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Ion cyclotron (IC) oscillations excited by nonlinear waves

propagating in collision-free auroral ionosphere
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We study ion cyclotron (IC) oscillations activated by a stochastic, strong space-charge electric
wavefield E of nonlinear waves propagating auroral ionosphere. E is in a plane perpendicular to the
ambient magnetic field B. The word “strong” means that (1) the conventional linear plasma wave
model connected to a perturbed electric field is not suitable to be employed; (2) the E × B drift
is comparable to (even higher than) the thermal speed of particles, and drive them away from the
initial thermal equilibrium. A physical model is set up for a dense cluster of electron soliton trains
with which a magnetic flux tube is teeming. Then, the collision-free Boltzmann equation is solved
under the condition that E is temporally constant. With a nonzero initial guiding-center (GC)
velocity, ions are found to follow a double-circle trajectory in velocity space with an IC oscillation
frequency ω which shifts from the magnetic gyrofrequency Ω = eB/mi (where e and mi are the
charge and mass of the singly ionized ions, respectively). Furthermore, the “constant” condition
is relaxed by using a simple stochastic E which has 10-step random strengths in 10 different time
intervals. The accommodation of ω (as well as other parameters) is illustrated in response to the E
switches. At last, the work is generalized by using two random-number generators for the strength
and time, respectively. In this case, ω can be shifted to several Ω values. This result is in good
agreement with what FAST satellite measured in auroral field-aligned current regions.
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1 Introduction

Electrostatic ion-cyclotron (IC) oscillation mode was firstly predicted by Stix (1957) in studying an
infinitely long, cylindrically symmetric plasma column of finite density (n0) at zero pressure immersed
in a uniform axial magnetic field (B). He pointed out that when ck ≫ ωUH and ck/ω ≫ ωUH/Ω [where c
is the speed of light, k the wave vector along B, ω the wave frequency, Ω = (1/c)eB/mi the ion cyclotron

frequency with (e,mi) the charge and mass of the singly ionized ion, respectively, ωUH =
√

ω2
pi +Ω2 the

ion upper-hybrid frequency where ωpi =
√

4πne2/mi is the ion plasma frequency], the extraordinary
hydromagnetic wave becomes a wave whose natural frequency approaches Ω. More importantly, Stix
(1958) found that when an IC wave propagates in a plasma along a weakening B, ω becomes enhanced;
in the vicinity of ω = Ω, wave energy can be absorbed by the plasma via cyclotron damping with
extremely efficient power transfers. At the same time, Bernstein (1958) studied extensively electron
and ion oscillations of a fully ionized, collision-free plasma in a static external magnetic field. For the
low-frequency ion oscillations, he predicted two modes at cyclotron harmonics: longitudinal ion waves
and transverse hydromagnetic waves.

Stix ’s effective plasma heating mechanism drew much attention in theoretical and laboratory plasma
studies. The energization process was soon confirmed by experiments on a magnetic mirror device called
the B-66 machine (Hooke et al. 1961). Besides, another experiment performed in cesium and potassium
plasmas also observed the IC oscillations when the electron drift was ∼10 times the ion thermal velocity,
but the frequency was slightly higher than Ω (D’Angelo & Motley 1962). At the same time, Drummond
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& Rosenbluth (1962) explained that the IC oscillations was excited by the magnetic field-aligned currents
(FACs), and Woods (1962) extended Stix ’s work by taking into consideration the effects of the plasma
viscosity and compressibility. By using a generalized dispersion relation, the author showed that a
range of oscillation frequencies is possible which are well beyond Ω. Furthermore, Yoshikawa et al.

(1965) showed that the ion heating is also contributed by the electron Landau damping and electron-ion
collisions. Later, Hosea & Sinclair (1969,1970) exposed that even the IC wave propagation in a plasma
is influenced by the electron inertia. In an experiment where torsional Alfven waves were excited, Müller
(1974) examined the coupling of ions with neutrals with a decreasing ionization degree. He witnessed
that both k and the damping effect peaked at Ω.

Interestingly, the IC-resonance acceleration principle was soon applied to separate ion isotopes and
ions with different charge-to-mass ratios in plasmas (Dawson et al. 1976; Weibel 1980). But if a plasma
contains only two ion species, Sawley & Tran (1982) noticed that the IC frequency lies approximately
midway between the two Ω values. For a plasma including more than one ion species, Sawley (1990) and
Sawley & Paris (1990,1991) demonstrated that IC modes are strongly influenced by electron dynamics
(the electron inertia and Landau damping) in a low density plasma cavity, just as revealed in the plasma
with one type of ions by Yoshikawa et al. (1965). Another important result was obtained by Ono et

al. (1984). The authors measured profiles of wave absorptions versus ion temperatures in an ACT-1
hydrogen plasma. They identified that the excellent efficient IC resonant heating occurs near the fifth
IC harmonics of deuterium-like and tritium-like ions. It deserves to mention an intriguing experiment
designed by Sato & Hatakeyama (1985). The authors used a voltage-biased electrode to drive an IC
oscillation. The potential penetrates into a plasma channel parallel to B in front of the electrode, whileas
the penetration is limited by the radial escape of ions from the plasma channel. This radial escape was
found to obey the cyclotron motion with a period of Ω in the region close to the electrode.

In a plasma containing both negative and positive ions, D’Angelo & Merlino (1986) and Song et al.

(1989) found that there are two branches of the IC modes for mi+ > mi−: One is the “low-frequency”
mode ω ≥ Ω+, and the other is the “high-frequency” one ω ≥ Ω−. The frequencies were found to increase
with the increasing percentage of negative ions. Particularly, by employing the standard linear Vlasov
theory, Chow & Rosenberg (1995,1996) investigated the effects of heavier dust and heavier negative
ions on the collisionless IC instabilities, respectively. In the former case, the authors showed that
positively charged dust tends to stabilize IC waves, while negatively charged dust facilitates triggering
the instability; in the latter case, by contrast, the instabilities of both the light and heavy ions are easier
to be excited when more charge is carried by negative ions. In both cases, the critical electron drifts to
excite the instabilities decrease when the relative density of negative ions increases. In another dusty
plasma experiment to observe the IC waves, Barkan et al. (1995) verified that negatively charged dust
makes the plasma more unstable. The newest experimental work was done by Kim et al. (2008). They
used very heavy negative ions (C7F

−
14) in the plasma and observed that these ions increase both the

number and the intensity of the excited harmonic IC modes.

In geospace, especially in auroral regions, electrostatic IC oscillations have been detected by rockets
and satellites. Early space-borne measurements of harmonic IC oscillations in the VLF bands were
done by, e.g., Smith et al (1964), Gurnett et al (1965), Mosier & Gurnett (1969), Kikuchi (1970)
at altitudes <2700 km. Following these measurements, numerous vehicles diagnosed IC oscillations
during last decades, such as S3-3 (Kintner et al. 1978), DE-1 (Boardsen et al. 1990; Erlandson &
Ukhorskiy 2001), ISEE-1 (Guglielmi et al. 2000), Polar (Mursula et al. 2001), FAST (Chaston et al.

2002), and Cluster (Backrud 2005). Because many observations provided evidence of parallel electric
fields and/or field-aligned currents existing in regions where IC waves were measured, the excitation
of the IC waves was naturally connected to the current-driven mechanism as considered by laboratory
experiments and theoretical studies (e.g., Schunk & Walker 1970). It was suggested that if the field-
aligned currents increase to a threshold, say, tens of µA/m2 in strength, the IC instability [and/or
the Buneman instability, the ion acoustic (IA) instability] can be triggered; the plasma turbulence
and then anomalous collisions thus induced in turn moderate the currents via anomalous transport
coefficients (Kindel & Kennel 1971; Papadopoulos 1977). This process was considered to lead to two
possible conspicuous consequences: one is the formation of nonwave phase-space clumps originated from
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the growth of the plasma instability (Chiueh & Diamond 1986), and the other is the enhanced Joule
heating in plasmas due to the anomalous resistivity (St.-Maurice 1987).

By excluding any nonlinear dispersion relations, viscous heating terms, and chemical reactions, Forme

et al. (1993) presented the criteria for the wave ignitions due to current-driven instabilities. The
authors brought to light following results by using an isotropic, time-dependent model: (1) If vde >
1.8vthe (where vde and vthe are electron drift velocity and thermal velocity, respectively), the Bunemann
instability is initiated. The heating rates obey ∂Te

∂t = 2
3
me

k v2deν
∗
e and ∂Ti

∂t ∼ me

mi
· ∂Te

∂t [where Te, Ti, me,
and k are the electron temperature, ion temperature, electron mass, Boltzmann constant, respectively,

ν∗e = α
(

me

mi

)1/3

ωpe the electron anomalous collision frequency, α the numerical coefficient, and ωpe

the electron plasma frequency]. (2) If vde > Ti

Te
vthe, the IA instability starts. The heating rates

follow ∂Te

∂t = 2
3
me

k v2deν
∗
e and ∂Ti

∂t ∼
Te
Ti

Cs
v
de

1− Cs
v
de

· ∂Te

∂t [in which ν∗e = 10−2α
(

Te

Ti

)(

vde
vthe

)

ωpe, and Cs =
√

me

2mi

(

1 +
√

1 + 12 Ti

Te

)

· vthe is the generalized sound velocity]. (3) If vde > ve = 15 Ti

Te
vthi, the IC

instability begins. The heating rates take ∂Te

∂t = 2
3
me

k v2deν
∗
e and ∂Ti

∂t = 2
3
mi

k v2deν
∗
i [in which ν∗e =

αΩi

(

vde
ve

− 1
)2

, and ν∗i is the ion anomalous collision frequency satisfying miν
∗
i = meν

∗
e ]. Numerical

calculations exhibited that the first two instabilities produce bigger electron heating rates due to much
higher collision frequencies which inhibit the electron heat conduction processes, while the first instability
contributes little to the ion temperature ratio, and the IC instability seems to be initiated at the lowest
altitudes while all of them should exist above 1000 km for strong currents with tens of µA/m2.

Obviously, within the scope of linear plasma waves, IC oscillations can be reasonably explained by
current-driven mechanism. Nevertheless, as foretold by Bernstein, Green, & Kruskal (BGK) (1957)
that localized non-wave phase-space structures may exist in turbulent plasmas originated from nonlin-
ear processes, numerous studies have demonstrated that coherent, nonlinear potential structures can
actually be triggered by the particle trapping due to various wave-particle interactions (see a review
given by Eliasson & Shukla 2006). Specifically, there are three stages in the development (Büchner &
Elkina 2006): (1) Electrons are switched from a free state to a trapped state in a potential well, leading
to the formation of electron phase-space holes by instabilities; (2) The potential structures grow and
deepen with the growth of electron phase-space holes; the anomalous transport properties increase to
develop ion trapping; and (3) After several ion cyclotron periods, localized non-wave structures (also
called solitary waves, space-charge elements, electrostatic double layers, clumps, or electrostatic shocks)
are formed in phase space. If both waves and non-wave structures remain alive in electric and magnetic
fields, the space-charge structures are stratified (or “filamented”) to form field-aligned “clumps” (Dupree

1972); at the same time, ions response to these elements in two possible ways: they may either keep
regular motions without any gains of the electromagnetic energy from the fields if their speed across the
magnetic field is less than the phase velocity of a single wave (Karney & Bers 1977), or, be coherently
energized within a small phase space when the Doppler-shifted wave frequencies are close to an integer
multiple of Ω (Strozzi et al. 2003).

In the IC modes, Chiueh & Diamond (1986) discovered that if T⊥i ≥ T‖i ∼ Te (where T⊥i and
T‖i are ion temperature components perpendicular and parallel to B, respectively), the turbulence is
of the wave-clump type; if T⊥i ≫ T‖i ∼ Te, it is the clump-dominant type. This new ingredient is
space-charge “clumps”, the so-called electrostatic solitons, which describes the incomplete blending of
a Vlasov plasma: wave-particle interactions make stochastic orbits of particles by turbulent electric
fields; the phase-space density tends to decrease to smaller scales in a finite time, and thus generate
phase-space space-charge density granulations (that is, clumps); these clumps ballistically propagate
at the resonant velocities v = ω − nΩi/k‖ in a finite time. In the development, the turbulent forces
produced by the turbulent electromagnetic field tend to tear the space-charge chunk of particles apart
and cause the decay of the clumps. However, the size of the space-charge structures is so small that
they keep every particle feels the same force. Thus, the elements retain their structural integrity for a
relatively longer time than the average correlation time of the system. This effect offsets the separation
tendency caused by turbulent processes.
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In addition, the authors found that the shape of the space-charge structures does not rely on turbulent
frequencies in position space, but does in velocity space. In position space, for either low or high
frequency turbulence, the parallel scale is of the spectrum-averaged parallel wavelength k̄−1

‖ , while the

perpendicular scale is of the cylindrically-symmetric, spectrum-averaged perpendicular wavelength k̄−1
⊥ .

By contrast, in velocity space, the perpendicular extent is not the same for different frequency bands:
for low-frequencies, the scale can extend up to a scale dependent on the thermal velocity vT; for high
frequencies, it is determined by vT(k̄⊥ρ)−1 > vT (where ρ = vT√

2Ω
is the gyroradius, and k̄⊥ρ ≥ 1).

Specifically, the clump shape in phase space depends on the particle species. For electron clumps in the
IC regime, the perpendicular diffusion dominates the parallel one with k̄⊥ ≫ k̄‖. So electron parallel

diffusion can be ignored. Because electrons are strongly magnetized with k̄⊥ρe ≪ 1, electron clump is
bounded to the magnetic field lines. In real space, it has a 1-D long cigar shape. In velocity space, it has
a pancake shape of radius vte and thickness (k̄‖τe)

−1 (where τe is the electron decorrelation time). The
electron clump travels at a parallel speed of v‖ ∼ nΩi/k‖. For ion clumps, their perpendicular diffusion

is dominated by k̄⊥ ≫ k̄‖, like electron ones. So ion parallel diffusion can also be ignored. However,

ions are weakly magnetized with k̄⊥ρi ∼ 1. If k̄⊥ρi < 1, ion clump will show the same cigar shape as
electron clump in real space. On the other hand, if k̄⊥ρi > 1, ion clump will appear as a tether rod in
real space with tether length ρi gyrating about the guiding center (GC). In both cases, the ion clump
propagates at the ballistic velocity v with a radius k̄−1

⊥ and a length k̄−1
‖ . In velocity space, ion clump

appears in a pancake shape of radius vti for k̄⊥ρi < 1, and in a gyrating tether disk of radius vti(k̄⊥ρi)−1

and tether length vti for k̄⊥ρi > 1. The thickness of either the pancake or the disk is (k̄‖τi)
−1 (where

τi is the ion decorrelation time).

The nonlinear space-charge structures have been observed at many sites in geospace, e.g., auroral
zones of mid-and-high-altitudes, bow shock, magnetotail, and solar wind due to the existence of de-
tectable space-charge electric fields, see, e.g., Mottez (2001) for detailed introductions. The nonlinear
phenomena had been recognized gradually with the advance of theoretical work and observations (Pick-
ett et al. 2005). The structures were first noticed and named as intense broadband electrostatic noises
(BENs) in 1970s in the magnetotail (Scarf et al. 1974; Gurnett et al. 1976), along with data of magnetic
noise bursts (relating to cross-tail current and intervals of tailward flows), electrostatic electron cyclotron
waves, and upper hybrid waves (Gurnett et al. 1976; Cattell et al. 1986). BEN is bursty, extending
from the lowest frequencies up to as high as the plasma frequency (electron cyclotron frequency) while
the intensity decreases when the frequency increases. It peaks at or below the LH frequency. During
1980s, the first space-charge structure was identified from S3-3 waveform electric-field data in the auro-
ral acceleration region (Temerin et al. 1982). It is characterized by locally density-depleted (called “ion
hole”), electric-field fluctuations in a size of Debye-scale. Because no spectral form of data were used, no
link was made between these new definitions and BEN, but simply the FFT-rendering of solitary waves.
Yet, theoretical investigations pointed out that certain kinds of nonlinear structures could explain the
broad frequency spectra (Nishida et al. 1985), and, electron acoustic solitons passing by a satellite
would generate spectra that could explain the high frequency part of BEN (Dubouloz et al. 1991).
The breakthrough eventually came when a sophisticated waveform receivers was used, which has a high
temporal resolution. In 1994, Matsumoto et al. (1994) analyzed the distant magnetotail with Geotail
data and proved that solitary waves are as a matter of fact BENs: the measured waveform electric field
of BENs is nothing but the spectra from of the electrostatic solitary waves carrying space-charge electric
fields. From that time, extensive and detailed pictures for these nonlinear electric field structures were
reported from almost every high-resolution space project (see details in Ma & Hirose 2009), e.g., S3-3
(Temerin et al. 1982), Viking (Boström et al. 1988), Geotail (Matsumoto et al. 1994), Wind (Bale et al.

1998), FAST (Ergun et al. 1998a,b,c; McFadden et al. 1999; McFadden et al. 2003), Polar (Mozer et al.

1997; Franz et al. 1998; Bounds et al. 1999; Cattell et al. 1999; Franz et al. 2000), and Cluster (Pickett
et al. 2004; Pickett et al. 2005). What is more, these structures explain FAST-measured transverse ion
heating in auroral magnetosphere (Ma et al. 2009).

It is now clear that the electrostatic solitary waves are solitary structures that behave as are space-
charge carriers to contribute strong transverse electric fields to space plasmas. Due to the presence of
these fields, the characteristics of charged particles residing in the vicinity of the regions teemed with
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solitary waves will surely be altered. For example, in his pioneer work, Stix (1957) showed unequivocally
that near the IC resonant frequency the electric field determines the behavior of charged particles. This
prediction was demonstrated to be valid by Cole (1976). He showed that the virtual ion cyclotron
frequency ω should satisfy ω2 = Ω2 + Ωd(Ex/B)/dx when the first derivative of the electric field
(∇ · E = dEx/dx) is nonzero, while the second derivative

(

d2Ex/dx
2
)

is zero. Another example was
given by St.-Maurice et al. (1994). If E = E0(1 + y/L)ŷ in the cartesian geometry (where E0 is the
field at y = 0, L the characteristic length, y the ion position), that is, the electric field is proportional
to the distance in a specific direction in space, the authors exposed that ω2 = Ω2[1 − (E0/B)/(LΩ)].
In the cylindrical case, Ma & St.-Maurice (2008) also presented that ω2 = Ω2[1 + 4(Ec/B)/(RcΩ)] if
E = −Ec(r/Rc)r̂ (where Ec is the field at r = Rc, Rc the characteristic radius, r the ion position), that
is, the electric field is proportional to the radius. These studies unfolded that the frequency of the IC
oscillations can shift away from Ω either positively or negatively, depending on the polarization of E
perpendicular to B, but irrelevant of the origin of E. In the linear wave regime, the perturbed E is weak.
The frequency shift is thus negligible. On the contrary, if E is provided by some nonlinear process, say,
the space charges of solitons, the linear perturbation condition is broken. E may be so strong that
the shift is unable to be overlooked. Let’s use FAST data for an estimation. Ergun et al. (1998c)
provided that the local magnetic field B is 11481 nT, and the typical peak strength of the space-charge
electric field E for a soliton is 1 V/m. As a result, the local peak E × B drift (E/B) is 87 km/s. At
the thermal equilibrium state of about 1000 K, the thermal speeds of protons and electrons are of the
orders of 4 km/s and 170 km/s, respectively. The speed E/B is typically larger than the ion thermal
speed. However, the speed E/B is small relative to the electron thermal speed. Any departures from
a Maxwellian velocity distribution due to the Lorentz force cannot be negligible for ions, and we call
such a electric field is “strong” for ions. In such strong fields, any traditional linear wave theory is not
suitable to be used. But for thermal electrons, they can still be simply assumed to follow Maxwellian
but with a E × B drift to the leading order for the situation at hand. We call such a electric field is
“weak” for electrons, and traditional linear wave theories are still valid for them.

Let’s use FAST data to assess the cyclotron frequency ω of ions in the strong electric field mentioned
above, in order to know the order of the frequency shift. Assume that the field is cylindrically symmetric
and proportional to r. The magnetic gyrofrequency of ions is Ωi = 1100 rad/s (or 200 Hz) for a proton,
and Ωe = (mi/me)Ωi for an electron. Rc scales with the ion gyroradius ρi which satisfies 2λD ≤ ρi ≤
20λD where λD = 82 m is Debye length (Ergun 1999). These parameters give 1.1Ωi ≤ ω ≤ 1.7Ωi,
indicating that the IC oscillation ω always deviates from Ωi by tens of percent. For a plasma density of
n0 ∼ 5.7 cm−3, we have the ion plasma frequency ωpi is 3139 rad/s, and the electron plasma frequency
ωpe is 43ωpi. Thus, the lower-hybrid (LH) frequency ωLH is 3138 rad/s (or 500 Hz). Obviously, the
maximum IC oscillation frequency shifts into the LH band. This approximate evaluation explains
qualitatively the FAST observations that the solitary structures are evenly spaced at a frequency above
the localH+ gyrofrequency (see Fig.5 in Ergun et al. 1998c for a reference). Notice that this estimation is
only suitable for a single soliton case. In reality, the electric field should be produced by space charges of
all soliton trains in magnetic flux tubes; and, the strength of E may not be constant with time. Therefore,
the IC oscillations may have a very different picture. More detailed modeling and simulations are then
needed for accurate data assimilations and quantitative explanations. Unfortunately, no relevant studies
have been found to report on the IC oscillations under strong electric field conditions. This situation
is understandable: traditionally, we rely on the linear plasma wave theory to consider instabilities and
related oscillations, where the wavefield E is weak, behaving as a perturbation, and that measured ω
should always be located at harmonics of Ω; any observable deviations from linear theory predictions
are naturally attributed to the contributions of unusual initial and/or boundary conditions within the
frame of the theory, regardless of the fact whether or not these conditions are still valid for the theory.

Fortunately, stochastic methods are widely used in different fields of physics, as given in references
of, e.g., Bonfig (1988); Vojko et al. (1994); Vojko & Dali (1996). Different these methods, we offer an
alternative approach in this paper which illustrates the IC oscillations stimulated by a strong electric
field of solitons propagating in auroral ionosphere. The electric field is produced by solitons’ space
charges stochastically in the plane perpendicular to the magnetic field. We focus on the ion oscillating
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Fig. 1 Left: Cylindrical coordinates with reference to the Cartesian frame of an infinitely-long magnetic flux
tube, the symmetric line of which lies on the z-axis. Rc is a characteristic radius. Right: A cross-section viewed
from the top. The flux tube is teeming with a dense cluster of soliton trains (Ergun et al. 1998c; Ergun 1999).
The diagram is not to true scale, but used to dramatically illustrate the point. Adapted from Ma et al. (2009).

feature, in order to see what kind of frequency-shifted IC waves can be excited. This study is totally
different from those using traditional linear wave theories where the plane-wave perturbation assumption,
E1 ∼ ei(k·r−ωt), is used. For strong space-charge electric field strengths which produce large drifts
to particles, this weak-field condition is broken and we have to seek for solutions with the aid of
kinetic theory, and then to describe the macroscopic properties of ions in terms of their microscopic
characteristics of motion. We start from setting up a physical model to describe solitons propagating in a
magnetic flux tube, and give a Hamiltonian formulation for ions driven by the space-charge electric field
in the tube, as given in Section 2. Then, in Section 3, we present results for the IC oscillation features and
bulk parameters of ions with a nonzero initial drift velocity by solving directly the Boltzmann equation
coupled with ion equations of motion in a temporally-constant electric field (note that this “constant”
occurs only instantaneously for a stochastic field). To give a clear illustration for the IC oscillations in
solitons’ stochastic electric field, we relax the “constant” condition in Section 4 by using an artificial
stochastic E which has 10-step random strengths in corresponding 10 different time intervals. The
accommodation of ω (as well as other parameters) is illustrated in response to the E switches. At last,
the work is generalized by using two random-number generators for the strength and time, respectively,
in Section 5. In Section 6, we summarize the results and have a discussion. The last Section gives
conclusions.
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2 Physical modeling of nonlinear waves

In order to provide the most basic picture for the new mechanism, and thus to gain important insights
into more complicated situations, while still being able to illustrate the process clearly, we set up a
physical model in a cylindrical geometry (r, φ, z) for a dense cluster of soliton trains propagating in a
magnetic flux tube with the axis along the magnetic field B = Bêz (where êz is the unit axial vector),
which is assumed to be homogeneous in space, as described by Fig.1. The background to set up such a
model is identical to what was presented in Ma & St-Maurice (2008) where we focused on the auroral
region which is in and above 140 km, well with the F-layer. In this region, numerous data were collected
by satellites, radars and rockets which exposed the existence of solitary waves, as introduced in the above
Section. Based on previous studies, this region owns a magnetic field of 0.5 Gauss; ion temperature
of 1000 K; stochastic transverse electric fields up to an order of 50 mV/m or greater; an ion-neutral
collision frequency of an order of 0.01-1 Hz; and, ion gyrofrequency of an order of 50 Hz. See Ma &
St-Maurice (2008, 2015) in details. The consideration of the modelling is inspired by FAST observations
(see, e.g., Ergun et al. 1998c; Ergun 1999) which provided the features of the soliton cluster in the tube
as follows (Ma et al. 2009):

(1) the cluster is composed of infinite long cylindrically-symmetric trains of solitons;

(2) each of the trains appearing in space has the same space-charge density δnsc;
(3) both the number and time are random for trains to emerge in space due to the plasma turbulence;

(4) space charges carried by all the trains arising in space cause a homogeneous density perturbation
to the uniform and isotropic background n0;

(5) the cylinder-edge effects are neglected with a characteristic radius Rc of a circle (heavy dashed
line) which is well inside the flux-tube cylinder (heavy solid boundary line);

(6) the electron-electron, electron-ion, electron-neutral, and, ion-neutral interactions are neglected,
and thus we are dealing with a collision-free problem.

Under these simplifications, the space-charge density of the whole cylinder, δnc, should be δnsc if the
flux tube is completely filled with soliton sets. However, soliton trains appear in space stochastically.
Thus, δnc is stochastic, denoted by δñc, where and hereafter the sign “ ˜ ” means “stochastic”. This
stochasticity originates from the probabilistic magnitude and appearance of δnc in the flux tube. In the
area within the radius r (thin solid line), δñc produces a radial electric field Ẽr by means of Gauss’s
law if we assume that solitons have electron space charges:

Ẽr = −Ẽcr (1)

where Ẽc = [eRc/(2ǫ0)]δñc is positive. Clearly, the electric field within the cylinder is proportional
to r, and points radially inward. We can check that the plasma is quasi-neutral even if the plasma
has a density perturbation: if we were to let Ẽc=2 V/m at Rc=1 km, the corresponding space-charge
number density would need to be δñc ≈ 2× 105 m−3. This is 104 to 106 times smaller than the ambient
plasma density n0 in the ionospheric F -region. In such a radial electric field proportional to r, at any
time before Ẽc switches to a new amplitude next, ion dynamics are determined by the electrostatic,
space-charge electric field (crossed to B) which is constant with time at the present step. We study the

ion oscillations starting from t = 0 when the electric field Ẽr is applied, and ions have an initial state
with a Maxwellian distribution function, but the initial guiding-center (GC) velocity vd0 of ions (or, the
drift velocity exhibiting the initial state of the ion’s instantaneous center in velocity space) is nonzero.

We are going to deal with a system of a nonrelativistic ensemble of ions of the same species in
the absolute space. The particles are assumed identical, and a test particle thus provides an idealized
approximation to exhibit physical properties of the specified domain (Gartenhaus 1964; Schmidt 1979;
Humphries 1990). We use the ion’s Hamiltonian formulism as the radical basis for the study:

H = p · v − L , L = K − P (2)

in which H is the Hamiltonian, p = {pr, pφ, pz} is the canonical momentum, v = {vr, vφ, vz} = {ṙ, rφ̇, ż}
is the velocity, L is the Lagrangian, K = 1

2miv
2 is the kinetic energy, P = e(ϕ− v ·A) is the potential

Copyright line will be provided by the publisher

which is assumed to be homogeneous in space, as described by Fig.1. The background to set up such a
model is identical to what was presented in Ma & St-Maurice (2008) where we focused on the auroral
region which is in and above 140 km, well with the F-layer. In this region, numerous data were collected
by satellites, radars and rockets which exposed the existence of solitary waves, as introduced in the above
Section. Based on previous studies, this region owns a magnetic field of 0.5 Gauss; ion temperature
of 1000 K; stochastic transverse electric fields up to an order of 50 mV/m or greater; an ion-neutral
collision frequency of an order of 0.01-1 Hz; and, ion gyrofrequency of an order of 50 Hz. See Ma &
St-Maurice (2008, 2015) in details. The consideration of the modelling is inspired b
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energy, where ϕ(r) = −
∫

E ·dr = 1
2 ẼcRc · (r/Rc)

2 is the electric potential, and A is the vector potential
satisfying B = ∇×A. In cylindrical coordinates,

K =
1

2
mi(ṙ

2 + r2φ̇2 + ż2) , P = e

[

1

2
EcRc

(

r

Rc

)2

−
1

2
Br2φ̇

]

(3)

where and hereafter Ẽc is written as Ec for simplicity. These two expressions give

(4)

L = 1
2mi(ṙ

2 + r2φ̇2 + ż2)− e

[

1
2EcRc

(

r
Rc

)2

− 1
2Br2φ̇

]

pr = ∂L/∂ṙ = miṙ

pφ = ∂L/∂φ̇ = mir
2φ̇+ 1

2eBr2

pz = ∂L/∂ż = miż























(5)

and then,

H =
1

2
miv

2
r +

1

2
miv

2
φ +

1

2
miv

2
z +

1

2
mi

Ec

B
RcΩ

(

r

Rc

)2

(6)

in which Ω = eB/mi is the ion gyrofrequency. Using the two canonical Hamilton’s equations of motion,
ṙ = ∂H/∂p and ṗ = −∂H/∂r, we obtain:

r̈ = r(φ̇2 +Ωφ̇)−
Ec

B
RcΩ

r

R2
c

, rφ̈ = −2ṙφ̇− Ωṙ , z̈ = 0 (7)

Because the time-inversion transformation has an unaltered nature (Gartenhaus 1964), that is, for
the inversion of the time direction (t → −t), there exist (r → r) and (v → −v), we know that the
position vector r and hence all quantities that depend only on r do not change sign; by contrast, the
velocity vector v and quantities that depend only on v change sign. This property gives that for two
states {r1,v1, t1} and {r2,v2, t2} of a particle, there are two identical solutions for the same equation
of motion. One provides expressions of {r1,v1, t1} by using {r2,v2, t2}, and the other is to express
{r2,v2, t2} by {r1,v1, t1}, whereas the description of the characteristics of motion is unaltered. That is
to say, we can either use the initial state as the final state, or, vice versa. For ions, Eq.(6) provides three
constants of motion due to the fact that the Hamiltonian does not contain φ, z, and time t explicitly:
the azimuthal angular momentum pφ = K, the axial momentum pz, and the total energy H . Expressed
by the parameters at the two states, we have

pφ = mir1vφ1 +mir
2
1
Ω
2 = mir2vφ2 +mir

2
2
Ω
2 = K

pz = mivz1 = mivz2

H = 1
2miv

2
r1 +

1
2miv

2
φ1 +

1
2miv

2
z1 +

1
2mi

Ec

B RcΩ
(

r1
Rc

)2

=

= 1
2miv

2
r2 +

1
2miv

2
φ2 +

1
2miv

2
z2 +

1
2mi

Ec

B RcΩ
(

r2
Rc

)2























(8)

in which {r1, vr1, vφ1, vz1} and {r2, vr2, vφ2, vz2} the parameters of {r, vr, vφ, vz} at t = t1 and t = t2,
respectively. Thus, in the plane perpendicular to B, we obtain two Hamilton’s canonical equations:

r1vφ1 + r21
Ω
2 = r2vφ2 + r22

Ω
2 = K/mi

v2r1 + v2φ1 +
Ec

B RcΩ

[

(

r1
Rc

)2

−
(

r2
Rc

)2
]

= v2r2 + v2φ2







(9)

corresponding to the conservation of canonical angular momentum and that of the total energy, respec-
tively. Concisely, Eq.(9) gives one modified Hamilton’s canonical equation of motion:

v2r1 +
(

Ωr1
2

)2
+
(

K
mir1

)2

+ Ec

B RcΩ ·

[

(

r1
Rc

)2

−
(

r2
Rc

)2
]

=

= v2r2 +
(

Ωr2
2

)2
+
(

K
mir2

)2











(10)

Copyright line will be provided by the publisher
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3 Ion cyclotron frequency ω when Ẽ
r
switches on at t = 0

Let moment t1 = t be the final stage with phase space parameters {r, vr, vφ, t} = {r1, vr1, vφ1, t1}, and
moment t2 = t0 = 0 be the initial stage with {r0, vr0, vφ0, 0} = {r2, vr2, vφ2, t2} (hereafter we will use
the subscript ‘0’ to indicate the initial state). Eq.(10) becomes

v2r +
(

Ωr
2

)2
+
(

K
mir

)2

+ Ec

B RcΩ ·

[

(

r
Rc

)2

−
(

r0
Rc

)2
]

=

= v2r0 +
(

Ωr0
2

)2
+
(

K
mir0

)2











(11)

Following exactly the same algebra as given in Ma & St-Maurice (2008), we obtain the solution of
Eq.(11) in the case when the initial GC velocity vd is nonzero, namely, vd0 = {vdr0, vdφ0} 6= 0:

a0
[

(vr − vdr)
2 + (vφ − vdφ)

2
]

= a00
[

(vr0 − vdr0)
2 + (vφ0 − vdφ0)

2
]

v2dr +
(

vdφ − Ec

B
r
Rc

)2

= v2dr0 +
(

vdφ0 −
Ec

B
r
Rc

)2

= R2
v

a0 = a00

{

1− 1
2

[

1−
(

Ωi

ω

)2
]

(1− cosωt)
}

= a00
a1+a2cosωt

a1+a2

a1 = 1 + a2 , a2 = 2Ec/B
RcΩi

vdr = vdr0 −
Ec

B
r
Rc

a00

a0

Ωi

ω sinωt

vdφ = vdφ0 +
Ec

B
r
Rc

a00

a0

(

Ωi

ω

)2
(1− cosωt)











































(12)

in which a00 = a0|t=0 = 1 is the initial value of a0; Rv is the distance between the GC velocity vd and
the E×B drift velocity vE = E×B/B2; ω is the ion cyclotron frequency to be determined later. It is
clear that the parameters a0, vdr, and vdφ are functions of t and r but irrelevant to velocity components
vr and vφ. In concise vector form, the top two expressions in Eq.(12) are expressed as follows:

a0(v − vd)
2 = a00(v0 − vd0)

2

(vd − vE)
2
= (vd0 − vE)

2
= R2

v

}

(13)

which shows that the motion of ions contains two circular trajectories in velocity space: one is that v
rotates around the GC velocity, vd, and the other is that GC velocity rotates around the E × B-drift
velocity. If assuming vd0 = 0 in Eqs.(12,13), we immediately obtain results given by Eqs.(16∼20) of
Ma & St-Maurice (2008), which studied the vd0 = 0 case. Fig.3 in that paper showed the two orbits
in velocity space with an origin O. As a generalization of that case for vd0 6= 0, the two velocity-vector
circles are now in a new frame which has a shifted origin O′, as presented in Fig.2. In the new frame,
the GC vd-circle passes through O′.

In the old frame, the initial drift velocity at t = 0 is vd0 6= 0, and the E×B drift is still as before:

vE = Ec

B
r
Rc

φ̂ = {0, Ec

B
r
Rc

}. The radius of the vd-circle is

Rv = |vd0 − vE | =

√

v2dr0 +

(

vdφ0 −
Ec

B

r

Rc

)2

(14)

which does not equal to the magnitude (Ec/B)(r/Rc) of the vector vE . Thus, the origin O is either
inside the vd circle, or outside it. Fig.2 shows the latter case based on the assumed initial condition:
|vd0 − vE | < |vE |.

By contrast, in the new frame, we introduce a “pseudo-electric field”: E′ = −E′
c

r
Rc

r̂, satisfying

Rv = |v′
E | =

∣

∣

∣

∣

E′ ×B

B2

∣

∣

∣

∣

=

∣

∣

∣

∣

E′
c

B

r

Rc
φ̂

∣

∣

∣

∣

=
E′

c

B

r

Rc
(15)

Thus, Eqs.(14,15) provide

E′
c

B

r

Rc
=

√

v2dr0 +

(

vdφ0 −
Ec

B

r

Rc

)2

(16)

Copyright line will be provided by the publisher
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Fig. 2 Characteristics of ion motion for vd-circle not passing through the origin O. A shifted frame is

introduced to satisfy vd-circle passing through the new origin O′. The relation of the two frames is vr = v′r and
vφ = v′φ +

∣

∣

∆E×B

B2

∣

∣. In the old frame, the initial time is t = 0 with vd0 = {vdr0, vdφ0}, while in the new one the

initial time is t′ = t1 with v′

d0 = {v′dr0, v
′

dφ0}. The initial ion velocity vector v0(t = 0, t′ = t1) is also shown,
starting from the end of vector vd0 or v′

d0.

and then, the difference between vE and v′
E is in the φ-direction:

∆E×B

B2
=

(E−E′)×B

B2
=

{

0,
Ec − E′

c

B

r

Rc

}

= {0, δvφ} (17)

in which

δvφ = Ec

B
r
Rc

−Rv = Ec

B
r
Rc

(

1−
E′

c

Ec

)

=

= Ec

B
r
Rc



1−

√

(

vdr0
Ec
B

r
Rc

)2

+

(

vdφ0

Ec
B

r
Rc

− 1

)2






















(18)

Using this shift, we obtain a relation between the old and new frames:

v′r = vr , v′φ = vφ − δvφ (19)

and the expression of Rv changes from the old frame to the new one:

Rv = |vd0 − vE | = |v′
d0 − v′

E | (20)

in which v′
d0 = {v′dr0, v

′
dφ0} is in fact the vector vd0 but viewed in the new frame, satisfing

(v′
d0 − v′

E)
2
=

(

E′
c

B

r

Rc

)2

(21)

Because

(v′
d − v′

E)
2
= (v′

d0 − v′
E)

2
(22)

Copyright line will be provided by the publisher
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in the circular motion at any time t ≥ 0, we have

(v′
d − v′

E)
2
=

(

E′
c

B

r

Rc

)2

(23)

in the new frame, or, using the scalar expression,

v′2dr +
(

v′dφ −
E′

c

B
r
Rc

)2

=
(

E′

c

B
r
Rc

)2
(24)

which indicates that the GC velocity v′
d passes through the origin O′, and there is an initial GC velocity

v′
d0 = 0 at t′ = 0. Therefore, we have following important relations in the new frame, just as those

relations in the case of vd0 = 0 at t = 0 in the old frame given in Ma & St-Maurice (2008):

a′0(t
′) = a′00

{

1− 1
2

[

1−
(

Ω
ω

)2
]

(1− cosωt′)
}

v′dr(t
′) = −

E′

c

B
r
Rc

a′

00

a′

0

Ω
ω sinωt

′

v′dφ(t
′) =

E′

c

B
r
Rc

a′

00

a′

0

(

Ω
ω

)2
(1− cosωt′)















(25)

where

ω = Ω

√

1 + 4
E′

c/B

RcΩ
= Ω

√

1 +

(

4
Rc

r

)

Rv

RcΩ
(26)

in which Eq.(16) is used. This expression gives the IC frequency in the case of vd0 6= 0. It tells us that
there are two factors which determine the ion cyclotron oscillation ω: the strength of the electric field
E in which ions are residing, and the initial GC velocity of ions, vd0. If E = 0 and vd0 = 0 at the same
time, ω returns to Ω; If E 6= 0 but vd0 = 0, ω is given by the third expression in Eq.(14) of Ma &
St-Maurice (2008); If E = 0 but vd0 6= 0, we have Rv = |vd0|, and ω is given by:

ω = Ω

√

1 + 4
|vd0|

rΩ
6= Ω (27)

which discloses that if ions have a bulk speed in a magnetic field, they will oscillate in a cyclotron
frequency which is different from the magnetic gyrofrequency. This is an interesting feature: even
though there is no electric field in space, ions can still keep cyclotron oscillations as if they were in an
electric field. If E and vd0 are all nonzero in the case under discussion, we rely on Eq.(26) to calculate
ω in a stochastic electric field produced by solitons’ space charges.

We are dealing with a case of vd0 6= 0 in the old frame: vd0 = {vdr0, vdφ0} 6= 0. Viewed in the new
frame, this initial condition is, by using Eq.(19):

v′
d0 = {v′dr0, v

′
dφ0} = {vdr0, vdφ0 − δvφ} 6= 0 (28)

which means that ions start to oscillate from an initial time t′ = t1 in the new frame with a nonzero
GC velocity vector v′

d0|(t′=t1) 6= 0 which was evolved from v′
d0|(t′=0) = 0 in the new frame. The initial

time t′ = t1 is determined by a relation obtained after applying the initial condition v′
d0 to the last two

expressions in Eq.(25):

φ0 = ωt1 = −2× tan−1

(

ω

Ω

v′dφ0
v′dr0

)

, or , t1 = −
2

ω
× tan−1

(

ω

Ω

v′dφ0
v′dr0

)

(29)

Before the end of this section, we show the expressions of ion bulk kinetic energy 1
2mi〈v〉

2 (where
〈v〉 is the ion bulk velocity, or the average velocity) and ion temperature T (hereafter the subscript “i”
in Ti is omitted for simplicity) by employing the ion velocity distribution, in order to show the effect of
ion cyclotron oscillations on the evolutions of observable ion properties in the stochastic space-charge
electric field of solitons.

Copyright line will be provided by the publisher



12 Ma and St.-Maurice: IC Oscillations Excited by Nonlinear Waves in Auroral Ionosphere

The ion distribution function fi under collision-free conditions is obtained from the following Boltz-
mann equation:

Dfi
Dt

=
∂fi
∂t

+ v · ∇fi +
e

mi
(E+ v ×B) · ∇vfi = 0 (30)

in which the electric field E is “external”, produced by the solitons’ space charges. Macroscopically,
this field is stochastic, maintained by the dynamical processes of the propagation of solitons which are
unaffected by the local behavior of the ions; microscopically, within any tiny temporal intervals (t, t+∆t)
when a specific space-charge electric field appears in space with a lifetime ∆t, ions are residing in this
“external” constant field from t to t + ∆t. In this sense, we are solving a Boltzmann equation the
solution of which can be accessed purely analytically, according to our previous work, rather than
a Boltzmann-Vlasov equation (where the electric field in the equation contains both ‘external’ and
‘internal’ components) which requires numerical calculations during which the physical mechanism of
any resultant effects caused by the stochastic field is more difficult to be recognized.

As discussed in Ma & St-Maurice (2008), the function fi describes the probability of finding a particle
(exactly, “an ion” in our case) in a particular volume element drdv around the phase-space point {r,v}
in the 6-dimensional phase space filled with identical particles (Gartenhaus 1964). Eq.(30) states that
in the absence of the short-range collision term (∂fi/∂t)c, fi remains constant along the 6-dimensional
trajectories followed by the ions in phase space, once a particular initial condition is stated (Schmidt

1979; Humphries 1990). To be more specific, if we know the initial ion distribution function at an initial
phase-space vector point {r(t0),v(t0)} = {r0,v0} in any tiny temporal intervals, we are able to describe
the ions’ distribution function fi(r,v, t) at any time in the intervals in phase space, namely, the problem
Dfi/Dt = 0 is simply formally given by

fi(r,v, t) = fi(r0,v0, t0) = f0(r0, vr0, vφ0, t0) (31)

Let ni represent ion density, and T = {Tr, Tφ, T‖} represent the temperature where Tr, Tφ, and T‖
are the three components in radial, azimuthal, and axial directions, respectively. By assuming that
the initial distribution f0 of ions is a time-stationary, position-independent, velocity-shifted, density-
homogeneous, and temperature-anisotropic Maxwellian with nonzero initial GC velocity vd0, initial
temperature Tr0 = Tφ0 = T‖ = T0, initial density n0, and initial time t0 = 0, we have:

f0 =
n0mi

2πkbT0
exp

[

−
mi[(vr0 − vdr0)

2 + (vφ0 − vdφ0)
2]

2kbT0

]

(32)

Here, we employ a “Backward mapping” approach to transform this initial distribution f0 to the final
solution of the Boltzmann equations. As introduced in details Ma & St.-Maurice (2008, 2015), the
core of this approach lies in the task of finding an explicit connection between the initial phase-space
state, {r0,v0, t0}, and the final one, {r,v, t}. Luckily, this relation can be obtained if we solve the
set of differential equations of motion as done in Ma & St.-Maurice (2008): there are two identical
solutions for the same set of equations of motion (Gartenhaus 1964): one provides {r,v, t} expressed by
using {r0,v0, t0} (forward mapping), while the other provides {r0,v0, t0} expressed by using {r,v, t}
(backward mapping), whereby the description of the characteristics of motion is traced backwards but is
otherwise unaltered. We use the latter method to solve fi(r,v, t). This method allows us to relate the
6-dimensional phase point {r,v} at any time t to {r0,v0, t0} and to therefore find the distribution at
time t, since the initial distribution is already fully known, as given by Eq.(32). Finding the distribution
function is then just a matter of expressing r0 and v0 in terms of r,v, and t in the expression for the
initial condition f0. Therefore, Eqs.(12,31) thus give

fi(r, vr , vφ, t) =

(

a00

a0
n0

)

mi

2πkb

(

a00

a0
Ti0

)exp



−
mi[(vr − vdr)

2 + (vφ − vdφ)
2]

2kb

(

a00

a0
Ti0

)



 (33)

from which we have ni, average velocity 〈v〉 = {〈vr〉, 〈vφ〉}, and T as follows:

ni

n0
=

Tr

T0
=

Tφ

T0
=

a00
a0

, 〈v〉 = vd = {vdr, vdφ} (34)
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Consequently, the ion bulk kinetic energy 1
2mi〈v〉

2 and temperature T are expressed by

1

2
mi〈v〉

2 =
1

2
miv

2
d , Ti =

Tr + Tφ + T‖
3

= T0

2a00

a0
+ 1

3
(35)

in which v2
d = v2dr + v2dφ. In dimensionless forms with Ti normalized by T0, vdr & vdφ by vth (the ion

thermal equilibrium speed), and thus 1
2mi〈v〉

2 & 1
2miv

2
d by 1

2miv
2
th, Eq.(35) becomes

〈v〉2 = v2
d , Ti =

2a00

a0
+ 1

3
(36)

4 Oscillations in a stochastic nonlinear wavefield

In a period of time 1 s, we artificially choose ten random electric field strengths of Er to produce ten
Ec/B values at ten random moments ti (i = 1 ∼ 10) in sequence, as shown in Column A and B,
respectively, in Table 1. Column C gives (Ec/B)(r/Rc) at r = 0.5Rc. Hereafter, the subscript numbers
from 1 to 10 attached to all physical parameters indicate the corresponding Er-levels, respectively.

Table 1. Parameters of Stochastic heating or acceleration

by 10 Random Potential Wells in 0 ∼ 1 s at r/R0 = 0.5

A B C D E F G H I J K L

Level ti(s) Ec/B
Ec
B

r
Rc

vdr(ti) vdφ(ti) Rv ω/Ω δvφ φ0(rad) a0(ti) a00 1/a00

1 0 2.0 1 0 0 1 1.915 0 0 1 1 1
2 0.05 3.6 1.80 -0.060 0.002 1.799 2.408 0.001 0.080 0.998 0.999 1.001
3 0.13 0.2 0.10 -1.051 0.340 1.078 1.969 -0.978 2.372 0.688 1.897 0.527
4 0.21 1.5 0.75 .358 -0.917 1.705 2.355 -0.955 -0.490 1.754 1.843 0.543
5 0.23 0.0 0.00 -0.811 -0.750 1.104 1.986 -1.104 1.430 1.447 2.131 0.469
6 0.30 1.0 0.50 0.474 -0.997 1.571 2.278 -1.071 -0.677 1.865 2.047 0.489
7 0.46 2.8 1.40 -1.360 -0.286 2.166 2.603 -0.776 1.486 1.001 1.641 0.609
8 0.69 0.7 0.35 0.978 -0.532 1.318 2.125 -0.968 -1.541 1.251 1.977 0.506
9 0.83 4.5 2.25 0.155 -0.959 3.212 3.093 -0.962 -0.149 1.953 1.963 0.509
10 0.92 0 0 -2.047 -0.225 2.060 2.548 -2 2.291 0.990 3.323 0.301

END 1 0 0 -2.047 -0.225 2.060 2.548 -2 2.291 0.990 3.323 0.301

4.1 Er-level 1 in t ∈ [t1, t2]: Initial oscillations with ω1

Before t < 0, ions are assumed at the state of a thermal equilibrium in the absence of any electric field
with vd|t<0 = {vdr, vdφ}|t<0 = {0, 0} = 0.

At t = t1 = 0, Level 1 begins with Ec1/B switched on. It lasts from t1 to t2 = 0.05 s: t ∈ [t1, t2].
The initial conditions are as follows: a01(t1) = a001(t1) = a−1

001(t1) = 1, vdr1(t1) = vdr|t<0 = 0, and
vdφ1(t1) = vdφ|t<0 = 0, along with δvφ1 = φ01 = 0. This is the case described in great details in Ma &
St-Maurice (2008) when the vd-circle passes through the origin. The input parameters of this level are
as follows:

Rv1 =

√

[vdr1(t1)]
2
+
[

vdφ1(t1)−
Ec1

B
r
Rc

]2

= Ec1

B
r
Rc

ω1

Ω =
√

1 + 4Ec1/B
RcΩ

=
√

1 +
(

4Rc

r

)

Rv1

RcΩ
=

√

1 + 8 Rv1

RcΩ

δvφ1 = Ec1

B
r
Rc

−Rv1 = 0

φ01 = −2tan−1
[

ω1

Ω
vdφ1(t1)−δvφ1

vdr1(t1)

]

|(vdr1→0) = 0

a01(t1)
a001

= 1− 1
2

[

1−
(

Ω
ω1

)2
]

(1− cosφ01) = 1

a001 = a01(t1)/
[

a01(t1)
a001

]



























































(37)

Notice that the ion cyclotron oscillation frequency ω is written in its genuine form: it is as a matter of
fact determined by Rv, rather than Ec/B; however, if the initial ion GC velocity vd is zero, we have
Rv = Ec/B (a case discussed in Ma & St-Maurice 2008).
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In t ∈ (t1, t2), these input parameters give rise to the ion characteristics of motion at an arbitrary
time t as follows:

a01(t)
a001

= 1− 1
2

[

1−
(

Ω
ω1

)2
]

{1− cos[ω1(t− t1) + φ01]}

a01(t) = a001 ·
[

a01(t)
a001

]

vdr1(t) = −Rv1

[

a01(t)
a001

]−1
Ω
ω1

sin[ω1(t− t1) + φ01]

vdφ1(t) = Rv1

[

a01(t)
a001

]−1 (
Ω
ω1

)2

{1− cos[ω1(t− t1) + φ01]}+ δvφ1



































(38)

At the end of the stage, t = t2, above functions have following values, respectively:

a01(t2)
a001

= 1− 1
2

[

1−
(

Ω
ω1

)2
]

{1− cos[ω1(t2 − t1) + φ01]}

a01(t2) = a001 ·
[

a01(t2)
a001

]

vdr1(t2) = −Rv1

[

a01(t2)
a001

]−1
Ω
ω1

sin[ω1(t2 − t1) + φ01]

vdφ1(t2) = Rv1

[

a01(t2)
a001

]−1 (
Ω
ω1

)2

{1− cos[ω1(t2 − t1) + φ01]}+ δvφ1



































(39)

We know that a01(t2) and {vdr1(t2), vdφ1(t2)} represent the ion temperature and GC velocity at
t = t2, respectively. They keep invariant during the switch of the electric field from level 1 to 2:

a02(t2) = a01(t2) , vdr2(t2) = vdr1(t2) , vdφ2(t2) = vdφ1(t2) (40)

4.2 Er-level 2 in t ∈ [t2, t3]: Oscillations with ω2 for generalization

Without loss of generality, we give expressions for the ion oscillation features at this level after the
electric field switches from Ec1/B to Ec2/B. By using the initial conditions given by Eq.(40), we obtain
the input parameters as follows:

Rv2 =

√

[vdr2(t2)]
2
+
[

vdφ2(t2)−
Ec2

B
r
Rc

]2

ω2

Ω =
√

1 + 8 Rv2

RcΩ

δvφ2 = Ec2

B
r
Rc

−Rv2

φ02 = −2tan−1
[

ω2

Ω
vdφ2(t2)−δvφ2

vdr2(t2)

]

a02(t2)
a002

= 1− 1
2

[

1−
(

Ω
ω2

)2
]

(1− cosφ02)

a002 = a02(t2)/
[

a02(t2)
a002

]



























































(41)

which gives rise to the ion characteristics of motion at an arbitrary time t as follows:

a02(t)
a002

= 1− 1
2

[

1−
(

Ω
ω2

)2
]

{1− cos[ω2(t− t2) + φ02]}

a02(t) = a002 ·
[

a02(t)
a002

]

vdr2(t) = −Rv2

[

a02(t)
a002

]−1
Ω
ω2

· sin[ω2(t− t2) + φ02]

vdφ2(t) = Rv2

[

a02(t)
a002

]−1 (
Ω
ω2

)2

{1− cos[ω2(t− t2) + φ02]}+ δvφ2



































(42)
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At the end of the stage, t = t3, above functions have following values, respectively:

a02(t3)
a002

= 1− 1
2

[

1−
(

Ω
ω2

)2
]

{1− cos[ω2(t3 − t2) + φ02]}

a02(t3) = a002 ·
[

a02(t3)
a002

]

vdr2(t3) = −Rv2

[

a02(t3)
a002

]−1
Ω
ω2

sin[ω2(t3 − t2) + φ02]

vdφ2(t3) = Rv2

[

a02(t3)
a002

]−1 (
Ω
ω2

)2

{1− cos[ω2(t3 − t2) + φ02]}+ δvφ2



































(43)

which keep invariant during the switch of the electric field from level 2 to 3, and behave as the initial
conditions for the new step:

a03(t3) = a02(t3) , vdr3(t3) = vdr2(t3) , vdφ3(t3) = vdφ2(t3) (44)

4.3 All Er-levels: Oscillations with different cyclotron frequencies

By generalizing expressions given above with reiterations of similar derivations, we calculate vdr, vdφ,

Rv, ω/Ω, δvφ, φ0, a0(ti), a00, and a−1
00 for all Er-levels. Data are given in columns D ∼ L, respectively,

of Table 1. The temporal changes of these parameters are depicted in Figs. 3∼5. From the evolutions
of the parameters in these figures, we see several oscillation features of ions as follows.

First of all, any random change in Ec/B causes immediate variations in other parameters. For
example, in the upper left panel of Fig.3, when Ec

B
r
Rc

increases from 1 to 1.8 at t = 0.05 s followed by

a drop to 0.1 at t = 0.13 s, ω/Ω in the lower left panel goes up from 1.915 to 2.408, and then decreases
to 1.969 without any delay. Accordingly, other parameters (e.g., Rv, δvφ, a00) also have prompt jumps.

Secondly, though solitons’ electric field stimulates ions from the gyration frequency Ω to the stochastic
cyclotron frequency ω, ω never returns to Ω even if the electric field is turned off. Look at Er-level 5 and
10 in the upper left panel of Fig.3, where the electric field strengths are zero. However, the ω/Ω-values
in the lower left panel are 1.986 and 2.548, respectively, not 1 (or, ω = Ω) as normally considered it
should be in the absence of electric fields. This indicates that when the electric field disappears, ions
still oscillate as if there were an electric field. As discussed in the last section, this “imaginary” field is
nothing but as a matter of fact a reflection of the nonzero drift velocity that ions have acquired before
the electric field is off.

Thirdly, during the stochastic cyclotron oscillations, ions are heated transversely, as revealed by
the evolution of a−1

0 (t) in Fig.4. As discussed in the last section, a−1
0 (t) reflects the ions’ transverse

temperature Tr (or Tφ) evolving from the initial isothermal T0 in the soliton’s space-charge electric field

proportional to the radius. Fig.4 shows that a−1
0 (t) is mostly higher than 1. This means that T is

often above T0. The figure shows that ions are heated to 1.36 T0 on average, changing from 0.3T0 to
5.8T0, while Table 1 tells us that ω varies from 1.915Ω to 3.093Ω during this period of time. Thus,
cyclotron oscillations and transverse ion heating are the both available manifestations of the presence
of the solitons, or, exactly, their space-charge electric field in space at any time. It is worth to mention
here that the last two columns a00 and a−1

00 in Table 1 are retrospective values of a0(t) and a−1
0 (t),

respectively, at t′i = 0 in the shifted frame with the origin O′.

Lastly, in sharp contrast to the random amplitudes of vdr(ti) and vdφ(ti) caused by the electric field
switches, as shown in the upper right panel of Fig.3, the GC-velocity (or, the vd-vector) evolves in
circles with different radii in velocity space during these switches, as shown in Fig.5. All the vd-circles
are symmetric to the axis of vdr(t)=0. This means that the mean amplitude of vdr(t) is always zero.
Thus, vd rotates in φ-direction on average with a temporally changing speed, as shown by, e.g., Eq.(42).
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Fig. 3 Evolution of parameters in response to artificially generated stochastic electric fields of solitons. Data
are given in Table 1. E=0 is set initially before t = 0, at level 5 of 0.23 < t < 0.3, and finally after t > 0.92 s.

Fig. 4 Evolution of a−1
0 (t) and a−1

00 in response to artificially generated stochastic electric fields of solitons.

5 Oscillations in a generalized stochastic nonlinear wavefield

In order to get deeper insights into the features of the ion cyclotron oscillations triggered by stochastic
space-charge electric fields of solitons, we use two random-number generators to simulate the stochastic

Copyright line will be provided by the publisher



PSIJ 17

Fig. 5 GC-velocity vd-circles in response to the artificially generated stochastic electric field of solitons.

appearances and the Ec/B strengths of electron solitons. The maximum temporal interval is 1 (in
unit of one gyro-period 2π/Ω s). The lifespan of the stochastic electric field is 4000 gyro-periods. The
calculation also gives results for extra 1000 gyro-periods to see what happens after the electric field is
switched off. We consider ions at r = 0.5Rc.

For comparisons, we consider both a low-amplitude stochastic electric field of solitons and a high-
amplitude one, corresponding to two extreme cases FAST could encountered. The peak Ec/B-strength
in the former is 4 (in unit of vth = 1 km/s), while RcΩ = 3 (in unit of vth); by contrast, the peak
Ec/B-strength in the latter is 90, while RcΩ = 275. The two corresponding nominal ion gyration
frequencies (that for Maxwellian ions with zero GC velocity to response to the peak stochastic electric
field strength) are 2.52Ω and 1.52Ω, respectively.

Fig.6 illustrates the oscillating properties of following four parameters with time in the low-amplitude
stochastic field: (Ec/B)(r/Rc), Rv, δvφ, and ω/Ω. The upper left panel gives the input stochastic
(Ec/B)(r/Rc)-profile which is zero after t = 4000. The upper right panel shows the stochastic changes
of the velocity radius of the GC-circles, Rv. Although Ec

B
r
Rc

never exceeds 2, it can reach up to more
than 25 in modulations. From t = 4000, it is fixed at about 23. The lower left panel presents the
variations of the shift between the old coordinates and a series of new ones in the stochastic electric
field, δvφ. Because this shift is equal to (Ec

B
r
Rc

−Rv), it has an anti-correlation with Rv due to relatively

small amplitudes of Ec

B
r
Rc

at any time. The lower right panel exhibits the evolving properties of the
ion cyclotron frequency ω. Obviously, it is positively correlated to Rv, in agreement with what was
discussed in the last Section. It is within 1 ∼ 9Ω in frequencies but with an average around ∼ 5.5Ω.
Note that the final oscillation is frozen at 8Ω after 4000 gyro-periods of time when the electric field is
switched off.
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Fig. 6 Oscillations of four parameters with time in a low-amplitude stochastic space-charge electric field of
solitons: (Ec/B)(r/Rc), Rv, δvφ, and ω/Ω.

Fig.7 displays the temporal evolutions of the transverse GC kinetic energy v2d (in unit of v2th) of ions
and their temperature T (in unit of T0) in this case. The upper panel shows that that the kinetic energy
is enhanced by at least 2 orders of magnitude by the stochastic electric field. For the ion temperature,
it also demonstrate markedly up to a 20-fold increase. Because in the present study the the parallel
component is assumed constant, the temperature growth is contributed by the transverse components
Tr and Tφ. After 4000 gyrations of time, both v2d and T keep constant in time, much higher than their
respective initial values.

Fig.8 and Fig.9 manifest the four parameters and v2d & T , respectively, in the high-amplitude stochas-
tic field. From the upper left panel of Fig.8, we see that (Ec/B)(r/Rc) is much higher than that in
Fig.6, which produces much higher Rv, δvφ. On the contrary, the cyclotron frequency ω in the lower
right panel of Fig.8 is lower than that in Fig.6. By checking analytical expressions in the last section, we
know that ω/Ω is really related to the electric field (Ec/B), but depends on the ratio between (Ec/B)
and RcΩ. Though (Ec/B) increases 22.5 times the weak field, the fact that RcΩ becomes 91 times the
weak field makes the ratio is smaller than that in the weak field. Thus, ω has smaller amplitudes which
are within 1 ∼ 7Ω in frequencies. The average is around ∼ 4.4Ω which seems to be the final value
stabilized after 4000 gyro-periods of time. Strikingly, the gained kinetic energy of ions is much higher
in Fig.9 than that in Fig.7, while the ion temperature shown in Fig.9 does not increase that much as
that in Fig.7.

Copyright line will be provided by the publisher



PSIJ 19

 !   "   #   $   %   

 & 

 &"

 &$

 &'

 &(

!& 

 

 

!

" #

 
$
%
&

'

(

)

 !   "   #   $   %   

 

$

(

!"

!'

" 

 

! 

*

!

Fig. 7 Temporal evolutions of the transverse GC kinetic energy v2d of ions and their temperature T in a
low-amplitude stochastic space-charge electric field of solitons.

For the two cases, the IC oscillation frequency shifts around ∼ 5Ω on average, between 4.4Ω and
5.5Ω. This indicate that observable frequencies should not fall exactly about Ω. Instead, they should
be away from the ion gyro-frequency. In the present radially inward electric field case, ω has a “blue”
shift to the LH frequency. Reasonably, if the electric field is radially outward (say, produced by positive
space-charge solitons), we predict ω will have a “red” shift to a frequency lower than Ω. Another paper
will discuss this case.

6 Summary and discussion

Plasma instabilities and waves in IC modes is a hot topic in traditional linear wave theories, where the
electric field is weak, considered as a perturbation under a plane wave formulation. Aiming at illustrating
the IC oscillations in response to a stochastic, strong electric field contributed by nonlinear waves in
auroral ionosphere, we established a physical model to describe characteristics of ions residing in such
an electric field which randomly appears in space with random strengths, however, is instantaneously
constant in time. To get easy access and comprehensive insight into the oscillation features, we relied
on ion Hamiltonian mechanics to solve the Boltzmann equation completely analytically for an invariant
field with time. We obtained a double-circle trajectory in velocity space for ions with a nonzero initial
GC velocity, and acquired evolutions of their kinetic energy and temperature. Then, we designed a
stochastic electric field with 10-step strengths to illustrate how the IC oscillation frequency and other
parameters accommodate to the strong space-charge electric field of solitons which appears in flux tubes
randomly with time. After that, we bring two random-number generators into play to simulate real
situations at a position well inside the flux tube. We obtained that the IC frequency can be shifted
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Fig. 8 Oscillations of four parameters with time in a high-amplitude stochastic space-charge electric field of
solitons: (Ec/B)(r/Rc), Rv, δvφ, and ω/Ω.

to several ion gyration frequencies. Specifically, with both a low-amplitude electric field and a high-
amplitude one, we reported that the actual IC frequencies fall in around 5Ω on average of the two
cases.

The simulation result coincides with observations, e.g., FAST data. See Fig.1(aa-cc) in Ergun et al.

(1998c). The data gives five pulses in ∼ 5 ms, indicating a frequency of ∼1 kHz for solitary structures
to appear at a specific spatial position. Using H+ gyrofrequency Ω ∼200 Hz we calculated in Section
1 from FAST measurements, we predicted from our result that solitons should have a frequency of
880∼1100 Hz, in agreement with what FAST data exhibited. Here, we would like to show our special
concern to the authors’ claim that the frequency of the evenly spaced solitons appears to be, “within
error”, the LH oscillations (see Fig.5 in that paper). In the linear wave regime, the LH instabilities
are triggered by the density and/or temperature gradients of the background plasma, involving both
modulations of the perturbed electric field to electrons and ions. In upward/downward current regions
FAST satellite passes, such conditions to excite LH waves seem not satisfied in the linear wave regime.
If LH oscillations do exist, they may be triggered by some kind of mechanisms related to strong soliton
electric fields. Unfortunately, the authors mentioned nothing about the activation of the LH instabilities.
We are going to pay attention to this issue and show linked evidence to support the authors’ argument.

This paper is the first attempt to account for measurements of plasma IC oscillations by employing a
nonlinear plasma wave model. The approach hires the kinetic theory, instead of the linear wave theory,
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Fig. 9 Temporal evolutions of the transverse GC kinetic energy v2d of ions and their temperature T in a
high-amplitude stochastic space-charge electric field of solitons.

to understand the IC oscillations observed in space, where the linear plasma process has evolved to
produce measurable nonlinear phenomena by high-resolution payloads. As a start, we attacked the most
basic problem with as simple a model as possible toward our goal to gain important insights into more
complicated situations, while still being able to obtain applicable numerical solutions to observations. In
the model, we did not take into consideration the effect of the parallel electric field sustained by solitons
on perpendicular ion oscillations, and neglected an upward mirror force which may be brought about
by a diverging magnetic flux tube. We exclude the boundary effects on the characteristics of ions by
simply choosing a radius which is well inside the flux tube cylinder. We also assumed that the solitons’
space charges are distributed in the flux tube uniformly, regardless of a possible density inhomogeneity
due to intermediate spaces among soliton trains. Though with these limits, the feature of measured IC
oscillations driven by nonlinear waves can be satisfactorily explained. We hope the work could provide
a reference to future studies on solving similar problems under conditions that traditional linear wave
models are no longer suitable.

7 Conclusion

After Chiueh & Diamond predicted the existence of “space-charge Clumps, numerous high-resolution
observations (e.g., FAST, Polar) confirmed these space-charge structures which were nothing else but
the measured nonlinear electrostatic solitary waves (see the first report by Matsumoto et al. 1994).
These stochastic solitary structures are space-charge carriers which contribute strong transverse electric
fields in space plasmas to excite ion cyclotron (IC) oscillations. Different from the stochastic methods
used in different fields of physics (Bonfig 1988; Vojko et al. 1994; Vojko & Dali 1996), this paper offered
an alternative for readers to deal with similar studies in the elucidation of the IC oscillations stimulated
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in auroral ionosphere. This new approach was featured by a couple of recognitions in treating the
space-charge electric field, as demonstrated by Ma et al. (2009): macroscopically, the field is stochastic,
maintained by the dynamical processes of the propagation of solitons unaffected by the local behaviour
of the ions; microscopically, within any tiny temporal intervals when a specific space-charge electric field
appears in space with a lifetime ions are residing in this externally constant field. In that sense, we are
solving a simpler Boltzmann equation analytically, rather than a more complicated Boltzmann-Vlasov
equation which requires numerical approaches. For the stochastic, strong space-charge electric wavefield
E of nonlinear waves propagating in auroral ionosphere, we conclude that

(1) With a nonzero initial guiding-center (GC) velocity, ions are found to follow a double-circle trajec-
tory in velocity space with an IC oscillation frequency ω which shifts from the magnetic gyrofrequency
Ω = eB/mi;

(2) After the “constant” condition of the field is relaxed by using a simple stochastic E strengths in
different limited random time intervals, frequency ω accommodates the E switches which brings about
variations of related transport parameters;

(3) By generalizing the stochastic properties in both the field strength and time interval, ω can be
shifted to several times over the value of Ω, bringing astonishing enhancements in the physical properties
such as, temperature, kinetic energy, in good agreement with what observations demonstrated in auroral
field-aligned current regions.
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