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Abstract

Investigation has been carried out to analyze ffects of variable wall temperature and
concentration on Magnetohydrodynamic mixed coneectilow of a nanofluid over a
nonlinear stretching sheet with variable Browniaud ahermophoretic diffusion coefficient.
The governing differential equations were transfedninto a set of non-linear coupled
ordinary differential equations using similarity amsformations. Results are shown
graphically for the velocity profile, the tempenaprofile, and the concentration profile with
different values of physical parameters like sutfi@rameter, magnetic parameter, Grashof
number, local modified Grashof number, thermaludiifity, Prandtl number, Lewis number,
the thermophoresis parameter and the Brownian motgarameter, the variable
thermophoretic diffusion coefficient parameter ahd variable Brownian motion diffusion
coefficient parameter. A comparison with previoyslplished work has been carried out and
the results are found to be in good agreementlifFimaumerical values of pertinent physical
guantities, such as the local Nusselt and locaivbed numbers were presented graphically.
It is found that Heat transfer rate decreases with influence of Brownian motion and
thermophoresis parameters and the local Sherwooteuincreases with the effect of both
Brownian motion and thermophoresis parameters.
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1. Introduction

In fluid dynamics, the effects of external magndigtd on magnetohydrodynamic (MHD)

flow over a stretching sheet are very important tués applications in many engineering
problems, such as glass manufacturing, geophypagser production, and purification of
crude oil. A broad effort has been made to gaiorimftion regarding the stretching flow
problems in various situations. The flow due toettning of a flat surface was first

investigated by Crane [1]. The effect of externalgmetic field on the MHD flow over a

stretching sheet was investigated by Pavlov [2]e MHD flow and heat transfer over a
stretching sheet with variable fluid viscosity Heeen discussed by Mukhopadhyay [3]. An
excellent collection of articles on this topic da@é found in [4-7]. Furthermore, many vital
properties of MHD flow over stretching sheet wexglered in various articles [8—10] in the



literature. Several important investigations on filbey due to stretching/shrinking sheet are
available in the literature [11-12]

All the above mentioned investigations deal witke flows over a linear stretching sheet.
Cortell [13, 14] has worked on viscous flow and thieansfer over a nonlinearly stretching
sheet. Awang and Hashim [15] obtained the seridatiSn for flow over a nonlinearly
stretching sheet with chemical reaction and Magnégéld .The flow and heat transfer
characteristics in a viscous fluid over a nonliheatretching sheet without heat dissipation
effect was studied by Vajravelu [16]. The boundkyer flow of a nanofluid flow over a
non-linearly stretching sheet was later studiedRlayya and Bhargava [17]. The analytical
solution of the boundary layer flow of an incomgibte viscous fluid over a non-linear
stretching sheet has been investigated by Hayat Aifproximate Solution of the Magneto-
Hydrodynamic flow over a nonlinear stretching shieas been studied by Eerdunbuhe and
Temuerchaolu [19]. An excellent collection of dd&on this topic can be found in [20-22].

Nanofluids are the suspension of nanometer-sizkd jgarticles and fibers, which have been
proposed as a means for enhancing the performahdeeai transfer liquids currently
available, such as water, toluene, oil and ethylglgeol mixture. Choi [23], was the first
person who utilizes nanofluid. Choi et al. [24firafied that the addition of a one percent by
volume of nanoparticles to usual fluids increasesthermal conductivity of the fluid up to
approximately two times. Recently several modebfdghe natural or mixed convection of
nanofluids have been investigated numerically. pio@eer work on the boundary layer flow
of a nanofluid over a stretching sheet has beernedaput by Khan and Pop [25] using
Buongiorno’s model [26]. In his theory he explaingét nanofluids have higher thermal
conductivity compared to the base fluids. Somerotbeent articles describing the properties
of nanofluid are cited in Refs.[27-31].

Mixed convection (or combined convection), one be ttransport phenomena, is the
composition of both natural and forced convectionf These flow patterns are discovered
simultaneously by both an external forcing mechaniand internal volumetric forces.
Prasad et al. [32] analyzed the mixed convectieat ltransfer over a non-linear stretching
surface with variable fluid properties. The mixedneection flow of a non-newtonian
nanofluid over a non-linearly stretching sheet wigscussed by Gorla and Kumari [33].
Sundeep and Sulochana[34] investigated the infei@icon-uniform heat source/sink, mass
transfer and chemical reaction on an unsteady moaun/ection boundary layer flow of a
magneto-micropolar fluid past a stretching/shrigkisheet in the presence of viscous
dissipation and suction/injectiorDouble diffusive mixed convection flow of a non-
Newtonian couple stress fluid over a vertical heaptate in a sparsely packed porous
medium with variable fluid properties has been mddanalytically and numerically by
Dinesh[35].Mustafa and Hayat [36] studied unsteady boundargrlflow of a Casson fluid
due to an impulsively started moving flat plateeTKeller-Box method introduced by Keller
[37] is one of the best numerical method. Basicikya mixed finite volume method which
consists in taking the average of a conservationdad of the associated constitutive law at
the level of the same mesh celulochana[38] numerically analysed the effect of
transpiration on magnetohydrodynamic stagnatiomgtow of a Carreau nanofluid toward a



stretching/shrinking sheet in the presence of tlehoresis and Brownian motion.
Sulochana and Ashwinkumar[39] carried out the mdoman heat and mass transfer
behaviour of magnetohydrodynamic flow towards diwal rotating cone in porous medium
with thermophoresis and Brownian motion effectgif$40] obtained the numerical solution
of the steady boundary layer flow and heat transf@r a stretching sheet with Newtonian
heating by using Keller Box method.

Motivated by all the articles reviewed above anganticular, for more physical implications,
this present investigation deals with the mixed veation flow of a nanofluid over a

nonlinear stretching sheet with variable Browniam ahermophoretic diffusion coefficient

by considering the effects of variable wall temper@ and concentration. The basic
governing equations are converted into ordinarjetéhtial equations by applying suitable
similarity transformations and those equations wsoéved numerically by using finite

difference method called as the Keller Box method.

2. Mathematical Formulation:

We consider the two-dimensional steady laminar MidRed convective flow of
a nanofluid due to a stretching sheet situated=aOywith stretching velocity uG x", where
C, is a constant and n is non linear stretching patanThe fluid is electrically conducted
due to an applied magnetic field B(x) normal to stietching sheet. The magnetic Reynolds
number is assumed small and so the induced magfielit can be considered to be
negligible. The wall temperatu®, and the nanoparticle fracti@l), are assumed constant at
the stretching surface. When y tends to infinitmbéent temperature and concentration are
T.andC,, respectively. It is chosen that the coordinattesy x-axis is along stretching sheet
and y-axis is normal to the sheet.
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Fig 1 Physical modet coordinate system

The continuity, momentum, energy and concentragigmations of incompressible nanofluid
boundary layer flow are as follows:
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Boundary conditions are
u(x,0) = Uy (x) = C;x™,v(x,0) =Vy(x) = C,x™, T(x,0) = T, + C3x7,C(x,0) = Co, + Cyx”
And u(x,0) =0,T(x,) = Ty ,C(x,0) = Cy (5)

where u , v are the velocity components alongxtl@d y directions, respectively. T and C
are the fluid temperature and concentration, rdsmy. p is the fluid density, g is the
acceleration due to gravitgy is the coefficient of thermal expansigy, is the coefficient of
expansion with concentratio6;, C,, C3, C, are the constantdy,(x) = C,;x™ is the stretching
velocity of the platel;, (x) = C,x™ is the transverse velocity at the surface, BBg)e is

the applied magnetic field, where 371;=3 m ="T_1, r = 2n-1, The stretching surface has a

uniform temperatur&,, and the free stream temperaturd ,iswith T,, > T... Also, it has a
uniform concentratiol,, and the free stream concentratiod jswith C,, > C,,.

In this study,D;(T) and Dg(C) are the variable thermophoretic and Brownian motion
diffusion coefficients, and assumed to vary lingavlth temperature and volume fraction of
the nanoparticles, respectively. We difine them as:

Dr(T) = Dr, (1 ++-(T = T.)),

Dp(T) = D, (1+2(C—C.)). (6)

where AT = (T, — T,,)),AC = (Cyy — C,), Ty the surface temperature],, the surface
volume fraction of the nannoparticles,the variable thermophoretic diffusion coefficient
parameter, § Brownian motion diffusion coefficient paramete; and Dy are
thermophoretic and Brawnian motion diffusion caaéints of the nanofluid far away from
the sheet, respectively.

The stream functiony(x, y) is defined byu = % and v = —%, such that the continuity
Eq.(1) is satisfied automatically. With the helpfoflowing similarity transformations, the
non linear partial differential equations (2), @&)d (4) were transformed into coupled non
linear ordinary differential equations satisfied

DU 2 T—-Teo C-Coo
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The transformed ordinary differential equations are
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and the boundary conditions are transformed into
f0)=S5f(0)=190)= 1,h(0) =1
and f'(e) = 0,g(0) = 0,h() = 0 1)

where the prime denotes differentiation with respeq and the parameters are given by:
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Here, S, M, Gr, Gc, Prg, Le, Nt and Nb, denote the suction parameter net@gparameter, Grashof
number, local modified Grashof number, Prandtl nemthermal diffusivity, Lewis number, the
thermophoresis parameter and the Brownian moticenpeter, respectively.

And the physical quantities of the local NusselnberNu, and the local Sherwood number
Sh,are defined as:

_ Xqw _ Xqm
Nuy = k(Tw—Teo) anashy = Dg(Cy—Coo) (13)

whereg,,and q,are the wall heat and mass fluxes, respectively aaa given by

av ==k(5;),_andan = =D (57) _ (14)

Now equation (12) becomes

Nuxy _ s Shy
= —-0'(0) and@

= = —¢'(0) (15)

whereRe, = = is the Reynolds number.

3. Numerical procedure

The boundary value problem (8)—(10) is solved lseeond order finite difference scheme
known as the Keller Box method [37]. The numermalutions are obtained in four steps as
follows:

* Reduce the equations to a system of first ordaatons;

* write the difference equations using centraledghces;



* linearize the algebraic equations by Newton’s hudf and write them in matrix—vector
form; and

* solve the linear system by the block tri-diagagiahination technique.

The step sizAn and the position of the edge of the boundary lnyeare to be adjusted for
different values of the parameters tomaintain amoyr For numerical calculations, a
uniformstep size cAn = 0.01 is found to be satisfactory and the sohdiare obtained with
an error tolerance (107 in all the cases. For brevity, the details of sieéution procedure
are not presented here.

4. Results and Discussion

The non-linear ordinary differential equations E(®. — (10) with the boundary conditions
(11) were solved numerically by Keller Box methdthe computation have been carried out
for different values of governing parameters vikct®n parameter S, magnetic parameter M,
Grashof number Gr, local modified Grashof number Bandtl number Pr, Lewis number
Le, the thermophoresis parameter Nt and the Brawmiation parameter Nig, the variable
thermophoretic diffusion coefficient parameter gh@&rownian motion diffusion coefficient
parameter. The velocity, temperature and conceorgprofiles for different governing
parameters have also been examined for both vafuesn linear stretching parameters n=1,
n =10.The results obtained in the study are conaparth the existing literature and found in
good agreement which is presented in the Table 1.

Tablel: Comparison of Nusselt and Sherwood numliken Pr=Le=2andM=Gr=Gc=%= =0

Rana and Bhargava [17] PresentiRes

N Nt Nb -0'(0) ©'(0) -0'(0) ©'(0)
0.2 0.1 0.5 0.516 0.9012 0.5161 0.9014
0.3 0.4533 0.8395 0.4536 0.8384
0.5 0.3999 0.8048 0.3998 0.8039
3 0.1 0.4864 0.8445 0.4766 0.8447
0.3 0.4282 0.7785 0.4279 0.7785
0.5 0.3786 0.7379 0.3782 0.7374
10 0.1 0.4799 0.8323 0.4799 0.8322
0.3 0.4227 0.7654 0.4228 0.7654
0.5 0.3739 0.7238 0.3739 0.7232
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Fig 2 Velocity profile with variation in Fig 3 Velocity profile with vation in M

non linear stretching parameter n

The nature of velocity profile with variations iromlinearly stretching parameter n and
magnetic parameter has been displayed in figurasd23. The velocity of the fluid is found
to decrease with an increase in n. But the decrefifiee velocity profile is negligible for

large values of n since the coefficieflfzt}1 approaches to 2 when-nwo. Figure 3 shows the

effect of magnetic parameter for nonlinear stretghparameters n=1, n =10. It can be
observed that when the magnetic parameter M ineseabe velocity decreases. This is
because the transverse magnetic field createsdrentz force. It is a resistive force similar
to the drag force which will result in the decetema of the flow.
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Fig 4 Temperature profile with variation in ~ Fig 5 Temperature profile with variation i
variable Thermoporetic diffusion variable Brownian motiofffdsion
coefficient coefficienfs

The effect of variable Thermoporetic diffusion domént parametee and variable Brownian
motion diffusion coefficient parametg on temperature of the nanofluid are displaced in
figure 4 and figure 5. It is observed from the figsi that increasing both the parameters can
also increase the temperature of the fluid by kegpither parameters fixed. In this regard,
temperature of the fluid is higher in injectiorusition than that of suction as it is revealed by
the figures.
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Fig 6 Velocity profile with variation in Fig 7 Temperature profile with vaidatin Gr
Suction parameter S

Figure 6 shows the effect of velocity profile wittspect to the variation in suction parameter
S. It can be noticed that when the values of ‘Stéase, the velocity profile graph decreases.
Due to increase of suction parameter the amouihtiidf particles were drawn into the wall
hence the boundary layer decreases. Fig 7 reveabksffect of Grashoff number Gr on
temperature profile, it is observed that tempegmaslightly decreases with increasing values
of local Grashoff number Gr.
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Fig 8 Concentration profile with variation Fig 9 Temperature profile with variation
in Lewis number Le in Broi@n motion parameter

Fig 8 presents the effect of Lewis number on dirmness nanopatrticle concentration. An
increase in Lewis values will reduce the profilenainoparticle concentration and larger Le
values will also suppress concentration profileisTis probably due to the fact that mass
transfer rate increases as Lewis number incredsedso reveals that the concentration
gradient at surface of the sheet increases. Morgdhe concentration at the surface of a
sheet decreases as the values of Le increase. $figvés the influence of Brownian motion
parameter on temperature profile. It clearly intksathat the thermal boundary layer
thickness increases with an increase in Browniatiangarameter Nb.
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Figure 10 shows the influence of thermoporesisipatar Nt on nanoparticle concentration.
From the figure it is clear that nanoparticle corication increases with increasing values of
thermoporetic parameter Nt. The enhancement offrtbnoretic effects causes the migration
of nanoparticles from the hot surface to the cottbint fluid as a consequence of this the
temperature increases in the boundary layer. €Ffeet of Prandtl number Pr on the heat
transfer process is shown by the Fig. 11. This lyregveals that an increase in Prandtl
number Pr results in a decrease in the temperdistebution, because, thermal boundary
layer thickness decreases with an increase in Rranchber Prin short, an increase in the
Prandtl number means slow rate of thermal diffusildre graph also shows that as the values
of Prandtl number Pr increase, the wall temperalemzeases.
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Figl2 Concentration profile with variation in Fig 13 Temperature profile with iadiion in
non linear stretching parameter n nonlinear stféhg parameter n

Fig 12 dipicts the nature of nanoparticle volumacfion with variation in nonlinearly

stretching parameter n. It shows that nanoparticfecentration decreases with an increase in
n. The nature of temperature profile with variatiomon linearly stretching parameter n has
been depicted in Fig 13. It can be observed #maperature decreases with an increase in n.



Nb=05

_ Nb=03

0'(0)
9'(0)

- Nb=05

I —eeoo-meo- NB =0 T ___Nb=03

Nt Nt

Fig 14 Variation of local Nusselt number - 6'(0) Fig 15 Variation of local Sherwood number
with Nt for different values of Nb. —@'(0) with Nt different values of Nb

Fig 14 shows the influence of both the Brownian orofarameter Nb and thermophoresis

parameter Nt on local Nusselt numbet' (0). As both parameters increase, the heat transfer
rate on the surface of a sheet decreases. Thisatedi that an increment in thermophoresis
parameter induces resistance to the diffusion adsmahis results in the reduction of heat
transfer rate on the surface.

Fig 15 depicts the variation of local Sherwood nemb@’(0) in response to a change in
Brownian motion parameter Nb. The graph shows tthetiocal Sherwood number increases
as Nb increases and also increases with an inciedde

5. Conclusion

Investigation has been carried out numerically ttedg the effects of Brownian
motion and thermophoresis on MHD mixed convectiowfof a nanofluid over a nonlinear
stretching sheet with variable temperature and eotnation. The transformed nonlinear
ordinary dfferential equations are solved by using Keller Boetid. The obtained
numerical results are compared with previously ighield work and they are found to be in
excellent agreement. The effects of governing patara on the flow and heat transfer
characteristics are thickness decreases with tfeetedf magnetic parameter and suction
parameter.presented graphically and quantitativ€lye main observations of the present
study are as follows:

1. Influence of non linear stretching parameter desgeaboth the velocity of the
fluid as well as temperature.

2. The boundary layer thickness is increases with rasrease in both variable
Thermophorotic diffusion coefficient parameter avatiable Brownian motion
diffusion coefficient parameter.

3. The velocity of the fluid is decreases with an @ase in both Magnetic parameter
and Suction parameter.

4. Thermal boundary layer thickness decreases withnarease in both Grashof
number and Prandtl number.



5. The thickness of thermal boundary layer increaséh an increase in both
Brownian motion and thermophoresis parameters.

6. An increase in nanoparticle concentration decrebasés the Lewis number and
nonlinear stretching parameter.

7. Heat transfer rate decreases with the influenceBodwnian motion and
thermophoresis parameters.

8. The local Sherwood number increases with the eféédioth Brownian motion
and thermophoresis parameters.
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