way the existence of the ready state of the apparatus M as a state vector |M0〉, one gets a
contradiction known as the quantum measurement problem (or, to be more exact, the problem of
definite outcomes). Truly, when the both statements (∃|M0〉∈H P (|M0〉)) and (ψ = c1|a1〉+ c2|a2〉)
are presumed to be true, the statement asserting the validity of the Schrödinger dynamics for the
measurement process, (|Ψt〉 = Û(t)|Ψ0〉), cannot be true: The linearity of the Schrödinger equation
entails that in this case the initial state of the composite system S +M evolves into the following
final state

(
c1|a1〉+ c2|a2〉

)|M0〉 t−→ c1|a1〉|M1〉+ c2|a2〉|M2〉 , (13)

in which the symbol + representing the linear superposition cannot be replaced by the coordinating
conjunction “or” such that |Ψt〉 = |a1〉|M1〉 or |Ψt〉 = |a2〉|M2〉 (meaning the inclusive or exclusive
disjunction). So, without supplying an additional postulate (for example, the wave-packet reduc-
tion postulate) or giving a suitable interpretation of the superposition c1|a1〉|M1〉+ c2|a2〉|M2〉, it
is impossible to explain the definite pointer position |Mn〉 corresponding to the value an, that is,
the logical value ‘true’ of the proposition ({a1, a2}), which is always perceived as the outcome of
the actual measurement of the observable A.

Let us now evaluate the negation of the predicate P (|Ψt〉):

¬P (|Ψt〉) ≡
((

|Ψt〉 	= Û(t)|Ψ0〉
)
∨
(
ψ 	= c1|a1〉+ c2|a2〉

)
∨¬

(
∃|M0〉∈H P (|M0〉)

))
. (14)

From the definition of the decision problem Π(HC) it follows that its negation, namely, ¬Π(HC) ≡
(∀|u〉 ∈ H ¬P (|u〉,HC)), is not constructively provable: In order to produce direct evidence of the
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truthfulness of this negation, one would have to demonstrate falsity of the Schrödinger equation,
that is, ¬P (|u〉,HC) ≡

(
i� ∂

∂t |u〉 	= HC |u〉
)
= �, for all vectors |u〉 in the abstract infinite dimen-

sional Hilbert space H.

Instead, let us consider the double negation introduction

¬Π(HC) ↔ ¬(¬¬Π(HC)
)

, (15)

which is a theorem in constructive logic. Since to prove ¬¬Π(HC) intends to show that the solvabil-
ity of the general Schrödinger equation would not be contradictory, the double negation ¬¬Π(HC)
has ‘true’ output when there is no evidence against universal validity of Schrödinger dynamics.
Otherwise stated, ¬¬Π(HC) = � holds if Π(HC) cannot be falsified or it is possibly true.

As it has been already noticed, the truthfulness of ¬¬Π(HC) (i.e., ♦Π(HC) = �) can be inferred
from the existence of any known exactly solvable quantum model. Thus, from (15) it follows that

¬Π(HC) = ⊥ . (16)

The last inference means that in the intuitionistic interpretation not-Schrödinger dynamics is con-
sidered impossible (i.e., false and necessarily false, that is, �¬Π(HC) = ⊥). 7

Taking into account the negation of the equivalence (9), this impossibility yields

(
¬Π(HC) = ⊥

)
�
(
¬(∃|M0〉∈H P (|M0〉)

)
= ⊥

)
. (17)

At the same time, in view of the deduction (¬Π(HC) = ⊥) � (¬P (|uC〉,HC) = ⊥), where |uC〉
denotes a completely arbitrary vector in H, and the equivalence (holding true for small t or if the
Hamiltonian operator HS+M does not depend on t)

(
|Ψt〉 = Û(t)|Ψ0〉

)
↔ P (|Ψ〉,HS+M ) , (18)

where the propositional function P (|Ψ〉,HS+M ) encloses the Schrödinger equation for |Ψ〉 and
HS+M , one infers that

(
¬P (|uC 〉,HC) = ⊥

)
�
((|Ψt〉 	= Û(t)|Ψ0〉

)
= ⊥

)
. (19)

The expressions (17) and (19) together with the evaluation (ψ 	= c1|a1〉+ c2|a2〉) = ⊥ (which is
trivial if the system S is microscopic 8), result in that the negation ¬P (|Ψt〉) must be false for any

7It also generates Π(HC)∨¬Π(HC) = {}, which means that in the intuitionistic interpretation the law of excluded
middle is not admitted as an axiom.

8This evaluation is due to the easily verifiable assumption that the microsystem S can be prepared in two different
eigenstates of the observable A and in a superposition of two such states.
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predicate variable |Ψt〉.

As follows, even though the propositional formula (2) itself does not have an a priori logical value,
i.e., (({a1})∨ ({a2})) = {}, the negation of this formula must be ‘false’: (¬ ({a1}) ∧ ¬ ({a2})) = ⊥.

Furthermore, since the predicate P (|Ψt〉) of the propositional formula for the second part of the
compound expression (1), namely, (¬ ({a1}) ∨ ¬ ({a2})), is the same as one presented in the formula
(4), that is,

(¬ ({a1}) ∨ ¬ ({a2})
) ≡ (

|Ψt〉 	= |a1〉|M1〉 ∨ |Ψt〉 	= |a2〉|M2〉
∣∣∣P (|Ψt〉)

)
, (20)

the negation of this part must be ‘false’ too: (¬¬ ({a1}) ∧ ¬¬ ({a2})) = ⊥.

So, if the propositions ({an}) can be assigned logical values and for that reason double negation
elimination ¬¬({an}) ↔ ({an}) can be applicable to them, one will get the following equalities:
(({a1}) ∨ ({a2})) = � and (({a1}) ∧ ({a2})) = ⊥.

Together these two equalities mean that after the measurement of the observable A – that is, in the
moment when the records of the logical values of ({a1}) and ({a2}) are created – these propositions
turn out to be mutually exclusive

({a1, a2}) ≡
(
({a1})⊕ ({a2})

)
= � . (21)

Apropos of the normalization requirement c1
2 + c2

2 = 1, let us observe that it would match the
operation of exclusive disjunction (21), if the squared norms c1

2 and c2
2 were viewed as the ele-

ments of the Boolean domain {�,⊥} ≡ {1, 0} corresponding respectively to the logical values of
the propositions ({a1}) and ({a2}) once these values were created in the measurement of A.

As regards the squared norms involved, according to Gleason’s theorem (modified for the case of
two-dimensional state spaces [26]), if one would like to assign a real valued function m({an}) ≥ 0 –
e.g., a post-measurement logical value of the proposition ({an}), namely, m({an}) = ({an}) ∈ {1, 0}
– to the vector |an〉 of the orthonormal set {|a1〉, |a2〉} such that the following sum

m({a1, a2}) = m
(
({a1}) ∨ ({a2})

)
= m ({a1}) +m ({a2}) = 1 (22)

holds true whenever the equality entailing the mutual exclusiveness of the outcome events {a1} and
{a2}

m
(
({a1}) ∧ ({a2})

)
= m ({a1})×m ({a2}) = 0 (23)

is valid, then the only possible choice is m({an}) = |〈an|ψ〉|2 in which |ψ〉 is an arbitrary but fixed
vector |ψ〉 = c1|a1〉+ c2|a2〉.
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For the sake of clarity and simplicity, let us suppose that |ψ〉 is the state of an equal superposition
(i.e., a superposition in which all the coefficients have equal norms) such that this state can be
written down as |ψ〉 = 1/

√
2(eiφ1 |a1〉 + eiφ2 |a2〉) where phases φ1 and φ2 are real. As it can be

readily seen, in that case the eigenstates |a1〉 and |a2〉 are interchangeable in |ψ〉 up to the phase
factors of the superposition coefficients c1 and c2, that is, e

iφ1 |a1〉 � eiφ2 |a2〉. 9

On the other hand, the exclusive disjunction |c1|2+|c2|2 = 1 demonstrates that only the magnitudes
of the superposition coefficients c1 and c2 can correspond to the logical values {1, 0} of the propo-
sitions of elementary events ({a1}) and ({a2}) once these values are created. That is, the phase
factors eiφ1 and eiφ2 do not indicate which one of these propositions become 1. Accordingly, the
symmetry eiφ1 |a1〉 � eiφ2 |a2〉 possessed by the equal superposition state |ψ〉 implies that prior to
the measurement the propositions ({a1}) and ({a2}) are indistinguishable from one another except
for their names, i.e., ({a1}) � ({a2}).

So, considering that the equal superposition state |ψ〉 contains no physical evidence favoring one
proposition over another, one can invoke the principle of indifference [15] and deduce from the a
priori nonexistence of the logical values of ({a1}) and ({a2}) in the state |ψ〉 that both of these
propositions are equally likely to become 1 during the measurement. 10

In a word, due to the fact that the propositions of elementary events ({a1}) and ({a2}) are in-
distinguishable (equivalent) in the equal superposition state |ψ〉 and after the measurement cor-
respond to the mutually exclusive events such that ({a1}) + ({a2}) = 1, one can assign both of
these propositions an equal probability Pr({a1}) = Pr({a2}) = 1/2 of coming out 1 in the course
of the measurement, inasmuch as ({a1}) and ({a2}) cannot be evaluated before the measurement. 11

This concludes the presentation of the way in which irreducible probabilities – a central element of
the Born rule – appear in the intuitionistic interpretation of quantum mechanics in the case of the
superposition coefficients of equal magnitude and the two-dimensional state space of the measured
system S.

The generalization of the presented account to the case of N coefficients with equal norms is
rather straightforward 12. As to the extension of the account to the case of the superposition
|ψ〉 = ∑N

n=1 cn|an〉 with the coefficients cn of non-equal magnitudes, it can be achieved by means
of logical theories of probability (see, for example, [28, 29]) which (in order to save the principle

9Such an interchangeability results by letting the unitary “swapping” operator Ŝ = eiφ1 |a1〉〈a2|e−iφ2 +
eiφ2 |a2〉〈a1|e−iφ1 act on |ψ〉. This operator satisfies the invariance relation Ŝ|ψ〉 = |ψ〉.

10This inference is in line with Jayne’s’ invariance condition [27] according to which equal probabilities should be
assigned to equivalent propositions.

11The premeasurement logical values of the propositions ({an}) cannot be found (computed) by means of the
Schrödinger equation and since not- (i.e., other-than-) Schrödinger dynamics is impossible, the probabilities of the
events {an} are interpreted as corresponding to a genuine stochastic process.

12Strictly speaking, the operation of exclusive disjunction, XOR, is true when an odd number of propositions ({an})
are true. So, in the case, in which the dimension N of the sample space of the measurement Ω is greater than 2, the
proposition of a definite outcome must contain the additional to the operation XOR term BN providing for the true
output when only a single ({an}) is true. For example, when N = 4, this proposition takes the form (Ω) = (XOR4 ∧
¬B4), where XOR4 = (({a1}) ⊕ ({a2})⊕ ({a3})⊕ ({a4})) and B4 = max({({ai})× ({aj})× ({ak})}i>j>k∈{1,2,3,4}).
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of indifference and extend it to the case of unsymmetrical evidence) assert that the elementary
events {an} may be assigned unequal weights wn (that are nothing more than replication counts
indicating duplicated observations) and probabilities can be computed whatever the evidence may
be, symmetrical or not.

Along these lines, let us suppose that the squared norms of the coefficients cn (of non-equal in general
magnitudes) can be expressed as a fractions of two positive integers, namely, |cn|2 = wn/(

∑N
n=1 wn).

Then, the proposition of elementary event ({an}) can be brought into the following formal form

({an}) ≡
(
({an}1) ∨ ({an}2) · · · ∨

({an}wn

) )
=

wn∑
i=1

({an}i) , (24)

where the subscript i indicates replicated disjoint events {an}i which are all identical with respect to
({an}). The association of the propositions ({an}) with the a priori probabilities Pr({an}) = 1/N
has been already established in the special case where all the possible events {an} have unity
weights wn. Thus, in the case of the weight wn > 1, a similar line of reasoning can be used to prove
the next formula

Pr({an}) =
wn∑
i=1

Pr
({an}i) = wn∑N

n=1wn

. (25)

As follows, the presented account is restricted to a finite dimensional sample space Ω and thus a
finite dimensional state space. But even if a Hilbert space is countably infinite, the given account
may still be held up whenever a replacement of a countably infinite orthonormal basis of the mea-
sured system S with some truncated (finite-dimensional) basis can be justified. Such is the case of
a typical microsystem for which one can safely assume a discrete spectrum of energies limited by
some finite upper level whose order of magnitude is similar to ones of energies of electrons in an
atom or a solid.

However, the shown intuitionistic account may not be extended to an uncountable (i.e., uncount-
ably infinite) Hilbert space which is the case of a typical macroscopic system whose degrees of
freedom – in particular the macroscopic ones – can vary continuously and in an unconfined, un-
bounded manner. Apparently, this is equivalent to the elimination of the applicability of quantum
probabilities and the Born rule to common macroscopic systems.

But then again, due to the equivalence of boundedness and continuity [30], unbounded linear
Hermitian operators in an uncountable Hilbert space are discontinuous and thus generate noncom-
putability [31]. This means that the application of quantum formalism to a typical macroscopic
system necessarily causes the existence of mathematical entities in the theoretical representation
of the system that are incapable of being computed by any deterministic algorithm in any finite
amount of time. 13 Clearly, those entities cannot be verifiable (demonstrable) which makes the
quantum mechanical description of any typical macroscopic system constructively unprovable and

13To be precise, one can no longer speak of the Hilbert space of a typical macroscopic system since “the observables
of an infinite system usually have a host of physically inequivalent representations, corresponding to macroscopically
different classes of states” [32].
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for that reason inapplicable.

3 Conclusion

The essential question that may raise now is whether probabilities appearing in the intuitionistic
interpretation are objective (i.e., fundamentally ingrained in nature) or subjective (i.e., due to the
rational agent’s ignorance). The peculiarity here is that neither answer to this question can be
regarded as a correct one.

Really, according to the explanation presented in the previous section, quantum probabilities are
introduced to account for the agent’s lack of knowledge about the premeasurement logical values of
the propositions of elementary events ({an}) in the case where the state |ψ〉 does not belong already
(i.e., before the act of measurement) to one of the vectors |an〉 of the eigenbasis of the observable A
that is going to be measured (and so the sample space of the measurement Ω contains more than
one element). As long as these propositions are considered symmetrical with respect to the state
|ψ〉, the agent has no other information than the number of the mutually exclusive events {an}
that can occur during the measurement. Consequently, the agent is justified in assigning each of
the possible events the equal probability. In this manner, the resultant probabilities may be called
subjective seeing as they reflect the agent’s incomplete knowledge of the world.

But, on the other hand, quantum probabilities are objective in that they are a consequence of the
fact that the decision problem of the Schrödinger equation Π(HC) is undecidable. That is, for
this problem it is impossible to construct an algorithm (applicable to all systems, i.e., all allowable
Hamiltonian operators H) that would always lead to a correct ‘true’-or-‘false’ answer. Hence, the
origin of the undecidability of the problem Π(HC) is not subjective, i.e., it is not just a lack of
agent’s imagination: No matter how ingenious the rational agent is, there is no way to exactly
solve the Schrödinger equation for any given physical system. As a result, the validity of the lin-
ear, deterministic Schrödinger evolution for an arbitrary system – such as a typical macroscopic
apparatus M – cannot be proven constructively, i.e., by demonstrating a procedure of finding the
solution set {|u〉} of the Schrödinger equation for a completely arbitrary Hamiltonian operator.

The similar ambiguity characterizes the question whether or not the formalism of quantum mechan-
ics – in agreement with the intuitionistic interpretation – can be considered complete. Definitely,
as stated by the intuitionistic interpretation, the quantum description of reality can be considered
incomplete as it contains the proposition ({a1, a2}) = {} which is undecidable from within theory
(the truth value of this proposition cannot be predicted through calculations with the Schrödinger
equation), but which is, nonetheless, decidable through experiment (i.e., the measurement of the
observable A). And yet, no further accumulation of information about the composite system S+M
could help the agent to decide (compute) the logical values of the propositions ({a1}) and ({a2})
before the measurement, inasmuch as the fact of the statement ({|u〉} 	= ∅) being neither provable
nor disprovable is not determined by any finite amount of the information available to the agent.
In view of that fact, the presented intuitionistic account of quantum description may be regarded
as complete.
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