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Structure Equations, Permitted Movement of Relativistic 

Continuum and Sagnac’s, Erenfest’s and Bell’s paradoxes 

Abstract 

From obtained structure equations (integrability conditions of continuum 

equations) the elemental noninertial reference frames (NRF) are studied. 

1.Relativistic globally uniformly accelerated Born rigid NRF. 2. Relativistic Born 

rigid uniformly rotating reference frame without a horizon. 3. Rigid irrotational 

spherically symmetrical quasi-Einstein’s NRF. All these systems can’t be 

described in the Minkowski space. The Riemannian space-time of these frames of 

reference is not directly connected with general relativity theory (GRT). A solution 

of the Sagnac’s, Erenfest’s and Bell’s paradoxes is proposed. 

Key words: space-time, metric tensor, curvature tensor, reference frame 

(RF), Bell’s problem, Born’s rigidity. 

 

Introduction 

          From the physical encyclopaedia [1], “reference frames (RF) are the 

collections of the coordinate and clock system connected with the body relatively 

to which the motion (or the equilibrium) of any other mass points or bodies is 
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studied”... . So to investigate the motion (equilibrium) of other bodies an analytical 

specification of the body properties (the basis of RF itself) is needed. We select a 

continuum as a basis body. 

4-acceleration, a strain velocity tensor and a rotational velocity tensor are 

characteristics of a continuum at 4-space-time. The law of motion includes 4-

acceleration and at specified flat metric 4-velocity field and the main continuous 

medium tensors are determined by the integration of the motion equation. The 

continuum at a force field specifies some reference frame (RF). For RF with 

specified properties besides the motion equations one needs to know additional 

conditions assigned to the main continuous medium tensors depending on 4-

velocities and 4-accelerations. For example, the demand concerning the rotation 

and the rigidity. The number of equations to obtain 4-velocity becomes 

overdetermined and the integrability conditions should be fulfilled. The latter are 

fulfilled if both 4-velocities of the continuous medium and the metric coefficients 

will be sought for.  

When describing properties of arbitrary deformable reference frames in the 

form of the continuum either field of 4-velocities (the Euler viewpoint) or the law 

of continuum motion determining the connection between Euler and Lagrange 

variables are specified. Space-time is considered either flat in the case of special 

relativity theory (SRT), or the Riemannian one in the case of the general relativity 

theory (GRT).  

If one neglects by the gravitational particle interaction and an external force 

influencing on a body is not a gravitational one then to describe the medium 

motion the relativistic SRT mechanics is applied.  

In SRT fields do not curve the space-time. The space-time geometry remains 

flat. Only “spatial sections” are curved. Such viewpoint is the routine in the 

relativity theory (RT). We want to prove the fallibility of such approach connected 
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with the existing transition from the inertial reference frame (IRF) to the 

noninertial reference frame (NRF).  

Even for the transition to the simplest reference frames (RF) there is no a 

complete evidence in RT. One does not know what reference frames in SRT are 

the relativistic uniformly accelerated ones. On the one hand, the Möller-Rindler 

systems are related to such ones [2], on the other hand the Logunov’s system is [3].  

The Logunov’s system is a motion of a charged dust in a homogeneous 

constant electric field with zero initial velocities. However, neither the Möller-

Rindler system [2] nor the Logunov’s system [3] are both Born rigid and 

relativistic uniformly accelerated ones! The Möller-Rindler system is a relativistic 

rigid one, but it is not a global uniformly accelerated system. The Logunov’s 

system is a global uniformly accelerated one, but it does not move in a Born rigid 

way!  

We divide all NRF into 2 classes: 

1.NRF with the specified law of motion. 

2.NRF with the specified structure. 

The routine method of transition from IRF to NRF [4], [5] is connected with 

the transformation of coordinates containing a non-linear time (that is with the law 

of continuum motion in the Lagrangian coordinates, which is obtained, for 

example, by the integration of the motion equations in the Euler variables).  

It’s obvious that if the motion equations are specified in the Minkowski 

space then no transformation of coordinates permit go beyond the scope of the flat 

space-time, as one can’t obtain the Riemannian - Christoffel tensor differed from 

zero if this one is absent in IRF. We determine a such NRF as the 1-st class NRF. 
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In the 2-nd class NRF both the knowledge of the law of continuum motion 

and the predetermined RF properties specified by the strain velocity tensors and 

the rotational velocity tensors are needed. 

The Minkowski space, for example, is “tight” to satisfy simultaneously even 

the elemental requirements: the Born’s rigidity and uniformly acceleration. In this 

article the 2-nd class NRF will be considered.  

 

1. Structure Equations of Relativistic Continuum 

 

Our approach is following. Consider the flat Minkowski space-time with the 

signature (+---) and the continuum at rest. At some moment t=t0 any force field is 

switched on (except the gravitational one) and the continuum begins to move. 

What space-time properties are induced by the force field? According to the 

orthodox interpretation the space-time properties will be unchanged [4]. Our 

answer to this question will not be so dogmatic. We do not exclude the possibility 

that inclusion of the force field can change the space-time properties transforming 

it in the world tube limits into a curved one. We determine the structure of this 

space-time in accordance with the specified force field structure and with the 

continuum characteristics such as   the strain velocity tensor,   the rotational 

velocity tensor, and the first curvature vector of world lines of medium particles A  

(motion equations).  

For a moving continuum in four-dimensional space-time with the signature  

(+---) the decomposition of the covariant derivative, of the 4-velocity field into 

expansion, rotation and acceleration is 

∇𝜇𝑉𝜈 = Σ𝜇𝜈 + Ω𝜇𝜈 + 𝑉𝜇𝐴𝜈 ,                                         (1.1) 
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where V  is the field of 4 – velocity, satisfying the normalization condition   

𝑔𝜇𝜈𝑉𝜇𝑉𝜈 = 1,                                                 (1.2) 

g  is the metric tensor at the Euler reference frame, 

Σ𝜇𝜈 = ∇(𝜇𝑉𝜈) − 𝑉(𝜇𝐴𝜈),                                          (1.3) 

is the expansion, 

Ω𝜇𝜈 = ∇[𝜇𝑉𝜈] − 𝑉[𝜇𝐴𝜈],                                          (1.4) 

is the rotation, and 





 VVA                                                       (1.5) 

is the 4-acceleration. 

The Greek indices go from zero to three, the Latin ones from one to three. 

One can interpret the expansion (1.1) from two viewpoints: 

1. Consider that the field of 4 – velocity V  is known, for example, as a result of 

the integration of the relativistic Euler or Navier - Stokes equation at the specified 

flat metric. In this case  ,  , A  continuum characteristics can be obtained in 

accordance with formulae (1.3) – (1.5), and expansion (1.1) acts as a mathematical 

identity.  

2. Consider that  ,  , A  functions are specified. In this case expansion (1.1) 

converts into the differential equation system relatively to V  and g . As the 

number of system equations (1.1) and (1.2) ranks over the number of unknown 

functions some integrability conditions must be satisfied. The relation  

∂2𝑉𝜈

∂𝑥𝜀 ∂𝑥𝜎
=

∂2𝑉𝜈

∂𝑥𝜎 ∂𝑥𝜀
,                                                 (1.6) 
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will be the integrability condition for 4-velocity components. 

To obtain the connection between geometrical and kinematic continuum 

characteristics we will calculate the expression in explicit form 

[ ] [ ]2 2 .( )V V V
x x
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From this it follows by taking into account (1.1) – (1.6), that  

𝑅𝜀𝜎,𝜈
𝜇

𝑉𝜇 = 2∇[𝜀Σ𝜎]𝜈 + 2∇[𝜀Ω𝜎]𝜈 + 2∇[𝜀(𝑉𝜎]𝐴𝜈).                      (1.7) 

The integration of the system (1.1), (1.7), where 


 ,R  is the curvature tensor 

expressed in terms of the metric tensor in an ordinary way, permits the solution of 

the space-time geometry problem in which NRF with specified structure is 

realized. We name equations (1.7) as NRF structure equations [6].  

 

2. Comparison of Classical and Relativistic Uniformly Accelerated 

Rigid Continuum 

 

Let us consider the medium motion at the level of classical Newtonian 

mechanics. One can determine the velocity field av  of such a system from the 

equations in the Cartesian coordinates 
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The first equation (2.1) means zero strain velocity tensor, i. e. it corresponds 

to the rigid motion. The second one reflects the absence of rotation, and the third 

one reflects that the 4-acceleration is constant. The solution of (2.1) has the form 

0 ,a a av a t v                                                           (2.2)  

where av0  is the initial velocity. If the acceleration has a constant direction and its 

value depends on time, the solution of (2.1) is obtained in the form 

0
0

( ) .
t

a a av a d v                                               (2.3) 

Classical mechanics permits a solid-state translation with arbitrary 

acceleration depending on time. Non-commuted identical dust particles located at 

such field at equal initial velocities move as a solid.  

In order to generalize the classical conception of the rigid motion Born 

introduced the definition consistent with SRT and GRT. According to this 

definition the continuum motion is called rigid (in the Born’s sense) if for any pair 

of neighboring body particles the orthogonal interval between corresponding pairs 

of world lines of medium particles remains constant during the motion. The 

difference between the classical and relativistic rigidity conditions is in the 

selection of spatial hypersurfaces along which distances between world lines of 

body particles are measured.  

In classical consideration the hyperplanes of simultaneous events are the 

hypersurfaces. The hyperplanes of simultaneity in one IRF are not a hyperplanes of 

simultaneity in the other one. While the Born’s rigidity condition has no that lack. 

Obviously when rigid moving hypersurfaces orthogonal to world lines in one IRF 

are hyperplanes orthogonal to world lines in all other IRF that makes the Born-

rigid NRF the Lorentz-covariant one as opposed to the classical rigid NRF.  
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The Born rigidity condition is equivalent to zero   relativistic strain 

velocity tensor. Therefore one can expect in relativistic consideration  =  =0, 

and in accordance with [4] one determines “the relativistic uniformly accelerated 

motion as a rectilinear one at which the acceleration value A in its own (in each 

time instant) reference frame remains constant”. Then as a result, we will obtain 

the field of 4-velocity V  of relativistic rigid NRF at SRT. 

Such a program is realized in [7]. As proper reference frame the Fermi- 

Walker's tetrad system [8] was used, in the basis of which the constant acceleration 

is specified. Such motion can’t be realized at the Minkowski space as the obtained 

system of equations is then inconsistent.  

If at the right hand side of equation (1.7)  =  =0, and constAAg 

 , 

then the left side of an equation does not vanish. Consequently in the Minkowski 

space where the curvature tensor is identically zero, the rigid globally uniformly 

accelerated NRF does not exist.  

The question arises. What is the motion of the assembly of identical particles 

if they are located in a constant uniform force field when the initial velocities of all 

particles are equal to zero?  

Let us consider the motion of the charged dust particles in a constant 

uniform electric field. 

To obtain the Logunov’s or the Möller’s metric one considers the pseudo – 

Euclidean interval specified in the Euler variables in the form  

       232221202 dxdxdxdxdS  ,                                 (2.4) 

where 
3210 ,,, xxxctx   are the Cartesian coordinates, and the law of continuum 

motion for the Logunov’s metric has the form  

UNDER PEER REVIEW



9 
 

 
























 11,

2

22

0

2
111

c

ta

a

c
ytyx

o

, 

,22 yx        ,33 yx        
00 yx                                    (2.5) 

or 

  
















 1cosh, 0

2
111

c

a

a

c
ytyx

o


, 

,22 yx        ,33 yx        



















c

a

a

c
t

o

0sinh ,                       (2.6) 

where the time in IRF is used as a time parameter in (2.5) and in (2.6)   is the 

proper time. A substitution of (2.5) and (2.6) into (2.4) gives [3] 

2

1

2

22

0

1

0

2

22

0

22
2

1

2

1
















c

ta

tdtdya

c

ta

dtc
dS  

     232221 dydydy  ,                                          (2.7) 

       23222110222 sinh2 dydydydycd
c

a
dcdS 








 


 .                   (2.8) 

 If from metrics (2.7), (2.8) according to [4] one constructs three-dimensional 

metric tensor 

0 0 00/kl kl k lg g g g    , 

then for the square of “physical space distance” element we obtain 

2 2 2 2 1 2 2 2 3 2

0(1 / )( ) ( ) ( ) ,dl a t c dy dy dy                                 (2.9) 

2 2 1 2 2 2 3 2

0cosh ( / )( ) ( ) ( ) .dl a c dy dy dy                              (2.10) 

It follows from the latter formulae that the Logunov metric is not a rigid one.  
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For the Möller transform the law of motion has the form 

  

























 1coshcosh,

2

0111

c

aT

a

c

c

Ta
yTyx

o

, 

,22 yx        ,33 yx        

















c

Ta

c

ya

a

c
t 0

2

1

0

0

sinh1 ,      cTy 0 ,      (2.11) 

and the Möller metric is expressed by the interval element 

       23222122

2

2

1

02 1 dydydydTc
c

ya
dS 








 .                      (2.12) 

Analysis of the Möller transform showed that in the Fermi-Wolker basis (to 

which the accelerometer readings are related [6]) the accelerations of different 

particles are not identical and these ones are calculated according to the formula 

 












2

0

0

1
c

ya

a
ya ,                                            (2.12a) 

where 0a  is the acceleration of the particle along y axis located at the origin of the 

Lagrangian co-moving coordinate system, c is the velocity of light in free space. 

Thus, the Möller transform does not describe the transition to the global linearly 

accelerated NRF. Each Lagrangian particle moves with constant acceleration but 

these accelerations are not equal [2].  

 Expressing in laws of motion (2.5), (2.6), (2.11) the Lagrangian coordinates 

by the Euler ones, we pass from the Logunov’s and Möller’s metrics to the pseudo-

Euclidean interval (2.4).  

 It is difficult to understand an origin of deformations depending on a time 

for co-moving observers in moving in a uniform field. Identical physical 

conditions for any basis particles resulted in a particle motion relatively each other. 

When constructing of the relativistic rigid uniformly accelerated NRF our 

approach is based on the demand of the deformation absence at the medium in its 
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translational motion without initial velocity in the homogeneous field. The 

approach integrates properties of the Logunov system (uniformly acceleration) and 

the Möller system (rigidity), but inside the world tube the space-time is not a flat 

one. Mathematically the problem reduces to the solution of system (1.1) provided 

that  

,0    ,1

 VVg   
42

0 / caAAg 

                         (2.13) 

and system (1.7) taking into account (1.3) and (1.4) provided that the acceleration 

a0 and the c light velocity are constant. System (1.1) at the Euler variables reduces 

to the form  

 AVV                                                  (2.14) 

Its solution is easier searched at the Lagrange accompanying reference frame 

where 

0 1/2 1/2

00 0 000, , .k

kV V V g V g                             (2.15) 

Let the medium moves along the Euler x1 coordinate. Then we will find the 

NRF metric in the Lagrange coordinates in the form 

2 1 0 2 1 1 2 2 2 3 2( )( ) ( )( ) ( ) ( ) .dS D X dX A X dX dX dX                       (2.16) 

Independence of A(X1) metric coefficient on the time coordinate is 

equivalent to zero strain velocity tensor, and the absence of the metric g0k 

components is equivalent to the rotation absence. The solution of system (2.14) 

taking into account (2.13) and (2.15) and using the Dingle formula [10] results in 

the relation 
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Da

c
XA .                                          (2.17) 
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Substitution of (2.17) into the structure equations (1.7) gives an identity. If 

one transforms the Lagrange coordinates Xi into other Lagrange coordinates yi in 

accordance with formulae  

1 1/2 1 0 0 2 2 3 3, , , ,dy A dX X y X y X y     

one finds the expression for the metric of uniformly accelerated NRF 

𝑑𝑆2 = exp(
2𝑎0𝑦1

𝑐2
)(𝑑𝑦0)2 − (𝑑𝑦1)2 − (𝑑𝑦2)2 − (𝑑𝑦3)2,         (2.18) 

where acceleration a0 is directed along the y1 axis. One can directly be convinced 

of the uniformly accelerated NRF (2.18)  

𝐴1 =
𝐷𝑉1

𝑑𝑆
=

𝑑𝑉1

𝑑𝑆
+ Γ00

1 (𝑉0)2 =
1

𝑔00
Γ00

1 = −
𝑔11

2𝑔00

∂𝑔00

∂𝑦1
=

𝑎0

𝑐2
.            (2.19) 

The rest of the components of the 4-acceleration are equal to zero. Let us 

find the NFR space-time geometry using the known formula for the curvature 

tensor [4] 

2 2 22

,
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g g gg
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                                            (2.20) 

where the Christoffel symbols are calculated in accordance with the formulae 
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                                 (2.22) 

One independent curvature tensor component calculated in accordance with 

the metric (2.18) has the form 
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22 2 1

00 00 0 0
10,10 12 1 4 2

00

21 1
exp .

2 2

g g a a y
R

y g y c c

     
        

      

                    (2.23) 

The components of the Ricci tensor 𝑅𝛽𝛾 = 𝑔𝛼𝛾𝑅𝛼𝛽,𝛾𝛿 can be written as 

𝑅00 = −𝑅10,10,    𝑅11 = −
𝑎0

2

𝑐4
,    𝑅10 = 0.                        (2.24) 

and the scalar curvature is 

𝑅 = 2
𝑎0

2

𝑐4
.                                                  (2.25) 

Thus, one can realize the relativistic rigid uniformly accelerated NRF in the 

space with constant curvature. 

If instead of the metric (2.18) one substitutes 
1 2 2

00 0(1 / )g a y c  , 

corresponding to the Möller metric [2], into the right side of equation (2.23), then 

10,10 0R  , as the Möller metric was obtained by means of transformation of 

coordinates from the Minkowski space. In our case the joint demand of rigidity and 

uniformly acceleration does not make the right side of structure equations (1.7) 

vanish. Hence, the Riemannian - Christoffel tensor is differed from zero. The 

formulas (2.18), (2.23) are obtained in [6] and repeated in [11], [12].  

Let us prove the lemma.  

          Lemma 1 

          In the Minkowski space the Born-rigid and relativistic uniformly 

accelerated translational continuum motion is absent. 

          Proof 

          According to (1.7) Ω𝜇𝜈 = 0  for the translational motion, Σ𝜇𝜈 = 0  for the 

rigid motion in the Born sense. For the relativistic uniformly accelerated motion 

the equality is valid 
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𝑔𝜇𝜈𝐴𝜇𝐴𝜈 = 𝑐𝑜𝑛𝑠𝑡                                            (2.26) 

          Then the structural equation has the form 

𝑅𝜀𝜎,𝜈
𝜇

𝑉𝜇 = ∇𝜀(𝑉𝜎𝐴𝜈) − ∇𝜎(𝑉𝜀𝐴𝜈).                                (2.27) 

and equations (1.1-1.5) yield the relation 

∇𝜀𝑉𝜎 = 𝑉𝜀𝐴𝜎 .                                                (2.28) 

          Let us examine the convolution  

𝑅𝜀𝜎,𝜈𝜇𝑉𝜇𝑉𝜎 = (𝛿𝜀
𝜎 − 𝑉𝜀𝑉𝜎)∇𝜎𝐴𝜈 − 𝐴𝜀𝐴𝜈 .                       (2.29) 

          Convolving with 4-accelerations, we have 

𝑅𝜀𝜎,𝜈𝜇𝑉𝜇𝑉𝜎𝐴𝜀𝐴𝜈 = 𝐴𝜎𝐴𝜈∇𝜎𝐴𝜈 − (𝐴𝜈𝐴𝜈)2 = 𝐴𝜎∇𝜎(𝐴𝜈𝐴𝜈) − 𝐴𝜎𝐴𝜈∇𝜎𝐴𝜈 − (𝐴𝜀𝐴𝜀)2.    (2.30) 

          In accordance with (2.26)  

𝑅𝜀𝜎,𝜈𝜇𝑉𝜇𝑉𝜎𝐴𝜀𝐴𝜈 = −(𝐴𝜀𝐴𝜀)2 = 𝑐𝑜𝑛𝑠𝑡 ≠ 0.                    (2.31) 

          The Riemann-Christoffel tensor convolution is differed from zero. So, the 

Riemann-Christoffel tensor is nonzero. The lemma 1 is proved. 

          In structure equations (1.7) for vortex-free rigid motions, if one contracts 

over the first and third indices (the Ricci and curvature tensors are selected), 

applying the identity ∇𝜎(𝑉𝜀𝐴𝜀) ≡ 0 and equation (2.26), we have 

𝑅𝜎𝜇𝑉𝜇 = 𝑉𝜎∇𝜀𝐴𝜀,                                             (2.32) 

that is equivalent to 

(𝑅𝜎𝜇 − 𝐴𝑔𝜎𝜇)𝑉𝜇 = 0,   𝐴 ≡ ∇𝜀𝐴𝜀.                               (2.33) 

One can obtain metric (2.18) directly from the relations 







 ARVR  0

0V .                                          (2.34) 
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3. Relativistic Rigid Uniformly Revolving disk 

 

Generally when examining the revolving disk one chooses the rest-frame 

where the 𝑟0, 𝜑0, 𝑧0, 𝑡0  cylindrical coordinates are introduced and passes to the 

revolving reference frame 𝑟, 𝜑, 𝑧, 𝑡 according to the formulas: 

𝑟0 = 𝑟,    𝜑0 = 𝜑 + Ω𝑡, 

𝑧0 = 𝑧,    𝑡0 = 𝑡,                                             (3.0) 

where the Ω speed of rotation relatively 𝑧 axis is constant. The line element is 

𝑑𝑆2 = (1 −
Ω2𝑟2

𝑐2
)𝑐2𝑑𝑡2 − 2Ω𝑟2𝑑𝜑𝑑𝑡 − 𝑑𝑧2 − 𝑟2𝑑𝜑2 − 𝑑𝑟2.           (3.1) 

This formula is valid if 𝑟Ω/𝑐 < 1. Other velocity distributions restricting the 

disk linear velocity at 𝑟 → ∞ to values less than the light velocity 𝑐 and at 
Ω𝑟

𝑐
≪ 1 

with 𝑣 = Ω𝑟 are presented in [13], [14], [15]. But only the usual distribution law 

𝑣 = Ω𝑟 , Ω = 𝑐𝑜𝑛𝑠𝑡  satisfies the stiffness criterion, both the classic and the 

relativistic one (in Born’s sense). 

          Let us find the metric of the rigid relativistic uniformly revolving NRF 

supposing that the strain velocity tensor is Σ𝜇𝜈 = 0 . We demand the invariant 

constancy characterizing the relativisctic generalization of the square of the disk 

rotational velocity 𝜔. 

Ω𝜇𝜈Ω𝜇𝜈 =
2𝜔2

𝑐2
= c𝑜𝑛𝑠𝑡.                                        (3.2) 

          In the Lagrangian co-moving RF connected with the revolving disk we have  

𝑑𝑆2 = 𝐷(𝑟)𝑐2𝑑𝑡2 − 2𝑃(𝑟)𝑐𝑑𝑡𝑑𝜑 − 𝑑𝑧2 − 𝑟2𝑑𝜑2 − 𝑑𝑟2,              (3.3) 

𝐴1 =
1

2𝐷

𝑑𝐷

𝑑𝑟
,    𝐴2 = 𝐴3 = 𝐴0 = 0.                                   (3.4) 
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          After the calculations [6], [16], [17], [18], [19] we have two independent 

equations  

𝑃

𝐷

𝑑𝐷

𝑑𝑟
−

𝑑𝑃

𝑑𝑟
= −2

𝜔

𝑐
(𝐷𝑟2 + 𝑃2)

1

2,                                     (3.5) 

𝑑𝐷

𝑑𝑟
= −2

𝜔

𝑐
𝐷𝑃(𝐷𝑟2 + 𝑃2)−1/2.                                   (3.6) 

          Equation (3.2) is equivalent to the constancy of the value of metrically 

invariant angular velocity vector [20] and that is equivalent to the constancy of the 

value of the speed of rotation in the co-moving tetrads [15]. 

          The relativistic 𝜔 and the classical rotational speeds Ω are connected by the 

equation 

𝜔 = Ω(1 −
Ω2𝑟2

𝑐2
)−1.                                             (3.7) 

          There is a steady-state solution for (3.3). This solution is applicable in the 

whole area 0 ≤ 𝑟 ≤ ∞ and it is realized in the Riemannian space – time.  

          The solution of the system (3.5), (3.6) in the quadratures is absent. Analysis 

showed that at 𝜔𝑟/𝑐 = 1 the metric (3.3) coincides with (3.1). The centripetal 

acceleration in the revolving NRF has the form 

𝑎 = 𝑐2𝐴1 = −
𝜔𝑐𝑃

√𝐷𝑟2+𝑃2
,                                          (3.8) 

at small 𝑟  it passes into the classical one and at 𝑟 → ∞  gives 𝑎 = −𝜔𝑐 . After 

simplifications the system (3.5-3.6) is represented in the form 

𝑑𝑣

𝑑𝑥
+

𝑣

𝑥
(1 − 𝑣2) = (2 − 𝑣2)(1 − 𝑣2),                              (3.9) 

𝐷 = exp(−2 ∫ 𝑣𝑑𝑥), 𝑣 =
𝑈

√1+𝑈2
, 𝑈 =

𝑃

𝑟√𝐷
, 𝑥 =

𝜔𝑟

𝑐
.                (3.10) 

The 𝑣(𝑥)  function is the dimensionless linear disk velocity. For small 

velocities 
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𝐷 = exp(−2 ∫ 𝑣𝑑𝑥) = exp(−𝑥2) = 1 − 𝑥2,                       (3.11) 

that is equivalent to the classical equation. It follows from (3.9) that for 𝑥 → ∞ the 

equation has the solution 𝑣 = 1. This solution is differed from the classical rigid 

disk, where the field of velocities at infinity is indefinitely great. The numerical 

solution diagram (3.9) is similar to the hyperbolic tangent diagram for 𝑥 > 0. 

          It is known [4], that on a revolving disk at all points the clocks can not be 

identically synchronized. So synchronizing along a closed circuit and returning to 

the reference point, we obtain that the time differes from the original one by the 

value 

 





22

2

00

02

1

21






c

r
d

g

g

c
t .                                     (3.12) 

From our point of view this opinion is erronious. The circuit in a physical space is 

unclosed. Let us divide the rotating thin disk into concentric thin hoops and 

consider particles located in one of them. World lines of this hoop’s particles in the 

Minkowski space (that is true for small velocities) form the congruence of the 

helical lines on the cylinder with radius r and axis t, and the congruence of 

spacelike helical lines orthogonal to the congruence of world lines of hoop’s 

particles will be a “physical space”. This congruence is found from Pfaff’s 

equation 

,00

0

0  dVdxV    
 22

2

1
,











c

r
rt .                              (3.13) 

          Let at the law of motion (3.0)  

t0 , 

for which the square of interval element (3.1) is obtained, the Euler coordinate 0  

coincides with the initial Lagrangian coordinate  . That corresponds t = 0. From 

the Euler point  0,r  at t = 0 instant the world line of some hoop’s particle starts. 
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This line is located on the cylinder surface above the spatially similar line of a 

“physical space” (Fig. 1). 

 

Fig. 1. The spatially-time geometry of rotating hoop in a plane Z=0 

 

In the 2  angle in the co-moving hoop’s system the Lagrangian point   in a 

“physical” space coincides with the world line of the hoop’s particle with   

number. From (3.13) we have 

 
 22

2

1

2
2,











c

r
rt .                                             (3.14) 

          Time interval  ,rt  corresponds to the time distance along the element of 

cylinder from the plane t=0 up to the “physical” spatially similar line  ,rt  (Fig.1). 

Thus, in spite of coincidence of formulae (3.14) and (3.12) they have quite distinct 

physical meaning.  

          Let us consider the light ray propagation relatively the source in IRF. The 

source is located at the origin of the Eulerian and Lagrangian coordinates. Light 
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pulses are emitted in the opposite directions on the circle coinciding with one of 

the circles of the rotating disk. The velocity of light in IRF is constant. But as the 

disk rotates, then the “catching up” pulse in a “physical”space spends more time up 

to reach the Lagrangian point 2  on the  2,rtt   value. The pulse propagating 

in the opposite direction to the linear velocity of the rotating disk spends less time 

on the same value. In accordance with the universal time the time difference to 

reach the Lagrangian point 2  is equal to  

    22222

2

0

4

1

4

1

4
2

c

S

c

S

c

r
tt
















 ,                             (3.15) 

where the classical angular velocity   is substituted on the relativistic one   from 

(3.7), and S is the disk area. The expression obtained from the Sagnac experiment 

follows from (3.15). Let us consider the relativistic hoop. Using (3.10) we have 

 


 vdx
v

vr

c
d

g

g

c
tt exp

1

42
2

2

2

0
00

02 




.                       (3.16) 

In nonrelativistic approximation for small disk velocities xv   and the formula 

passes into (3.15). 

          Instead of a cylinder we will consider a thin rotating hoop as the cylinder 

element. Fig. 1 shows that if one places along the hoop absolute identical clocks 

and at the initial instant of time sets on all of them the time 1tt   then on any 

hyperplane t=const lengths of world lines of all clocks will be identical, that means 

that all clocks on the hoop go synchronously. That's true from physical 

considerations as clocks at identical distances from the centre are in absolutely 

identical conditions. And statement [4] that clocks located on the rotating hoop can 

not be synchronized in all hoop’s points is incorrect.  

          Let us consider the SRT paradox proposed by Erenfest [39].  

          “Erenfest considered not perfectly rigid cylinder with radius r and height H, 

which gradually began revolving on its axis and then it rotated with constant 
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velocity. Let 'r  is the radius of this cylinder from the stationary observer 

viewpoint. Then from the Erenfest viewpoint the 'r  value should satisfy two 

requirements which contradict one another: ” 

a) The perimeter of circle of the rotating cylinder as compared with the state 

of rest should be shorten:  

2 𝜋𝑟′ < 2𝜋𝑟, 

as each element of such circle moved along the tangent line with the instantaneous 

velocity 'r ; 

b) the instantaneous velocity of each radius element was perpendicular to its 

direction. That meant that the radius elements did not subject the 

shrinkage as compared with the state of rest. (The elongation of the 

radius at the expense of centrifugal inertial forces was ignored.) 

This implyies that  

''' rr  . 

          Let us consider the paradox.  

          Generally for the rotating cylinder one selects the rest-frame in which the 

cylindrical Eulerian coordinates 𝑟0 , 𝜑0, 𝑧0, 𝑡0 = 𝑡 are introduced and passes to the 

rotating Lagrangian co-moving frame by the standard method using the IRF time t 

and the Lagrangian coordinates 𝑟, 𝜑, 𝑧, 𝑡.  

          Firstly we will consider the cylinder motion with constant angular 

acceleration   up to 1t  instant  

  ,ctt          ,
2

2

0

t
t


        ,1tt          constt  1 .           (3.17a) 

We select (3.0) as the law of motion after the acceleration when angular velocity 

  became constant. 
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The transformation formulae (3.0) give 

𝑟0 = 𝑟,    𝜑0 = 𝜑 + Ω𝑡, 

𝑧0 = 𝑧,    𝑡1 < 𝑡.                                           (3.17) 

Let us consider the difference 

(𝜑02 − 𝜑01)r = (𝜑2 − 𝜑1)𝑟 = ∆𝑙 = 𝑐𝑜𝑛𝑠𝑡.                   (3.18) 

This means that in the Euler variables (in IRF) the length of an arbitral arc of the 

rotating cylinder is equal to the arc length in the Lagrangian coordinates (in NRF) 

at the initial time. If one selects the perimeter of circle instead the arc then the 

result will not change. It will be equal to r2 . If instead the Ωt value one can select 

an arbitrary function 𝑓(𝑡), derivative of which in the initial time is equal to zero, 

then we will obtain the same result. Zero derivative 𝑑𝑓/𝑑𝑡 in the initial time means 

that the disk is at rest. (3.17a) satifies the condition. Thus, the acceleration in 

speeding-up does not influence on the perimeter of circle both in the co-moving 

NRF and in the initial IRF. There are no any Lorentz contractions. The initial 

perimeter of circle of the cylinder being at rest in IRF is equal to the circumference 

of the rotating in this system cylinder. (We don’t take into account that in the 

cylinder speed-up the radius increase in NRF occurs because of a centrifugial 

inertial force.) 

          Solutions (2.5) and (2.6) have identical properties. It followes from these 

solutions that at planes constt  , const  the distances between the world lines 

remain constant both in IRF and in NRF and no Lorentz contractions occur. 

Relativistictic solutions (2.5) and (2.6) represent classical rigid motions of charged 

dust in uniform electrostatic field at zero initial velocity. However these dust 

motions do not satisfy to the relativistic Born’s stiffness criterion. One can check 

that the law of motion (3.17) satisfy both the Born’s stiffness criterion and the 

classical stiffness criterion. For that one needs calculate the relativistic strain 

velocity tensor   (1.3) and the classical strain tensor from (2.1) and ascertain that 
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both these tensors are equal to zero [23]. The lack of the law of motion (3.17) is the 

presence of the horizon which is absent in the proposed relativistic uniformly 

rotating NRF.  

          Let us determine the “physical space” in the Minkowski space for arbitrary 

moving body in the Euler variables. The “physical space” with the specified 4- 

velocity field V  should belong to the hypersurface orthogonal to the world lines. 

The metric tensor of the hypersurface in the Euler variables has the form 

 VVg  .                                            (3.19) 

Here   is the projection operator orthogonal to the 4-velocity V . Let the law of 

continuum motion at an arbitrary field of force in the Minkowski space is 

determined by the equation 

 0, kyx  ,                                             (3.20) 

where x  are the Eulerian coordinates and 
ky  are the Lagrangian coordinates, 

which are constant along each fixed world line,   0/1 c  is the some time parameter, 

for example, a proper time. As in the co-moving NRF the obvious correlations are 

valid  

0

0 00

00
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                              (3.21) 

then the element of the spatial interval in the Lagrangian co-moving NRF has the 

form 

kn

nk
konnk

kn dydyg
g

gg
dydydL 












00

02  .                           (3.22) 
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The element of the interval (3.22) coincides with the well-known relation [4] 

obtained by means of the radar method. From (3.1), (3.22) we find in the rotating 

disk that the circumference is equal to 

2

22

1

2

c

r

r
L







.                                             (3.23) 

          Let us ascertain the physical meaning of the formula (3.23). Let us consider 

the Euler coordinate system and the hoop being at rest. In Fig. 1 the uniformly 

accelerated hoop motion (3.17a) is not mapped, but the law of motion (3.17) is 

represented. The world lines of the particles of the hoop being at rest represent the 

collection of the elements of time-space cylinder with the radius r, and the 

congruence of the spacelike lines orthogonal to the world lines of the hoop 

particles is the collection of the circles parallel to the hoop circle. The curved line 

MNGB is the part of the helical world line of the particle being at the instant t = 0 

at M point. At the same point one of the spacelike curved lines orthogonal to the 

world lines of the hoop particles begins. The B point is the intersection point of the 

curved helical lines MB and MNGB.  

          One can see from the Fig. 1 that the length of the “physical” spacelike line 

MNGB orthogonal to the world lines of the hoop points is equal to the length of the 

helical line from the intersection point  0,,00  tr  up to the intersection point 

of this line with the same world line of the hoop  
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c

r
rtr .                               (3.24) 

          Let us find the length of the helical “physical” spacelike line beginning at the 

M point and finishing at the B poit. B and M points belong to the world helical line 

of the same hoop particle along that the Lagrangian number of the particle 0  is 

kept. From the viewpoint of the Lagrangian observer during the time (3.24) the 

spacelike “physical” line will again intersect with the world line of the hoop 
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particle in 2 . Previously these lines were intersect at the M point. We point out 

that the “physical” lines always are orthogonal to the world lines of the hoop 

points. Therefore a right angle in the Euclidean space is distorted in the pseudo-

Euclidean space. Let us consider the infinitesimal curvilinear triangle EDC. The 

vertex angle C corresponds to the right angle. DE hypotenuse has a negative length 

as this line is a spacelike one. CE=dL1 also has a negative length and DC=dL2 is 

the element of the world line of some hoop point and it is time-similar with the 

positive length. The Pythagorean theorem for the pseudo-Euclidean space gives 

      2

2

2

1

2

1

222
, dldldLDECEDC   

or 
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dr
dtcdrdL .                               (3.25) 

In deriving we have used (3.13) from the Pfaff equation. We have taken into 

account that in the curve ED according to (3.18)  

  0,0  dtrddtrrdrdED  .                            (3.26) 

Integrating (3.25) we obtain 

2
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.                                            (3.27) 

For relativistic hoop from (3.3), (3.9), (3.10) we have 
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.                                    (3.29) 

The result for nonrelativistic hoop coincides with well-known one [4]. It should 

be noted the identity of formulae (3.23) and (3.27). Expression (3.23) was 
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calculated in the hoop NRF, and expression (3.27) was calculated in the IRF. 

That solves the Erenfest’s paradox. Both for “physical” lengths and for usual 

ones in the intersection of the hypersurface t=const with the surface of the 

spatio-temporal cylinder (3.18) there are no any Lorentz contractions. The 

Lorentz contraction appears in transiting (passing) from “physical” invariant 

line lengths orthogonal to world hoop point lines to unphysical ones (line 

lengths). Lengths of “physical” and unphysical lines are connected by the relation 

r
c

r

c

r

r
L 
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 .                                     (3.30) 

It is such Lorentz length contraction Erenfest pointed out. However such Lorentz 

contractions do not cause deformations and tensions in bodies. Only changes of 

invariant “physical” lengths result in tensions [23], [35]. We point out in 

conclusion that from our viewpoint the standard transiton from the IRF to the 

rotating NRF (3.0), (3.1) is a mixture of the nonrelativistic and relativistic 

approach and it should be clarified. That is shown at this part.  

 

4.Rigid irrotational spherically symmetrical quasi-Newtonian and 

quasi-Einstein NRF 

Let us consider in the Minkowski space a centrosymmetrical continuum 

motion which occurs from some point. The origin of coordinates is located in thar 

point. Obviously for observes in the Lagrangian co-moving reference frame the 

distance between adjacent medium elements on any sphere will vary with time i.e. 

such a system is not a rigid one. As all medium points located at the identical 

distance from the centre have identical velocities and accelerations then such a 

medium moves without rotations. Thus, for a such motion the tensor of rotational 

velocity is equal to zero, and the strain velocity tensor and the field of the first 

curvature vectors are nonzero. If for the medium concerned one demands the 
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fulfillment of rigidity condition then it follows from the analysis of the structure 

equation (1.7) that in the Minkowski space the spherically symmetrical NRF 

having nonzero radial acceleration and zero strain velocity tensor does not exist. It 

is accepted that for weak fields the Newton’s and the Einstein’s theories coincided. 

However it is not quite so. In the Newton’s theory a body being at rest on the 

surface of the gravitating body has zero absolute acceleration. A vector sum of a 

gravity force and a supporting force is equal to zero, that causes absolute zero 

acceleration. Freely falling body in the Newton’s theory has nonzero absolute 

acceleration. In the Einstein’s theory the situation is opposite. A mass poit being at 

rest on the surface of a gravitating body has nonzero absolute acceleration that is 

numerically equal to the gravitational acceleration on the body surface and directed 

upwards perpendicularly to the surface. And in the Schwarzschild field a geodetic 

line corresponds to the particle, i.e. zero absolute acceletation. Thus, the quasi-

Einstein NRF corresponds to the static field in which particles being in equilibrium 

in this field are studied.  

We obtain the metric of the spherically symmetrical Lagrangian co-moving 

NRF by analogy with GRT in the form 

𝑑𝑆2 = exp (𝜈)(𝑑𝑦0)2 − 𝑟2(𝑑𝜃2 + sin2𝜃𝑑ϕ2) − exp (𝜆)(𝑑𝑟)2,        (4.1) 

where 𝜈 and 𝜆 depend only on 𝑟. 

The metric (4.1) is rigid one, as the metric coefficients do not depend on the 

time. Zero components kg0  mean that rotations are absent. The system (1.1) taking 

into account mentioned demands and the fulfillment of the co-moving conditions 

has the form 

𝑉𝑘 = 𝑉𝑘 = 0,    𝑉0 = (𝑔00)−1/2,    𝑉0 = (𝑔00)1/2,

        𝐴1 = 𝐴(𝑟),        𝐴0 = 𝐴2 = 𝐴3 = 0.
 

That may be reduced to the equation 
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𝐴1 =
1

2

𝑑𝜈

𝑑𝑟
exp(−𝜆).                                             (4.2) 

Structure equations (1.7) satisfy (4.2) without additional demands for 𝜈(𝑟) 

and 𝜆(𝑟) functions. Hence, according to the specified field of the first curvature 

vectors 𝐴1  it is impossible uniquely to find the metric (4.1) without additional 

conditions. 

          As stated above, from the physical encyclopaedia [1], “reference frames 

(RF) are the collections of the coordinate and clock system connected with the 

body relatively to which the motion (or the equilibrium) of any other mass points 

or bodies is studied”... . So to investigate the motion (equilibrium) of other bodies 

an analytical specification of the body properties (the basis of RF itself) is needed. 

And what means the RF in vacuum? The problem is not included in the physical 

encyclopaedia. In the Schwarzschild field vacuum presents outside the body. 

According to GRT in vacuum in the static field (as well as the alternating one) we 

understand that RF “… is the collection of the infinite number of the bodies filling 

all space like some medium” [4]. Let us examine some possibilities. 

 a). Let the observers be positioned at the earth’s surface. They measure the 

gravitational field with accelerometers. The earth’s rotation is not taken into 

account, its density is constant, and the earth has a spherical shape. They will 

detect that the acceleration field is directed along the radius from the centre 

perpendicular to the surface. To measure the field far from the surface in vacuum 

we use the set of radial weightless rigid rods. The accelerometer system is installed 

along these rods. The set of rods and accelerometers is a basis of the radially 

accelerated rigid reference frame. The acceleration field will decrease with the 

distance from the earth according to the Newton’s gravitation law (in zero 

approximation). If the observers consider that their space is plane and the 

gravitation law is exact, the metric (4.1) has the form [6], [16], [17], [18], [19].  

𝑑𝑆2 = exp (−𝑟𝑔/𝑟)(𝑑𝑦0)2 − 𝑟2(𝑑𝜃2 + sin2𝜃𝑑ϕ2) − (𝑑𝑟)2,            (4.3) 
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where 𝑟𝑔 = 2G𝑀/𝑐2 is called “the gravitational radius”, M is a body mass, G is the 

gravitation constant, c is the velocity of light in free space. When deriving (4.3) we 

took into account that by the definition of the flat space 𝜆 = 0 and 𝜈 was found 

from (4.2) and the Newton’s gravitation law. We call metric (4.3) quasi-Newtonian 

one.  

𝐴1 =
1

2

𝑑𝜈

𝑑𝑟
=

𝐺𝑀

𝑐2𝑟2
. 

 In spite of the space metric being flat, the space-time metric (4.3) is the 

Riemannian one. That contradicts the Newton’s theory where not only space is flat 

but also space-time.  

One can show [21] that the calculation of the pericentre displacement over 

one rotation according to the formula (4.3) is one-third of the one in the 

Schwarzschild metric. The change of the light ray direction when passing nearby 

the central body according to (4.3) is half as large as the Schwarzschild’s one.  

 b). When deriving (4.3) one assumes 𝜆 = 0 that corresponds to the flat space 

model. The system of the rigid non-deformable rods was selected as the reference 

frame outside the earth. The sound spreads on these rods with infinitely large 

velocity (that contradicts to the finite velocity of the interaction spreading). We 

assume that the interaction propagation velocity is finite and we permit that the 

basis structure of the radial accelerated NRF outside the earth is equivalent to some 

elastic medium subjected to deformations (and tensions), and the strain velocity 

tensor is equal to zero. 

 It is convenient to define the connection between the deformation and stress 

tensors in the Lagrange co-moving NRF considering the elastic medium for which 

the Hooke law [22], [23] is valid 

𝑃𝑖𝑗 = �̃�𝐼1𝛾𝑖𝑗 + 2𝜇𝛾𝑖𝑘𝛾𝑗𝑙𝜀𝑘𝑙 ,    

 𝐼1(𝜀) = 𝛾𝑘𝑙𝜀𝑘𝑙 =
1

2
(1 − exp(−𝜆)),                                (4.4) 
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where 𝐼1 is the first invariant of the deformation tensor,  ,
~

 are the Lamé factors, 

𝛾𝑖𝑗 = −𝑔𝑖𝑗 is the metric of the spatial section (4.4). 

𝜀𝑖𝑗 =
1

2
(𝛾𝑖𝑗 − 𝛾′𝑖𝑗), 

𝛾′𝑖𝑗 is the metric tensor of the flat space in spherical coordinates.  

 The elastic medium have to satisfy the continuity equation  

∇𝜇(𝜌𝑉𝜇) = 0. 

The solution of the continuity equation results in the correlation 

𝜌 = 𝜌0exp(−𝜆/2),                                      (4.5) 

where 𝜌0 is the density of the “medium” in the unstrained state.  

 The equations of the “motion” of the elastic medium in the Lagrange NRF 

have a form analogous to the equilibrium condition of the elastic medium in the 

classic Newtonian gravitational field  

∇𝑗𝑃𝑖𝑗 = −𝜌𝑎𝑗 ,                                        (4.6) 

where 𝑎𝑗  are the “unphysical” (affine) acceleration components, and the raising 

and the lowering of tensor indices and the calculation of the covariant derivative is 

realized by means of the spatial metric 𝛾𝑖𝑗. The metric (4.1) is orthogonal, and to 

construct the tetrad field one can combine vectors of ortho reference mark 𝑒𝛼 with 

vectors of the affine reference mark. One can write the tetrad field in the form of 

the Lame calibration [24], [25] 

𝑒(𝛼)
𝜇

=
𝛿𝛼

𝜇

√|𝑔𝛼𝛼|
,        𝑒𝜇

(𝛼)
= 𝛿𝜇

𝛼√|𝑔𝛼𝛼|, 

where the summation of 𝛼 is absent. The tetrad tensor components coincide with 

the “physical” ones. Assuming that the tetrad 4-acceleration components 
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correspond to (as in the case a).) the Newtonian value in the flat space, from (4.5) 

and (4.6) we have the expression in the spherical coordinates 

exp(−𝜆)
𝑑𝜆

𝑑𝑟
= −2

𝜌0𝑘𝑀

(�̃�+2𝜇)𝑟2
,                                     (4.7) 

the integration of which results in the relation (provided that at infinity the space is 

flat 𝜆 = 0)  

exp(−𝜆) = (1 −
2𝑘𝑀

𝑐0
2𝑟

),        𝑐0
2 =

�̃�+2𝜇

𝜌0
,                           (4.8) 

where 𝑐0  is the longitudinal velocity of a sound. The tetrad or “physical” 

component of the first curvature vector of the body world line being in equilibrium 

in the quasi-Newtonian gravitational field is equal to the rod reaction force or the 

attracting force with opposite sign.  
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Whence the affine component of the first curvature vector 1A  has the form 

       
2

2
2

1

11

121 2/exp/
cr

GM
crGMacA  

 .                  (4.10) 

Applying (4.2) and (4.8) we find the equation for 𝜈.  
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The integration of (4.11) gives (provided that  at infinity 𝜈 = 0 )  
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c

c
                                         (4.12) 

          The limit of the expressions (4.8) and (4.12) when 𝑐0 → ∞ results in the 

metric (4.3) that corresponds to the Newtonian perfectly rigid body model. We 
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refer to such a body as a relativistic rigid body in which the longitudinal velocity of 

sound is equal to the light velocity in vacuum [23]. The expression (4.8) coincides 

with the 𝛾11 component of the Schwarzschild metric in the standard form. The 𝑔00 

component of this metrics is obtained from (4.12) if one expands exp(𝜈) into a 

series and keeps only the first infinitesimal order on (𝑟𝑔/𝑟). 

We represent the final output in the form 

𝑑𝑆2 = exp{2√1 −
2G𝑀

𝑐0
2𝑟

− 2}(𝑑𝑦0)2 − 𝑟2(𝑑𝜃2 + sin2𝜃𝑑ϕ2) −
𝑑𝑟2

1−
2G𝑀

𝑐0
2𝑟

.   (4.13) 

The calculation of the known GRT effects according to the metric (4.13) 

differs only slightly from the calculation in accordance with the Schwarzschild’s 

metric. Using [21] we find that the difference is in the calculation of the pericenter 

shift which is equal to 5/6 from the Schwarzschild’s one. The change of the 

direction of a light beam when passing close by the central body coincides with the 

Schwarzschild’s one. Therefore, we refer to such metric (4.13) as a quasi-Einstein 

one. Time-series identification of the physical reference frame as a reference body 

with specified physical properties resulted in a new approach to Newton’s and 

Einstein’s gravitation theories. The physical properties of the reference frame are 

similar to the introduction of the quantum-mechanical complementary principle 

into the Newton gravitation theory. The space-time geometry depends on facilities 

by means of which it is observed. The atomic systems are not described 

independently of observation capability.  

 

5. Bell’s Problem Solution 

Let us consider the history of Bell’s problem [26], [27], [9], [28], [29], [30], 

[31], [32], [33], [34]. Assume we have two space ships which are being at rest 

relatively to some inertial reference frame (IRF). These space ships are connected 

with a tight string. At the time zero in accordance with the IRF clock both space 
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ships begin to accelerate with constant proper acceleration g measured with the 

accelerometers located on each shipboard. The problem is: whether the string will 

be broken or whether the distance between these space ships will be increased?  

According to the Devan’s and Beran’s and Bell’s opinion at the IFR where 

these space ships initially were at rest “the distance between them will unchanged, 

but the string length will be suffered the relativistic shrinkage, and at some 

moment this string will break. Paul Nawrocki supposed that the string will not 

break, at the same time Edmond Devan defended his viewpoint. Bell wrote that he 

faced the restrained skepticism of “one known experimenter” in reply to his 

paradox interpretation. In order to settle the question the meeting of the CERN 

Theory Division was held. Bell asserted that “the clear mutual opinion” is that “the 

string does not break”.  

As accelerometers on two ships show the identical acceleration g, then the 

ship motion is equivalent to the motion of the charged dust in uniform force field 

with the law of motion (2.5). It follows from (2.5) that from the IRF observer 

viewpoint for any particle pair the equality holds 

    constyytyxtyx  2

2

1

1

1

2

1

2

1

1

1

1 ,, . 

The difference between the current Euler coordinates and the original 

Lagrangian coordinated at any instant of time constt   is constant and no Lorentz 

contractions in IRF occur. However according to (2.9) a “physical distance” 

between the rockets increases that from the SRT and the relativistic elasticity 

theory viewpoint have to result in the string rupture.    

According to Pauli [35] and Herglots (who are the founders of the relativistic 

elasticity theory), it is the deviation from the Born’s rigidity but not the Lorentz 

shrinkage that results in deformations and tensions in the body. The Pauli results 

were developed in [23].  
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From our viewpoint the string will break if one strictly adheres to the SRT 

approach as in such a motion the relativistic (Born’s) rigidity of the string is 

disturbed. Deformations and tensions in the medium occur when the medium does 

not move in a Born rigid way. 

From physical viewpoint that situation is absurd. Two identical Bell’s 

rockets with similar driving forces (similar accelerometer readings) move 

differently from the astronaut viewpoint. The second rocket decelerates from the 

first one although all physical conditions are identical. In order to the second 

rocket does not retard (from the astronaut viewpoint) it is necessary that it will 

move with the greater acceleration than the first one (2.12a).  

In SRT the Bell’s paradox is not solved as according to the proved lemma in 

the Minkowski space conditions of relativistic rigidity and global relativistic 

uniform acceleration are not simultaneously satisfied. To solve the paradox one 

must admit that it is impossible to realize the transition into NRF by means of the 

transformation of coordinates containing nonlinear time. Such transformations can 

not result in nonzero space-time curvature. Long ago V. I. Rodichev [36] wrote 

about that considering the transition from IRF to NRF is connected with the 

transition of the Minkowski space to the Riemannian space.  

          As both rockets are absolutely identical and have identical accelerations, in 

the rocket system, they must be at rest relative to each other. Therefore after the 

relaxation period both the Born rigidity and the relativistic uniformly acceleration 

in the co-moving reference frame are simultaneously realized for the string. 

          The obtained metric (2.18) and formulae (2.13), (2.19) solve the Bell’s 

problem. These formulae correspond to the relativistic rigidity and the global 

uniformly acceleration.  

          In accordance with that the string will not break. But we exit out of the 

Minkowski space into the Riemannian one.  
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In [28], [29] the original formula was obtained 

𝐿(𝑡) =
𝑐2

𝑎0
 l𝑛 (cosh (

𝑎0𝐿0

𝑐2 ) + sinh (
𝑎0𝐿0

𝑐2 ) √1 + 𝛽2).                 (5.1) 

This formula is based on the calclation of the “physical” spatial string length 

L as compared with its initial length L0. 

Comparison of (5.1) and a similar formula of the Lorentz shrinkage  

𝐿(𝑡) = 𝐿0√1 + 𝑎0
2𝑡2/𝑐2                                       (5.2) 

resulted in a great difference when calculating electron bunch deformations in 

modern linear colliders in co-moving reference frames. A standard calculation (see 

formula (5.2)) increased the bunch length at the output of the collider in a 40000 

times, and the calculation according to the formula (5.1) increased this length in 

1.003 times. Detailed results are presented in [28], [29]. Although the formula (5.1) 

is correct both for large and low accelerations it does not solve the Bell paradox in 

principle.  

          “It is easy to join words into the expression “the coordinate system of the 

accelerated observer” however it is more difficult to search for the conception to 

which that might correspond to. By careful consideration this expression proved to 

be contradictory” [37], [38].  

          The detailed critical analysis of the extended body mechanics in SRT is 

presented in [10]. G. C. McVITTIE [10] wrote that the “satisfied relativistic form 

of the dynamics of a rigid body is still off the beam”.  

 

Conclusion 

 

           It is proved that the translational globally uniformly accelerated and Born’s 

rigid continuum motion is impossible in the Minkowski space. If one imposes 
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supplementary conditions for the rigidity or continuum rotations besides the 

continuum motion equations, these conditions “remove” the moving medium from 

the flat space-time. 

           The metric of the Born rigid globally uniformly accelerated continuous 

medium is realized in the Riemannian space-time. This metric combines the 

Möller’s metric properties (the Born rigidity) and the Logunov’s metric properties 

(the global uniformly acceleration). 

            One points out that the proper time obtained by Einstein in 1907 [40], 

which was called the exact time, can be obtained from the metric (2.18) for the 

fixed Lagrangian particle.  

 









2

1

0exp
c

ya
s , 

where s  is the proper time for the given space point,   is the universal time. But 

Einstein dismissed the exact expression for the approximate (Möller) one. 

           The relativistic Born rigid uniformly revolving NRF without the restriction 

of the radius value and having at infinity the linear velocity which is equal to the 

light velocity and finite acceleration, and realized in the Riemannian space time, is 

obtained. The Sagnac’s and Erenfest’s effects are explained.  

          The spherically symmetrical rigid NRF, having no analog in the Minkowski 

space, which is equivalent to the balance of gravitational forces to elastic ones, is 

created. If in the elastic medium the longitudinal velocity of sound concides with 

the light velocity in free space, this body is the relativistic rigid one, and the 

equilibrium solution obtained is described with the metric close to the 

Schwarzschild’s one. For a classical solid the sound velocity goes to infinity but 

the equilibrium space-time metric remains the Riemannian one with the flat space. 

It turns out that the connection between Newton’s and Einstein’s theories is much 

closer than commonly thought. 
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           A solution of the Bell’s problem is proposed.  
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