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The electrodynamic vacuum field theory approach1
and the electron inertia problem revisited2

3
4

It is a review of some new electrodynamics models of interacting charged point5
particles and related with them fundamental physical aspects, motivated by the classical6
A.M.Amper's magnetic and H.Lorentz force laws, as well as O. Jefimenko electromagnetic field7
expressions. Based on the suitably devised vacuum field theory approach the Lagrangian and8
Hamiltonian reformulations of some alternative classical electrodynamics models are analyzed9
in detail. A problem closely related to the radiation reaction force is analyzed aiming to explain10
the Wheeler and Feynman reaction radiation mechanism, well known as the absorption11
radiation theory, and strongly dependent on the Mach type interaction of a charged point12
particle in an ambient vacuum electromagnetic medium. There are discussed some13
relationships between this problem and the one derived within the context of the vacuum field14
theory approach. The R.Feynman's "heretical" approach to deriving the Lorentz force based15
Maxwell electromagnetic equations is also revisited, its complete legacy is argued both by16
means of the geometric considerations and its deep relation with the devised vacuum field17
theory approach. Based on completely standard reasonings, we reanalyze the Feynman's18
derivation from the classical Lagrangian and Hamiltonian points of view and construct its19
nontrivial relativistic generalization compatible with the vacuum field theory approach. The20
electron inertia problem is reanalyzed within the Lagrangian-Hamiltonian formalisms and the21
related Feynman proper time paradigm. The validity of the Abraham-Lorentz electromagnetic22
electron mass origin hypothesis within the shell charged model is argued. The electron stability23
in the framework of the electromagnetic tension-energy compensation principle is analyzed.24
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1. Classical relativistic electrodynamics models revisiting:32

Lagrangian and Hamiltonian analysis33
34
35

1.1. Introductory setting36
37

The Maxwell's equations serve as foundational [1] [2] [3] [4] [5] to the whole modern38
classical and quantum electromagnetic theory and electrodynamics. They are the cornerstone39
of a myriad of technologies and are basic to the understanding of innumerable effects. Yet40
there are a few effects or physical phenomena that cannot be explained [6] [7] [8] [9] [10] [11]41
[12] [13] within the conventional Maxwell theory. It is important to note here that [8] [14] [15]42
[16] [17] argue that the Maxwell equations themselves do not determine causal relationships43
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between electric and magnetic fields, which prove, in reality, to be generated independently by44
an external charge and current distributions: "There is a widespread interpretation of Maxwell's45
equations indicating that spatially varying electric and magnetic fields can cause each other to46
change in time, thus giving rise to a propagating electromagnetic wave... However, Jefimenko's47
equations show an alternative point of view [3]. Jefimenko says: "...neither Maxwell's equations48
nor their solutions indicate an existence of causal links between electric and magnetic fields.49
Therefore, we must conclude that an electromagnetic field is a dual entity always having an50
electric and a magnetic component simultaneously created by their common sources: time-51
variable electric charges and currents." .... Essential features of these equations are easily52
observed which are that the right hand sides involve "retarded" time which reflects the53
"causality" of the expressions. In other words, the left side of each equation is actually "caused"54
by the right side, unlike the normal differential expressions for Maxwell's equations, where55
both sides take place simultaneously. In the typical expressions for Maxwell's equations there is56
no doubt that both sides are equal to each other, but as Jefimenko notes [3], "... since each of57
these equations connects quantities simultaneous in time, none of these equations can58
represent a causal relation." The second feature is that the expression for (electric field) E59
does not depend upon (magnetic field) B and vice versa. Hence, it is impossible for E and B60
fields to be "creating" each other. Charge density and current density are creating them both."61
As the Jefimenko's equations for the electric field E and the magnetic field B directly follow62
from the classical retarded Lienard-Wiechert potentials, generated by physically real external63
charge and current distributions, one naturally infers that these potentials also present suitably64
interpreted physical field entities mutually related to their sources. This way of thinking proved65
to be, from the physical point of view, very fruitful, having brought about a new vacuum field66
theory approach [18] [19] to alternative explaining the nature of the fundamental Maxwell67
equations and related electrodynamic phenomena.68

We start from detailed revisiting the classical A.M. Ampere's law in electrodynamics and69
show that main inferences suggested by physicists of the former centuries can be strongly70
extended for them to agree more exactly with many modern both theoretical achievements71
and experimental results concerning the fundamental relationship of electrodynamic72
phenomena with the physical structure of vacuum as their principal carrier.73

We discuss important theoretical physical principles, characterizing the related74
electrodynamic vacuum field structure, subject to different charged point particle dynamics,75
based on the fundamental least action principle. In particular, we obtain the main classical76
relativistic relationships, characterizing the charge point particle dynamics, by means of the77
least action principle within the Feynman's approach to the Maxwell electromagnetic equations78
and the related Lorentz type force derivation. Moreover, for each of the least action principles79
constructed in the work, we describe the corresponding Hamiltonian pictures and present the80
related energy conservation laws. The elementary point charged particle, like electron, mass81
problem was inspiring many physicists [20] from the past as J. J. Thompson, G.G. Stokes, H.A.82
Lorentz, E. Mach, M. Abraham, P.A. M. Dirac, G.A. Schott and others. Nonetheless, their studies83
have not given rise to a clear explanation of this phenomenon that stimulated new researchers84
to tackle it from different approaches based on new ideas stemming both from the classical85
Maxwell-Lorentz electromagnetic theory, as in [1] [12] [21] [22] [23] [24] [25] [26] [27] [28] [29]86
[30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [127], and modern quantum field theories of87
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Yang-Mills and Higgs type, as in [40] [41] [42] [43] and others, whose recent and extensive88
review is done in [44].89

We will mostly concentrate on detailed analysis and consequences of the Feynman90
proper time paradigm [1]  [22] [45] [46] subject to deriving the electromagnetic Maxwell91
equations and the related Lorentz like force expression considered from the vacuum field92
theory approach, developed in works [47] [48] [49] [50] [51], and further, on its applications to93
the electromagnetic mass origin problem. Our treatment of this and related problems, based94
on the least action principle within the Feynman proper time paradigm [1], has allowed to95
construct the respectively modified Lorentz type equation for a moving in space and radiating96
energy charged point particle. Our analysis also elucidates, in particular, the computations of97
the self-interacting electron mass term in [29], where there was proposed a not proper solution98
to the well known classical Abraham-Lorentz [52] [53] [54] [55] and Dirac [56] electron99
electromagnetic "4/3-electron mass" problem. As a result of our scrutinized studying the100
classical electromagnetic mass problem we have stated that it can be satisfactory solved within101
the classical H. Lorentz and M. Abraham reasonings augmented with the additional electron102
stability condition, which was not taken before into account yet appeared to be very important103
for balancing the related electromagnetic field and mechanical electron momenta. The latter,104
following recent enough works [31] [35], devoted to analyzing the electron charged shell105
model, can be realized within the suggested pressure-energy compensation principle, suitably106
applied to the ambient electromagnetic energy fluctuations and the electrostatic Coulomb107
electron energy.108

In our investigation, we were in part inspired by works [35]  [39]  [43] [44] [57] [58] [59]109
to solving the classical problem of reconciling gravitational and electrodynamic charges within110
the Mach-Einstein ether paradigm. First, we will revisit the classical Mach-Einstein type111
relativistic electrodynamics of a moving charged point particle, and second, we study the112
resulting electrodynamic theories associated with our vacuum potential field dynamical113
equations (31) and (32), making use of the fundamental Lagrangian and Hamiltonian formalisms114
which were specially devised in [50] [51].115

116
1.2. Classical Maxwell equations and their electromagnetic potentials form117
revisiting118

119
As the classical Lorentz force expression with respect to an arbitrary inertial reference120

frame is related with many theoretical and experimental controversies, such as the relativistic121
potential energy impact into the charged point particle mass, the Aharonov-Bohm effect [60]122
and the Abraham-Lorentz-Dirac radiation force [2] [5] [6] expression, the analysis of its123
structure subject to the assumed vacuum field medium structure is a very interesting and124
important problem, which was discussed by many physicists including E. Fermi, G. Schott, R.125
Feynman, F. Dyson [1] [45] [46] [61] [62] [63] and many others. To describe the essence of the126
electrodynamic problems related with the description of a charged point particle dynamics127
under external electromagnetic field, let us begin with analyzing the classical Lorentz force128
expression129

/ = := ,Ldp dt F E u B   (1)130
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where  R is a particle electric charge, 3( )u T R is its velocity [47] [64] vector, expressed131
here in the light speed c units,132

:= /E A t    (2)133
is the corresponding external electric field and134

:=B A (3)135
is the corresponding external magnetic field, acting on the charged particle, expressed in terms136
of suitable vector 4 3:A M  E and scalar 4:M R potentials. Here, as before, the sign137
" " is the standard gradient operator with respect to the spatial variable 3,rE " " is the138
usual vector product in three-dimensional Euclidean vector space 3 3:= ( ,< , >), E R which is139
naturally endowed with the classical scalar product < , > .  These potentials are defined on the140
Minkowski space 4 3,M R E; which models a chosen laboratory reference frame .tK Now, it141
is a well known fact [1] [5] [37] [65] that the force expression (1) does not take into account the142
dual influence of the charged particle on the electromagnetic field and should be considered143
valid only if the particle charge 0.  This also means that the expression (1) cannot be used144
for studying the interaction between two different moving charged point particles, as was145
pedagogically demonstrated in classical manuals [1] [5]. As the classical Lorentz force146
expression (1) is a natural consequence of the interaction of a charged point particle with an147
ambient electromagnetic field, its corresponding derivation based on the general principles of148
dynamics, was deeply analyzed by R. Feynman and F. Dyson [1] [45] [46].149

Taking this into account, it is natural to reanalyze this problem from the classical, taking150
only into account the Maxwell-Faraday wave theory aspect, specifying the corresponding151
vacuum field medium. Other questionable inferences from the classical electrodynamics152
theory, which strongly motivated the analysis in this work, are related both with an alternative153
interpretation of the well-known Lorenz condition, imposed on the four-vector of154
electromagnetic observable potentials 4 4( , ) : ( )A M T M  and the classical Lagrangian155
formulation [5] of charged particle dynamics under an external electromagnetic field. The156
Lagrangian approach latter is strongly dependent on the important Einstein notion of the157
proper reference frame K and the related least action principle, so before explaining it in158
more detail, we first have to analyze the classical Maxwell electromagnetic theory from a159
strictly dynamical point of view.160

Let us consider, with respect to a laboratory reference frame tK the additional Lorenz161
condition162

/ < , >= 0,t A    (4)163
a priori assuming the Lorentz invariant wave scalar field equation164

2 2 2/ =t     (5)165
and the charge continuity equation166

/ < , >= 0,t J    (6)167
where 4:M  R and 4 3:J M  E are, respectively, the charge and current densities of the168
ambient matter. Then one can derive [18] [51] that the Lorentz invariant wave equation169

2 2 2/ =A t A J   (7)170
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and the classical electromagnetic Maxwell field equations [1] [2] [5] [65] [66]171
/ = 0, < , >= ,

/ = , < , >= 0,

E B t E

B E t J B

    

   
(8)172

hold for all 4( , )t r M with respect to the chosen laboratory reference frame .tK As was173
shown by O.D. Jefimenko [3] [4], the corresponding solutions to (8) for the electric174

4 3:E M  E and magnetic 4 3:B M  E fields can be represented (in the light speed =1c175
units) by means of the following field expressions  that are causally independent to each other176

3 3 2

3
2

3
3 3 2

( , ) ( , )1 1( , ) = ( )
4 | | | |

( , )1 ,
| |

( , ) ( , )1 1( , ) = ( ) ,
4 | | | |

' '
'r r

' '

'
'r

'

' '
' 'r r

' '

t r t rE t r r r
r r r r t

J t r d r
r r t

J t r J t rB t r r r d r
r r r r t

 




 
      


   

 
      





R

R

(9)177

where 4( , )t r M and = | |'rt t r r  is the retarded time. The result (9) was based on direct178
derivation from the classical Lienard-Wiechert potentials [2] [3] solving the field equations (5)179
and (7), causally depending on the corresponding charge and current distributions. Based180
strongly on this fact in [3] and [4] there was argued from a physical point of view that related181
equations (5) and (7) for electric and magnetic potentials really constitute some suitably182
interpreted physical entities, in contrast to the usual statements [1], [2], [5] about their purely183
mathematical origin.184

It is worth to notice here that, inversely, Maxwell's equations (8) do not directly reduce,185
via definitions (2) and (3), to the wave field equations (5) and (7) without the Lorenz condition186
(4). This fact and reasonings presented above are very important: they suggest that, when it187
comes to choose main governing equations, it proves to be natural to replace the Maxwell's188
equations (8) with the electric potential field equation (5), the Lorenz condition (4) and the189
charge continuity equation (6). To make the equivalence statement, claimed above, more190
transparent we formulate it as the following proposition.191

192
Proposition 1. The Lorentz invariant wave equation (5) together with the Lorenz193

condition (4) for the observable potentials 4 4( , ) : ( )A M T M  and the charge continuity194
relationship (6) are completely equivalent to the Maxwell field equations (8).195

196
Proof. Substituting (4), into (5), one easily obtains197

2 2/ = < , / >=< , > ,t A t           (10)198
which implies the gradient expression199

< , / >= .A t      (11)200
Taking into account the electric field definition (2), expression (11) reduces to201
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< , >= ,E  (12)202
which is the second of the first pair of Maxwell's equations (8).203

Now upon applying  to definition (2), we find, owing to definition (3), that204
/ = 0,E B t    (13)205

which is the first pair of the Maxwell equations (8). Having differentiated with respect to the206
temporal variable tR , used the equation (5) and taken into account the charge continuity207
equation (6), one finds that208

2 2 2< , / >= 0.A t A J     (14)209
The latter is equivalent to the wave equation (7) if one observes that the current vector210

4 3:J M  E is defined by means of the charge continuity equation (6) up to a vector function211
4 3: .S M  E Now applying operation  to the definition (3), owing to the wave212

equation (7) one obtains213
2

2 2 2 2 2

= ( ) = < , > =

= ( / ) / ( / ) =

= ( / ) = / ,

B A A A

t A t A t A

A t J E t J
t





     

        


      



(15)214

leading directly to215
= / ,B E t J   216

which is the first of the second pair of the Maxwell equations (8). The final "no magnetic217
charge" equation218

< , >=< , >= 0,B A  219
in (8) follows directly from the elementary identity < , >= 0,  thereby completing the proof.220

221
This proposition allows us to consider the observable potential functions222

4 4( , ) : ( )A M T M  as fundamental ingredients of the ambient vacuum field medium, by223
means of which we can try to describe the related physical behavior of charged point particles224
imbedded in space-time 4 .M As was written by J.K. Maxwell [67]: "The conception of such a225
quantity, on the changes of which, and not on its absolute magnitude, the induction currents226
depends, occurred to Faraday at an early stage of his researches. He observed that the227
secondary circuit, when at rest in an electromagnetic field which remains of constant intensity,228
does not show any electrical effect, whereas, if the same state of the field had been suddenly229
produced, there would have been a current. Again, if the primary circuit is removed from the230
field, or the magnetic forces abolished, there is a current of the opposite kind. He therefore231
recognized in the secondary circuit, when in the electromagnetic field, a ‘peculiar electrical232
condition of matter' to which he gave the name of Electrotonic State." The following233
observation provides a strong support of this reasonings within this vacuum field theory234
approach:235

Observation. The Lorenz condition (4) actually means that the scalar potential field236
4:M R continuity relationship, whose origin lies in some new field conservation law,237
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characterizes the deep intrinsic structure of the vacuum field medium.238
To make this observation more transparent and precise, let us recall the definition [1]239

[5] [65] [66] of the electric current 4 3:J M  E in the dynamical form240
:= ,J u (16)241

where the vector 3( )u T R is the corresponding charge velocity. Thus, the following continuity242
relationship243

/ < , >= 0t u     (17)244
holds, which can easily be rewritten [50] [51] as the integral conservation law245

3( , ) = 0
t

d t r d r
dt


 (18)246

for the charge inside of any bounded domain 3 ,t  E moving in the space-time 4M with247
respect to the natural evolution equation for the moving charge system248

/ := .dr dt u (19)249
Following the above reasoning, we obtain the following result.250

251
Proposition 2. The Lorenz condition (4) is equivalent to the integral conservation law252

3( , ) = 0,
t

d t r d r
dt


 (20)253

where 3
t  E is any bounded domain, moving with respect to the charged point particle 254

evolution equation255
/ = ( , ),dr dt u t r (21)256

which represents the velocity vector of the related local potential field changes propagating in257
the Minkowski space-time 4 .M Moreover, for a particle with the distributed charge density258

4: ,M  R the following Umov type local energy conservation relationship259
3

2 1/2

( , ) ( , ) = 0
(1 | ( , ) | )t

d t r t r d r
dt u t r

 
  (22)260

holds for any .tR261
262

Proof. Consider first the corresponding solutions to the potential field equations (5), taking into263
account condition (16). Owing to the standard results from [1] [5], one finds that264

= ,A u (23)265
which gives rise to the following form of the Lorenz condition (4):266

/ < , >= 0,t u     (24)267
This obviously can be rewritten [68] as the integral conservation law (20), so the expression (20)268
is stated.269

To state the local energy conservation relationship (22) it is necessary to combine the270
conditions (17), (24) and find that271

( ) / < , ( ) > 2 < , >= 0.t u u        (25)272
Taking into account that the infinitesimal volume transformation 3 3

0= ( , ) ,d r t r d r where the273
Jacobian 0 0( , ) :=| ( ; ) / |t r r t r r   of the corresponding transformation

0
: tr   ,t induced274
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by the Cauchy problem for the differential relationship (21) for any ,tR satisfies the275
evolution equation276

/ =< , > ,d dt u  (26)277

easily follows from (21), and applying the operator 2 3
0

0

(...) ,
t

d r
 to the equality (25) one278

obtains that279
2 3 3

0 0
0 0

3

0 = ( ) = ( ) =

= ( ) := ( ; ).

t t

t
t

d dd r Jd r
dt dt

d dd r
dt dt

 

 

 




 

 E

(27)280

Here we denoted the conserved charge 3:= ( , )
t
t r d r 

 and the local energy conservation281

quantity ( ; ) :t E 3

0
= ( ) = ( ; ), .t

t
d r t 


  RE The latter quantity can be simplified,282

owing to the infinitesimal Lorentz invariance four-volume measure relationship283
3 3

0 0 0( , ) = ,d r t r dt d r dt  where variables 4( , ) t tt r M  R are, within the present284
context, taken with respect to the moving reference frame ,tK related to the infinitesimal285

charge quantity 3( , ) := ( , ) ,d t r t r d r  and variables 4
0 0 0 0

( , ) t tt r M  R are taken with286

respect to the laboratory reference frame
0
,tK related to the infinitesimal charge quantity287

3
0 0 0 0 0( , ) = ( , ) ,d t r t r d r  satisfying the charge conservation invariance288

0 0
0

( , ) = ( , ).
t t
d t r d t r 

   The mentioned infinitesimal Lorentz invariance relationships make it289

possible to calculate the local energy conservation quantity 0( ; ) E as290
3

3 3
3

0

33
3 30 0

3 3
0 0

3
30

2 1/2

( ; ) = ( ) = ( ) =

= ( ) = ( ) =

= ( ) = ,
(1 | | )

t
t t

t t

t t

d rd r d r
d r

d r dtd r dt d r d r
d r dt d r dt

dt d rd r
dt u

  

 



 

 

 




 



 

 

 

E

(28)291

where we took into account that 2 1/2
0= (1 | | ) .dt dt u Thus, owing to (27) and (28) the local292

energy conservation relationship (22) is satisfied, proving the proposition.293
294

The constructed  local energy conservation quantity (28) can be rewritten as295

0 0 0 0 02 1/2 0
0 0

( , ) ( , )( ; ) = = ( , ) ( , ) := ( ; ) = ( ; ),
(1 | | )t t

t t t

d t r t r d t r t r d r
u

     
  

 
  E E E (29)296
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where 0 0 0 0 0 0( , ) = ( , ) ( , )d t r d t r t r E is the distributed electromagnetic field energy density,297
related with the electric charge 0 0( , ),d t r located initially at a point 4

0 0( , ) .t r M298
The above proposition suggests a physically motivated interpretation of electrodynamic299

phenomena in terms of what should naturally be called the vacuum potential field, which300
determines the observable interactions between charged point particles. More precisely, we301
can a priori endow the ambient vacuum medium with a scalar potential energy field density302
function 4:= : ,W M  R where  R is the value of an elementary charge quantity, and303
satisfying the governing vacuum field equations304

2 2 2

2 2 2

/ = , / < ,A >= 0,

A / A = , A = ,

W t W W t

t v Wv





      

  
(30)305

taking into account the external charged sources, which possess a virtual capability for306
disturbing the vacuum field medium. Moreover, this vacuum potential field function307

4:W M  R allows the natural potential energy interpretation, whose origin should be308
assigned not only to the charged interacting medium, but also to any other medium possessing309
interaction capabilities, including for instance, material particles, interacting through the310
gravity.311

The latter leads naturally to the next important step, consisting in deriving the equation312
governing the corresponding potential field 4: ,W M R assigned to a charged point particle313
moving in the vacuum field medium with velocity 3( )u T R and located at point314

3( ) := ( )r t R t E at time .tR As can be readily shown [18] [19] [50] [69], the corresponding315
evolution equation governing the related potential field function 4: ,W M R assigned to a316
charged particle  moving in the space 3E under the stationary distributed field sources, has317
the form318

( ) = ,d Wu W
dt
  (31)319

where ( ):= ( , ) | ,r R tW W t r  ( ) := ( ) /u t dR t dt at the point particle location 4( , ( )) .t R t M320
Similarly, if there are two interacting charged point particles, located at points321

( ) = ( )r t R t and 3( ) = ( )f fr t R t E at time tR and moving, respectively, with velocities322

:= ( ) /u dR t dt and := ( ) / ,f fu dR t dt the corresponding potential field function 4: ,'W M  R323

considered with respect to the reference frame 't

'K specified by Euclidean coordinates324
4( , )'

ft r r E and moving with the velocity 3( )fu T R subject to the laboratory reference325

frame ,tK should satisfy [18] [19] with respect to the reference frame 't

'K the dynamical326

equality327

[ ( )] = ,' ' ' '
f'

d W u u W
dt
   (32)328

where, by definition, we have denoted the velocity vectors 3:= / , := / ( ).' ' ' '
f fu dr dt u dr dt T R329
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The latter comes with respect to the laboratory reference frame tK about the dynamical330
equality331

2[ ( )] = (1 | | ).f f
d W u u W u
dt
    (33)332

The dynamical potential field equations (31) and (32) appear to have important333
properties and can be used as means for representing classical electrodynamic phenomena.334
Consequently, we shall proceed to investigate their physical properties in more detail and335
compare them with classical results for Lorentz type forces arising in the electrodynamics of336
moving charged point particles in an external electromagnetic field.337

338
1.2.1. Classical relativistic electrodynamics revisited339

340
The classical relativistic electrodynamics of a freely moving charged point particle in the341

Minkowski space-time 4 3M R E; is based on the Lagrangian approach [1] [5] [65] [66] [70]342
with Lagrangian function343

2 1/2
0 0:= (1 | | ) ,m u L (34)344

where 0m R is the so-called particle rest mass parameter with respect to the so called345
proper reference frame ,K parameterized by means of the Euclidean space-time parameters346

4( , ) ,r E and 3( )u T R is its spatial velocity with respect to a laboratory reference frame347
,tK parameterized by means of the Minkowski space-time parameters 4( , ) ,t r M expressed348

here and in the sequel in light speed units (with light speed =1c ). The least action principle in349
the form350

2 1/22
0

1
= 0, := (1 | | )

t

tS S m u dt   (35)351

for any fixed temporal interval 1 2[ , ]t t  R gives rise to the well-known relativistic relationships352
for the mass of the particle353

2 1/2
0= (1 | | ) ,m m u  (36)354

the momentum of the particle355
356

2 1/2
0:= = (1 | | )p mu m u u  (37)357

and the energy of the particle358
2 1/2

0 0= = (1 | | ) .m m u E (38)359
It follows from [5] [65], that the origin of the Lagrangian (34) can be extracted from the360

action361
2 1/22 2

0 0
1 1

:= (1 | | ) = ,
t

tS m u dt m d



    (39)362

on the suitable temporal interval 1, 2[ ]   ,R where, by definition,363
2 1/2:= (1 | | )d dt u  (40)364

and  R is the so-called, proper temporal parameter assigned to a freely moving particle with365
respect to the proper reference frame .K The action (39) is rather questionable from the366
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dynamical point of view, since it is physically defined with respect to the proper reference367
frame ,K giving rise to the constant action 0 2 1= ( ),S m    as the limits of integrations368

1 2<  R were taken to be fixed from the very beginning. Moreover, considering this particle369
to have charge  R and be moving in the Minkowski space-time 4M under action of an370
electromagnetic field 4( , ) ( ),A T M  the corresponding classical (relativistic) action371
functional is chosen (see [1] [5] [47] [51] [65] [66]) as follows:372

2 1/22
0

1
:= [ < , > (1 | | ) ],S m d A r d u d




         (41)373

with respect to the proper reference frame, parameterized by the Euclidean space-time374
variables 4( , ) ,r E where we have denoted := /r dr d in contrast to the definition375

:= / .u dr dt The action (41) can be rewritten with respect to the laboratory reference frame tK376
as377

2 1/22
0

1
= ( , / ) , ( , / ) := (1 | | ) < , > ,

t

tS r dr dt dt r dr dt m u A u     L L (42)378

on the suitable temporal interval 1 2, ] ,t t  R which gives rise to the following [1] [5] [65] [66]379
dynamical expressions380

2 1/2
0= , = , = (1 | | ) ,P p A p mu m m u   (43)381

for the particle momentum and382
2 2 1/2

0 0= ( | | )m P A   E (44)383
for the charged particle  energy, where, by definition, 3PE is the common momentum of384
the particle and the ambient electromagnetic field at a Minkowski space-time point 4( , ) .t r M385
The related dynamics of the charged particle  follows [1] [5] [65] [66] from the Lagrangian386
equation387

/ := ( , / ) = ( < , >).dP dt r dr dt A u   L (45)388
389

The expression (44) for the particle energy 0E also appears to be open to question, since390
the potential energy , entering additively, has no affect on the particle "inertial"  mass391

2 1/2
0= (1 | | ) .m m u  This was noticed by L. Brillouin [21], who remarked that the fact that the392

potential energy has no affect on the particle mass tells us that "... any possibility of existence393
of a particle mass related with an external potential energy, is completely excluded". Moreover,394
it is necessary to stress here that the least action principle (42), formulated with respect to the395
laboratory reference frame tK time parameter ,tR appears logically inadequate, for there is396
a strong physical inconsistency with other time parameters of the Lorentz equivalent reference397
frames. This was first mentioned by R. Feynman in [1] in his efforts to physically argue the398
Lorentz force expression with respect to the proper reference frame .K This and other special399
relativity theory and electrodynamics problems stimulated many prominent physicists of the400
past [1]  [21]  [65] [71] [72] and present [7] [23] [24]  [25]  [26] [44] [57] [59] [60] [73] [74]401
[75] [76] [77] [78] and [79] [80] [81] [11] [82] [69] [83] [84] [85] [86] [87] to try to develop402
alternative relativity theories based on completely different space-time and matter structure403
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principles. Some of them prove to be closely related with a virtual relationship between404
electrodynamics and gravity, based on classical works of H. Lorentz, G. Schott, J. Schwinger, R.405
Feynman [1] [22] [53] [54] [63] [88] and many others on the so called "electrodynamic mass" of406
elementary particles. Arguing this way of this mass, one can readily come to a certain paradox:407
the well-known energy-mass relationship for the particle mass suitably determines the energy408
of its gravitational field. Yet this energy should lead to an increase in the mass of the particle409
that in turn should lead to increased gravitational field and so on. In the limit, for instance, an410
electron must have infinite mass and energy, what we do not really observe.  There also is411
another controversial inference from the action expression (42). As one can easily show, owing412
to (45), the corresponding expression for the Lorentz force413

/ = :=Ldp dt F E u B   (46)414
holds, where we have defined here, as before,415

:= /E A t    (47)416
the corresponding electric field and417

:=B A (48)418
the related magnetic field, acting on the charged point particle . The expression (46), in419
particular, means that the Lorentz force LF depends linearly on the particle velocity vector420

3( ),u T R and so there is a strong dependence on the reference frame with respect to which421
the charged particle  moves. Attempts to reconcile this and some related controversies [21]422
[1] [89] [11] [69] [13] forced Einstein to devise his special relativity theory and proceed further423
to creating his general relativity theory trying to explain the gravity by means of geometrization424
of space-time and matter in the Universe. Here we must mention that the classical Lagrangian425
function L in (42) is written in terms of a combination of terms expressed by means of both426
the Euclidean proper reference frame variables 4( , )r E and arbitrarily chosen Minkowski427
reference frame variables 4( , ) .t r M428

These problems were recently analyzed using a completely different " no-geometry"429
approach [18] [19] [69], where new dynamical equations were derived, which were free of the430
controversial elements mentioned above. Moreover, this approach avoided the introduction of431
the well known Lorentz transformations of the space-time reference frames with respect to432
which the action functional (42) is invariant.  From this point of view, there are interesting for433
discussion conclusions from [90] [91] [92] [93], in which some electrodynamic models,434
possessing intrinsic Galilean and Poincaré-Lorentz symmetries, were reanalyzed from diverse435
geometrical points of view. From a completely different point of view the related436
electrodynamics of charged particles was reanalyzed in [3] [4] [8] [14] [15], where all relativistic437
relationships were successfully inferred from the classical Lienard-Wiechert potentials, solving438
the corresponding electromagnetic equations. Subject to a possible geometric space-type439
structure and the related vacuum field background, exerting the decisive influence on the440
particle dynamics, we need to mention here recent works [79] [85] [13] and the closely related441
with their ideas the classical articles [94] [95]. Next, we shall revisit the results obtained in [18]442
[19] from the classical Lagrangian and Hamiltonian formalisms [47] [64] [66] [96] in order to443
shed new light on the physical underpinnings of the vacuum field theory approach to the study444
of combined electromagnetic and gravitational effects.445
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446
1.3. The vacuum field theory electrodynamics equations: Lagrangian447
analysis448

449
450

1.3.2. A moving in vacuum point charged particle - an alternative electrodynamic451
model452

453
In the vacuum field theory approach to combining electromagnetism and the gravity,454

devised in [18] [19], the main vacuum potential field function 4: ,W M R related to a455
charged point particle  under the external stationary distributed field sources, satisfies the456
dynamical equation (30), namely457

( ) =d Wu W
dt
  (49)458

in the case when the external charged particles are at rest, where, as above, := /u dr dt is the459
particle velocity with respect to some reference system.460

To analyze the dynamical equation (49) from the Lagrangian point of view, we write the461
corresponding action functional as462

2
2 1/22

1
1

:= = (1 | | ) ,
t

tS Wdt W r d




     (50)463

expressed with respect to the proper reference frame .K Fixing the proper temporal464
parameters 1 2< ,  R one finds from the least action principle ( = 0)S that465

2 1/2

2 1/2

:= / = (1 | | ) = ,

:= / = / = (1 | | ) ,

p r Wr r Wu

p dp d r W r

    

   

  

 

L

L
(51)466

where, owing to (50), the corresponding Lagrangian function is467
2 1/2:= (1 | | ) .W r  L (52)468

Recalling now the definition of the particle mass469
:=m W (53)470

and the relationships471
2 1/2= (1 | | ) , = ,d dt u rd udt   (54)472

from (51) we easily obtain exactly the dynamical equation (49). Moreover, one now readily473
finds that the dynamical mass, defined by means of expression (53), is given as474

2 1/2
0= (1 | | ) ,m m u 475

which coincides with the equation (36) of the preceding section. Now one can formulate the476
following proposition using the above results.477

478
Proposition 3. The alternative freely moving point particle electrodynamic model (49) allows the479
least action formulation (50) with respect to the "rest" reference frame variables, where the480
Lagrangian function is given by expression (52). Its electrodynamics is completely equivalent to481
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that of a classical relativistic freely moving point particle, described in Subsection 1.2.1 .482
483

1.3.3. An interacting two charge system moving in vacuum - an alternative484
electrodynamic model485

486
We proceed now to the case when our charged point particle  moves in the space-487

time with velocity vector 3( )u T R and interacts with another external charged point particle488
,f moving with velocity vector 3( )fu T R with respect to a common reference frame .tK As489

was shown in [18] [19], the respectively modified dynamical equation for the vacuum potential490

field function 4,:' 'W M  R subject to the moving reference frame 't

'K is given by  equality491

(32), or492

[ ( )] = ,' ' ' '
f'

d W u u W
dt
   (55)493

where, as before, the velocity vectors 3:= / , := / ( ).' ' ' '
f fu dr dt u dr dt T R Since the external494

charged particle f moves in the space-time 4 ,M it generates the related magnetic field495

:= ,B A whose magnetic vector potentials 4 3:A M  E and 4, 3:' 'A M  E are defined,496
owing to the results of [18] [19] [69], as497

:= , := ,' ' '
f fA Wu A W u  (56)498

Whence, taking into account that the field potential499
2 1/2= (1 | | )'

fW W u  (57)500

and the particle momentum = = ,' ' 'p W u Wu  equality (55) becomes equivalent to501

( ) = ,' ' '
'

d p A W
dt

  (58)502

if considered with respect to the moving reference frame ,'t
'K or to the Lorentz type force503

equality504
2( ) = (1 | | ),f

d p A W u
dt

   (59)505

if considered with respect to the laboratory reference frame ,tK owing to the classical Lorentz506
invariance relationship (57), as the corresponding magnetic vector potential, generated by the507

external charged point test particle f with respect to the reference frame ,'t
'K is identically508

equal to zero. To imbed the dynamical equation (59) into the classical Lagrangian formalism, we509
start from the following action functional, which naturally generalizes the functional (50):510

2
2 1/2

1

:= (1 | | ) .'
fS W r r d





     (60)511

Here, as before, 'W is the respectively calculated vacuum field potential W subject to512
the moving reference frame ,'tK = / , = / ,' ' ' '

f fr u dt d r u dt d   2 1/2= (1 | | ) ,' ' '
fd dt u u   which513
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take into account the relative velocity of the charged point particle  subject to the reference514
frame ,'tK specified by the Euclidean coordinates 4( , ) ,'

ft r r R and moving simultaneously515

with velocity vector 3( )fu T R with respect to the laboratory reference frame ,tK specified516

by the Minkowski coordinates 4( , )t r M and related to those of the reference frame 't
K and517

K by means of the following infinitesimal relationships:518
2 2 2 2 2 2= ( ) | | , ( ) = | | .' '

f fdt dt dr dt d dr dr   (61)519
So, it is clear in this case that our charged point particle  moves with the velocity vector520

3( )' '
fu u T  R with respect to the reference frame 't

K in which the external charged particle521

f is at rest. Thereby, we have reduced the problem of deriving the charged point particle 522
dynamical equation to that before, solved in Subsection 1.2.1.523

Now we can compute the least action variational condition = 0,S taking into account524
that, owing to (60), the corresponding Lagrangian function with respect to the proper reference525
frame K is given as526

2 1/2:= (1 | | ) .'
fW r r   L (62)527

As a result of simple calculations, the generalized momentum of the charged particle  equals528
2 1/2

2 1/2 2 1/2

:= / = ( )(1 | | ) =

= (1 | | ) (1 | | ) =

= := = ,

'
f f

' '
f f f

' ' ' ' '

P r W r r r r

W r r r W r r r

m u A p A p A  



 

     

     

  

    

     

L

(63)529

where, owing to (57) the vectors 3:= = = ,' ' 'p W u Wu p  E 3= = = ,' ' '
f fA W u Wu AE and530

giving rise to the dynamical equality531
2 1/2( ) = (1 | | )' ' '

f
d p A W r r
d




     (64)532

with respect to the proper reference frame .K As 2 1/2= (1 | | )'
fdt d r r    and533

2 1/2 2 1/2(1 | | ) = (1 | | ) ,' '
f fr r u u      we obtain from (64) the equality534

( ) = ,' ' '
'

d p A W
dt

  (65)535

exactly coinciding with equality (58) subject to the moving reference frame .'tK Now, making536

use of expressions (61) and (57), one can rewrite (65) as that with respect to the laboratory537
reference frame :tK538
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2 1/2 2 1/2 2 1/2

2 1/2 2 1/2 2 1/2

2

( ) =

( ) =
(1 | | ) (1 | | ) (1 | | )

/
( ) =
(1 | | ) (1 | | ) (1 | | )

( ) = (1 | | ),

' ' '
'

''
f

' ' ' '
f f f

f
' ' ' ' ' '

f f f

f
f

d p A W
dt

Wud Wu W
dt u u u

Wdrd Wdr W
dt u dt u dt u

drd drW W W u
dt dt dt









  

 
   

  

 
   

  

    

(66)539

exactly coinciding with (59):540
2( ) = (1 | | ).f

d p A W u
dt

   (67)541

542
543

Remark 1. The equation (67) allows to infer the following important and physically reasonable544
phenomenon: if the test charged point particle velocity 3( )fu T R tends to the light velocity545

= 1,c the corresponding acceleration force 2:= (1 | | )ac fF W u  is vanishing. Thereby, the546
electromagnetic fields, generated by such rapidly moving charged point particles, have no547
influence on the dynamics of charged objects if observed with respect to an arbitrarily chosen548
laboratory reference frame .tK549

550
The latter equation (67) can be easily rewritten as551

2

1

/ = / | | =

= ( / ) < , > < , >,

f

f

dp dt W dA dt W u

W A t u A A u



   

  

        

(68)552

or, using the well-known [125] identity553
< , >=< , > < , > ( ) ( ),a b a b b a b a a b          (69)554

where 3,a bE are arbitrary vector functions, in the standard Lorentz type form555
/ = < , > .fdp dt E u B A u u       (70)556

557
The result (70), being before found and written down with respect to the moving558

reference frame 't

'K in [18] [19] [69] makes it possible to formulate the next important559

proposition.560
561

Proposition 4. The alternative classical relativistic electrodynamic model (58) allows the least562
action formulation based on the action functional (60) with respect to the proper reference563
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frame ,K where the Lagrangian function is given by expression (62). The resulting Lorentz type564
force expression equals (70), being modified by the additional force component565

:= < , >,c fF A u u  important for explanation [97] [98] [99] of the well known Aharonov-566
Bohm effect.567

568
1.3.4. A moving charged point particle dynamics formulation dual to the classical569
relativistic invariant alternative electrodynamic model570

571
It is easy to see that the action functional (60) is written utilizing the classical Galilean572

transformations of reference frames. If we now consider the action functional (50) for a573
charged point particle moving with respect the reference frame ,K and take into account its574

interaction with an external magnetic field generated by the vector potential :A 4 3 ,M  E it575
can be naturally generalized as576

2 2
2 1/2

1 1

:= ( < , >) = [ (1 | | ) < , >] ,
t

t

S Wdt A dr W r A r d




          (71)577

where 2 1/2= (1 | | ) .d dt u 578
Thus, the corresponding common particle-field momentum takes the form579

2 1/2:= / = (1 | | ) =

= := ,

P r Wr r A

mu A p A



 

    

 

  L
(72)580

and satisfies581
2 1/2

2 1/2 2 1/2

:= / = / = (1 | | ) < , >=

= (1 | | ) < , > (1 | | ) ,

P dP d r W r A r

W u A u u

 

 

     

    

  L
(73)582

where583
2 1/2:= (1 | | ) < , >W r A r   L (74)584

is the corresponding Lagrangian function. Since 2 1/2= (1 | | ) ,d dt u  one easily finds from (73)585
that586

/ = < , > .dP dt W A u   (75)587
Upon substituting (72) into (75) and making use of the identity (69), we obtain the588

classical expression for the Lorentz force ,F acting on the moving charged point particle :589
/ := = ,Ldp dt F E u B   (76)590

where, by definition,591
1:= /E W A t     (77)592

is its associated electric field and593
:=B A (78)594

is the corresponding magnetic field. This result can be summarized as follows.595
596

Proposition 5. The classical relativistic Lorentz force (76) allows the least action formulation (71)597
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with respect to the proper  reference frame variables, where the Lagrangian function is given by598
formula (74). Yet its electrodynamics, described by the Lorentz force (76), is not equivalent to599
the classical relativistic moving point particle electrodynamics, described by means of the600
Lorentz force (46), as the inertial mass expression =m W does not coincide with that of (36).601

602
Expressions (76) and (70) are equal up to the gradient like term := < , >,c fF A u u 603

which reconciles the Lorentz forces acting on a charged moving particle  with respect to604
different reference frames. This fact is important for our vacuum field theory approach since it605
uses no special geometry and makes it possible to analyze both electromagnetic and606
gravitational fields simultaneously by employing the new definition of the dynamical mass by607
means of the Mach-Einstein type expression (53).608

609
1.4. The A.M. Ampere's law in electrodynamics - the classical and modified610
Lorentz force derivations611

612
The classical ingenious Andre-Marie Ampere's analysis of magnetically interacting to613

each other two electric currents in thin conductors was based [1] [5] [65] [66] on the following614
experimental fact: the force between two electric currents depends on the distance between615
conductors, their mutual spatial orientation and the currents. Having additionally accepted the616
infinitesimal superposition principle A.M. Ampere derived a general analytical expression for617
the force between two infinitesimal elements of currents:618

619

2

( )( , ) = ( , ; ) ,
| |

'
' ' ' '

'

r rdf r r II s s n dldl
r r




(79)620

where vectors 3, 'r r E point at infinitesimal currents = , =' ' 'dr sdl dr s dl with normalized621
orientation vectors 3, 's s E of two closed conductors l and 'l carrying currents I R and622

,'I R respectively and the unit vector := ( )/ | |,' 'n r r r r  fixing the spatial orientations of623
these infinitesimal elements, and the function 2 2 2: ( )  S S R being some real-valued624
smooth mapping. Taking further into account the mutual symmetry between the infinitesimal625
elements of currents dl and ,'dl belonging respectively to these two electric conductors, the626
infinitesimal force (79) was assumed by A.M. Ampere to satisfy locally the third Newton's law:627

628
( , ) = ( , )' 'df r r df r r (80)629

with the mapping630
631

0
1 2( , ; ) = (3 < , >< , > < , >),.

4
' ' 's s n k s n s n k s s


 (81)632

where < , >  is the natural scalar product in 3E and 1 2,k k R are some still undetermined633
real and dimensionless parameters. The assumption (80) is evidently looking very restrictive634
and can be considered as reasonable only subject to a stationary system of conductors under635
regard, when the mutual action at a distance principle [1] [5] can be applied. According to J.C.636
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Maxwell [67]: "... we may draw the conclusions, first, that action and reaction are not always637
equal and opposite, and second, that apparatus may be constructed to generate any amount of638
work from its own resources. For let two oppositely electrified bodies A and B travel along the639
line joining them with equal velocities in the direction ,AB then if either the potential or the640
attraction of the bodies at a given time is that due to their position at some former time (as641
these authors suppose), B , the foremost body, will attract A forwards more than B attracts A642
backwards. Now let A and B be kept asunder by a rigid rod. The combined system, if set in643
motion in the direction ,AB will pull in that direction with a force which may either continually644
augment the velocity, or may be used as an inexhaustible source of energy."645

Based on the fact that there is no possibility to measure the force between two646
infinitesimal current elements, A.M. Ampere took into account (80), (81) and calculated the647
corresponding force exerted by the whole conductor 'l on an infinitesimal current element of648
the other conductor under regard:649
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which can be equivalently transformed as652
653
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owing to the integral identity655
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which can be easily checked by means of integration by parts. By introducing the vector658
potential659

660

0( ) := ,
4 | |

' '

' 'l

I drA r
r r


  (85)661

generated by the conductor 'l at point 3,rE belonging to the infinitesimal element dl of the662
conductor ,l the resulting infinitesimal force (83) gives rise to the following expression:663

664
1 1 2

1 1 2

3 3
1 1 2

( ) = ( < , ) ( ) < , ( ) >) (2 ) < , ( ) >=

= ( ( )) (2 ) < , ( ) >=

= ( ) ( ) (2 ) < , ( ) >,

dF r k I dr A r I dr A r k k I dr A r

k Idr A r k k I dr A r

k J r d r B r k k Jd r A r

      

    

   

(86)665

where we have taken into account the standard magnetic field definition666
667

( ) := ( )B r A r (87)668
and the corresponding current density relationship669

670
3( ) := .J r d r Idr (88)671

There are, evidently, many different possibilities to choose the dimensionless672
parameters 1 2, .k k R In his analysis A.M. Ampere had chosen the case when 1 2= 1, = 2k k 673
and obtained the well known magnetic force expression674

675
3( ) = ( ) ( ),dF r J r d r B r (89)676

which easily reduces to the classical Lorentz expression677
678

( ) = ( )Ldf r u B r  (90)679
for a force exerted by an external magnetic field on a moving point particle with a velocity680

3( )u T R point particle with an electric charge . R681
If to take an alternative choice and put 1 2= 1, = 1,k k  the expression (86) yields a682

modified magnetic Lorentz type force, exerted by an external magnetic field generated by a683
moving charged particle with a velocity 3( )'u T R on a point particle, endowed with the684
electric charge  R and moving with a velocity 3( ) :u T R685

686
3 3( ) = ( ) ( ) < ( ) , ( ) >,LdF r J r d r B r J r d r A r  (91)687

which has occasionally been discussed in different works [9] [10] [11] [69] [100] and recently688
been analyzed in detail from the Lagrangian point of view in the works [18]  [19] [50] [51] in689
the following infinitesimal form equivalent to (70):690

691
( ) = ( ( )) < , ( ) >,L ff r u A r u u A r         (92)692
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Here 3( ) ( )A r T  R denotes the magnetic potential generated by an external charged point693
particle moving with velocity 3( )fu T R and exerting the magnetic force ( )Lf r on the694

charged particle located at point 3rR and moving with velocity 3( )u T R with respect to a695
common reference system .tK We also need to mention here that the modified Lorentz force696
expression (91) does not take naturally into account the resulting purely electric force, as the697
conductors l and 'l are considered to be electrically neutral. Simultaneously, we see that the698
magnetic potential has a physical significance in its own right [6] [9] [11] [50] [69] and has699
meaning in a way that extends beyond the calculation of force fields.700

Really, to obtain the Lorentz type force (91) exerted by the external magnetic field701
generated by the whole conductor 'l on an infinitesimal current element dl of the conductor ,l702
it is necessary to integrate the expression (92) along this conductor loop :'l703
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(93)705

that is the equality706
3 3 3( ) = ( ) ( ) ( ) ( ) < ( ) , ( ) >,dF r r d rE r J r d r B r J r d r A r    (94)707

where, by definition, the electric field ( ) := ( ) / .E r W A r t   Now one can easily derive from708
(94) the searched for Lorentz type force expression (91), if one takes into account that the709
whole electric field E(r)=0, owing to the neutrality of the conductors.710

The presented above analysis of the A.M. Ampere's derivation of the magnetic force711
expression (86), as well as its consequences (91) and (92) make it possible to suppose that the712
missed modified Lorentz type force expression (91) could also be embedded into the classical713
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relativistic Lagrangian and related Hamiltonian formalisms, giving rise to eventually new aspects714
and interpretations of many observed experimental phenomena.715

716
1.5. The vacuum field theory electrodynamics equations: Hamiltonian717
analysis718

719
Any Lagrangian theory has an equivalent canonical Hamiltonian representation via the720

classical Legendre transformation [64] [66] [96] [101] [102]. As we have already formulated721
our vacuum field theory of a moving charged particle  in Lagrangian form, we proceed now to722
its Hamiltonian analysis making use of the action functionals (50), (62) and (71).723

Take, first, the Lagrangian function (52) and the momentum expression (51) for defining724
the corresponding Hamiltonian function with respect to the moving reference frame :K725
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(95)726

Consequently, it is easy to show [64] [96] [102] [66] that the Hamiltonian function (95)727
expresses a conservation law of the dynamical field equation (49), that is for all , t R728

/ = / = 0,dH d dH dt (96)729
which naturally leads to an energy interpretation of .H Thus, we can represent the particle730
energy as731

2 2 1/2= ( | | ) .W pE (97)732
Accordingly the Hamiltonian equivalent to the vacuum field equation (49) can be written733

as734
2 2 1/2
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(98)735

and we have the following result.736
737

Proposition 6. The alternative freely moving point particle electrodynamic model (49) allows the738
canonical Hamiltonian formulation (98) with respect to the "rest" reference frame variables,739
where the Hamiltonian function is given by expression (95). Its electrodynamics is completely740
equivalent to the classical relativistic freely moving point particle electrodynamics described in741
Subsection 1.2.1.742

743
In the analogous manner, one can now use the Lagrangian (62) to construct the744

Hamiltonian function for the dynamical field equation (58), describing the motion of a charged745
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particle  in an external electromagnetic field in the canonical Hamiltonian form:746
:= / = / , := / = / ,r dr d H P P dP d H r     (99)747

where748

, 1 2 ,2 1/2 ,2 ,2 2 1 1/2

2 ,2 2 1/2 ,2 ,2 2 1/2

,2 2 ,2 2 1/2

,2 2 1/2 ,2 2 1/2

:=< , > =

=< , (1 | | / ) > [ ( | | ) ] =

=< , > | | ( | | ) ( | | ) =

= ( | | )( | | ) < , >=

= ( | | ) < , > ( | | ) =

= (

' ' ' ' '
f

' ' '
f

' '
f

' ' '

H P r

P r PW P W W W W P

P r P W P W W P

W P W P P r

W P A P W P

W



  

 







   

   

   

   











L

2 2 2 1/2 2 2 2 1/2| | | | ) < , > ( | | | | ) ,A P A P W A P       

(100)749

being written with respect to the laboratory reference frame .tK Here we took into account750
that, owing to definitions (56), (57) and (63),751
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and, in particular,753
2 1/2 2 1/2,2= ( | | ) , = (1 | | ) ,

' '
f fr A W P W W u     (102)754

where 4 3:A M  R is the related magnetic vector potential generated by the moving external755
charged particle .f Equations (99) can be rewritten with respect to the laboratory reference756

frame tK in the form757
/ = , / = < , >,fdr dt u dp dt E u B A u u       (103)758

which coincides with the result (70).759
Whence, we see that the Hamiltonian function (100) satisfies the energy conservation760

conditions761
/ = / = / = 0,'dH d dH dt dH dt (104)762

for all , 't and ,tR and that the suitable energy expression is763
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2 2 2 2 1/2 2 2 2 2 1/2= ( | | | | ) < , > ( | | | | ) ,W A P A P W A P       E (105)764
where the generalized momentum = .P p A The result (105) differs essentially from that765
obtained in [5], which makes use of the Einstein's Lagrangian for a moving charged point766
particle  in an external electromagnetic field. Thus, we obtain the following proposition.767

768
Proposition 7. The alternative classical relativistic electrodynamic model (103), which is769
intrinsically compatible with the classical Maxwell equations (6), allows the Hamiltonian770
formulation (99) with respect to the proper reference frame variables, where the Hamiltonian771
function is given by the expression (100).772

773
The inference above is a natural candidate for experimental validation of our theory. It774

is strongly motivated by the following remark.775
776

Remark 2. It is necessary to mention here that the Lorentz force expression (103) uses the777
particle momentum = ,p mu where the dynamical "mass" :=m W satisfies condition (105).778
The latter gives rise to the following crucial relationship between the particle energy 0E and its779
rest mass 0 =m 0W (for the velocity = 0u at the initial time moment = 0) :t780
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or, equivalently, at the condition 2
0 0| / | < 1/ 2A m782
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1 1= 1 4 | / | | / | ,
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 

E E E (107)783

where 3
0 =0:= | ,tA A E which strongly differs from the classical expression 0 0 0= ,m E784

following from (44) and is not depending a priori on the external potential energy 0. As   the785
quantity 0 0| / | 0,A E the following asymptotical mass values follow from (107):786
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(108)787

The first mass value
4

0
0 0 3

0 0

| |
2 | |
Am 

; E
E E

is physically reasonable from the classic788

relativistic point of view, giving rise at weak enough magnetic potential to the charged particle789
energy 0 ,E yet the second mass values ( )

0 02 | |m A ; still need their physical interpretation,790
as they may describe both matter and anti-matter states, consisting, at a very huge energy791
modulus 0| | ,E of some charged particle excitations of the vacuum. It is also worth792
mentioning that the sign of the mass 0m coincides with that of the energy 0E only if the793
inequality 2

0 01 | / |A m 0 holds.794
795

To make this difference more clear, we now analyze the Lorentz force (76) from the796
Hamiltonian point of view based on the Lagrangian function (74). Thus, we obtain that the797
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corresponding Hamiltonian function798
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Since = ,p P A the expression (109) assumes the final "no interaction" [5] [65] [103] [104]800
form801

2 2 1/2= ( | | ) ,H W P A   (110)802
which is conserved with respect to the evolution equations (72) and (73), that is803

/ = / = 0dH d dH dt (111)804
for all , .t R These equations  are equivalent to the following Hamiltonian system805
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as one can readily check by direct calculations. Actually, the first equation807
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holds, owing to the condition 2 1/2= (1 | | )d dt u  and definitions := ,p mu = ,m W postulated809
from the very beginning. Similarly we obtain that810

2 2 1/2 2 2 1/2
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(114)811

coincides with equation (75) in the evolution parameter .tR This can be formulated as the812
next result.813

814
Proposition 8. The dual to the classical relativistic electrodynamic model (76) allows the815
canonical Hamiltonian formulation (112) with respect to the proper reference frame variables,816
where the Hamiltonian function is given by expression (110). Moreover, this formulation817
circumvents the "mass-potential energy" controversy attached to the classical electrodynamic818
model (42).819

820
The modified Lorentz force expression (76) and the related rest energy relationship are821

characterized by the following remark.822
823
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Remark 3. If we make use of the modified relativistic Lorentz force expression (76) as an824
alternative to the classical one of (46), the corresponding charged particle  energy expression825
(110) also gives rise to a true physically reasonable energy expression (at the velocity826

3:= 0u E at the initial time moment = 0t ); namely, 0 0= mE instead of the physically827
controversial classical expression 0 0 0= ,m E where 0 =0:= | ,t  corresponding to the case828
(44).829

830
1.6. Conclusions831

832
All of the dynamical field equations discussed above are canonical Hamiltonian systems833

with respect to the corresponding proper reference frames ,K parameterized by suitable time834
parameters . R Upon passing to the basic laboratory reference frame tK with the time835
parameter ,tR naturally the related Hamiltonian structure is lost, giving rise to a new836
interpretation of the real particle motion. Namely, one that has an absolute sense only with837
respect to the proper reference system, and otherwise being completely relative with respect838
to all other reference frames. As for the Hamiltonian expressions (95), (100) and (110), one839
observes that they all depend strongly on the vacuum potential energy field function840

4: ,W M R thereby avoiding the mass problem of the classical energy expression pointed out841
by L. Brillouin [21]. It should be noted that the canonical Dirac quantization procedure can be842
applied only to the corresponding dynamical field systems considered with respect to their843
proper reference frames.844

845
Remark 4. Some comments are in order concerning the classical relativity principle. We have846
obtained our results relying only on the natural notion of the proper reference frame and its847
suitable Lorentz parametrization with respect to any other moving reference frames. It seems848
reasonable then that the true state changes of a moving charged particle  are exactly realized849
only with respect to its proper reference system. Then the only remaining question would be850
about the physical justification of the corresponding relationship between time parameters of851
moving and proper reference frames.852

853
The relationship between reference frames that we have used through is expressed as854

2 1/2= (1 | | ) ,d dt u  (115)855
where 3:= /u dr dtE is the velocity vector with which the proper reference frame K moves856
with respect to another arbitrarily chosen reference frame .tK Expression (115) implies, in857
particular, that858

2 2 2| | = ,dt dr d (116)859
which is identical to the classical infinitesimal Lorentz invariant. This is not a coincidence, since860
all our dynamical vacuum field equations were derived in turn [18][19] from the governing861
equations of the vacuum potential field function 4:W M  R in the form862

2 2 2/ = , / ( ) = 0, / ( ) = 0,W t W W t vW t v           (117)863
which is a priori Lorentz invariant. Here  R is the charge density and := /v dr dt the864
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associated local velocity of the vacuum field potential evolution. Consequently, the dynamical865
infinitesimal Lorentz invariant (116) reflects this intrinsic structure of equations (117). If it is866
rewritten in the following nonstandard Euclidean form:867

2 2 2= | |dt d dr  (118)868
it gives rise to a completely different relationship between the reference frames tK and K ,869
namely870

2 1/2= (1 | | ) ,dt d r   (119)871
where := /r dr d is the related particle velocity with respect to the proper reference system.872
Thus, we observe that all our Lagrangian analysis in this Section is based on the corresponding873
functional expressions written in these "Euclidean" space-time coordinates and with respect to874
which the least action principle was applied. So we see that there are two alternatives - the first875
is to apply the least action principle to the corresponding Lagrangian functions expressed in the876
Minkowski space-time variables with respect to an arbitrarily chosen reference frame ,tK and877
the second is to apply the least action principle to the corresponding Lagrangian functions878
expressed in Euclidean space-time variables with respect to the proper reference frame .K879

This leads us to a slightly amusing but thought-provoking observation: It follows from880
our analysis that all of the results of classical special relativity related with the electrodynamics881
of charged point particles can be obtained (in a one-to-one correspondence) using our new882
definitions of the dynamical particle mass and the least action principle with respect to the883
associated Euclidean space-time variables in the proper reference system.884

An additional remark concerning the quantization procedure of the proposed885
electrodynamics models is in order: If the dynamical vacuum field equations are expressed in886
canonical Hamiltonian form, as we have done in this paper, only straightforward technical887
details are required to quantize the equations and obtain the corresponding Schrödinger888
evolution equations in suitable Hilbert spaces of quantum states. There is another striking889
implication from our approach: the Einstein equivalence principle [1]  [5]  [65]  [89] is rendered890
superfluous for our vacuum field theory of electromagnetism and gravity.891

Using the canonical Hamiltonian formalism devised here for the alternative charged892
point particle electrodynamics models, we found it rather easy to treat the Dirac quantization.893
The results obtained compared favorably with classical quantization, but it must be admitted894
that we still have not given a compelling physical motivation for our new models. This is895
something that we plan to revisit in future investigations. Another important aspect of our896
vacuum field theory no-geometry (geometry-free) approach to combining the electrodynamics897
with the gravity, is the manner in which it singles out the decisive role of the proper reference898
frame .K More precisely, all of our electrodynamics models allow both the Lagrangian and899
Hamiltonian formulations with respect to the proper reference system evolution parameter900

, R which are well suited the to canonical quantization. The physical nature of this fact901
remains as yet not quite clear. In fact, as far as we know [5] [65] [75] [76] [89], there is no902
physically reasonable explanation of this decisive role of the proper reference system, except903
for that given by R. Feynman who argued in [1] that the relativistic expression for the classical904
Lorentz force (46) has physical sense only with respect to the proper reference frame variables905

3( , ) .r  R E In future research we plan to analyze the quantization scheme in more detail906
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and begin work on formulating a vacuum quantum field theory of infinitely many particle907
systems.908

909
2. The Lorentz type force analysis within the Feynman proper time910

paradigm and the radiation theory911
912
913

2.1. Introductory setting914
915

The elementary point charged particle, like electron, mass problem was inspiring many916
physicists [20] from the past as J. J. Thompson, G.G. Stokes, H.A. Lorentz, E. Mach, M. Abraham,917
P.A. M. Dirac, G.A. Schott and others. Nonetheless, their studies have not given rise to a clear918
explanation of this phenomenon that stimulated new researchers to tackle it from different919
approaches based on new ideas stemming both from the classical Maxwell-Lorentz920
electromagnetic theory, as in [1]  [12] [21] [22] [24]  [25] [26] [27] [28] [29] [30] [31]  [32]  [33]921
[34] [35] [36] [37]  [39] [74] [105] [106] [107], and modern quantum field theories of Yang-Mills922
and Higgs type, as in [40] [41]  [43]  [108] and others, whose recent and extensive review is923
done in [44].924

In the present work I will mostly concentrate on detailed analysis and consequences of925
the Feynman proper time paradigm [1] [22] [45] [46] subject to deriving the electromagnetic926
Maxwell equations and the related Lorentz like force expression considered from the vacuum927
field theory approach, developed in works [49] [50] [51], and further, on its applications to the928
electromagnetic mass origin problem. Our treatment of this and related problems, based on929
the least action principle within the Feynman proper time paradigm [1], has allowed to930
construct the respectively modified Lorentz type equation for a charged point particle moving931
in space and radiating energy. Our analysis also elucidates, in particular, the computations of932
the self-interacting electron mass term in [29], where there was proposed a not proper solution933
to the well known classical Abraham-Lorentz [52] [53]  [54]  [55] and Dirac [56] electron934
electromagnetic "4/3-electron mass" problem. As a result of our scrutinized study of the935
classical electromagnetic mass problem we have stated that it can be satisfactory solved within936
the classical H. Lorentz and M. Abraham reasonings augmented with the additional electron937
stability condition, which was not taken into account before yet appeared to be very important938
for balancing the related electromagnetic field and mechanical electron momenta. The latter,939
following recent works [31] [35], devoted to analyzing the electron charged shell model, can be940
realized within the suggested pressure-energy compensation principle, suitably applied to the941
ambient electromagnetic energy fluctuations and the electrostatic Coulomb electron energy.942

943
2.2. Feynman proper time paradigm geometric analysis944

945
In this section, we will develop further the vacuum field theory approach within the946

Feynman proper time paradigm, devised before in [49] [51], to the electromagnetic J.C.947
Maxwell and H. Lorentz electron theories and show that they should be suitably modified:948
namely, the basic Lorentz force equations should be generalized following the Landau-Lifschitz949
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least action recipe [5], taking also into account the pure electromagnetic field impact. When950
applying the devised vacuum field theory approach to the classical electron shell model, the951
resulting Lorentz force expression appears to  satisfactorily explain the electron inertial mass952
term exactly coinciding with the electron relativistic mass, thus confirming the well known953
assumption [2] [109] by M. Abraham and H. Lorentz.954

As was reported by F. Dyson [45] [46], the original Feynman approach derivation of the955
electromagnetic Maxwell equations was based on an a priori general form of the classical956
Newton type force, acting on a charged point particle moving in three-dimensional space 3R957
endowed with the canonical Poisson brackets on the phase variables, defined on the associated958
tangent space 3( ).T R As a result of this approach only the first part of the Maxwell equations959
were derived, as the second part, owing to F. Dyson [45], is related with the charged matter960
nature, which appeared to be hidden. Trying to complete this Feynman approach to the961
derivation of Maxwell's equations more systematically we have observed [49] that the original962
Feynman's calculations, based on Poisson brackets analysis, were performed on the tangent963
space 3( ).T R which is, subject to the problem posed, not physically proper. The true Poisson964
brackets can be correctly defined only on the coadjoint phase space ( )T  M as seen from the965
classical Lagrangian equations and the related Legendre transformation [47] [64] [96] [110]966
from T(R³) to * 3( ).T R Moreover, within this observation, the corresponding dynamical967
Lorentz type equation for a charged point particle should be written for the particle968
momentum, not for the particle velocity, whose value is well defined only with respect to the969
proper relativistic reference frame, associated with the charged point particle owing to the fact970
that the Maxwell equations are Lorentz invariant.971

Thus, from the very beginning, we shall reanalyze the structure of the Lorentz force972
exerted on a moving charged point particle with a charge  R by another point charged973
particle with a charge f R , making use of the classical Lagrangian approach, and rederive974
the corresponding electromagnetic Maxwell equations. The latter appears to be strongly975
related to the charged point mass structure of the electromagnetic origin as was suggested by976
R. Feynman and F. Dyson.977

Consider a charged point particle moving in an electromagnetic field. For its description,978
it is convenient to introduce a trivial fiber bundle structure  3 3: , = G R RM M , with the979
abelian structure group := \{0G R }, equivariantly acting on the canonically symplectic980
coadjoint space ( )T  M endowed both with the canonical symplectic structure981

(2) (1)

1 1

( , ; , ) := ( , ) =< , >
< , > < , >
p y r g dpr r g dp dr
dy g dg ydg dg

 

 

 

   G G

(120)982

for all ( , ; , ) ( ),p y r g T  M where (1) 1( , ) :=< , > < , > ( )r g p dr y g dg T   G M is the983

corresponding Liouville form on ,M and with a connection one-form : ( )M T M A G as984
1 1( , ) := < ( ), > ,r g g A r dr g g dg A (121)985

with 3, ( , ) ,r g G   RG and < , >  being the scalar product in 3.E The corresponding986
curvature 2-form (2) 2 3( )  R G is987
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3
(2)

, =1
( ) := ( , ) ( , ) ( , ) = ( ) ,i j

ij
i j

r d r g r g r g F r dr dr   A A A (122)988

where989

( ) := j i
ij i j

A AF r
r r
 


 
(123)990

for , = 1,3i j is the electromagnetic tensor with respect to the reference frame ,tK991

characterized by the phase space coordinates 3( , ) ( )r p T  R . As an element  G is still not992
fixed, it is natural to apply the standard [47] [64] [96] [110] invariant Marsden-Weinstein-993
Meyer reduction to the orbit factor space := /P P G  

 subject to the related momentum994

mapping : ( ) ,l T  M G constructed with respect to the canonical symplectic structure (120)995
on ( )T  M , where, by definition,  G is constant, 1:= ( )P l   ( )T  M and996

= { : }GG g G Ad  is the isotropy group of the element . G997
As a result of the Marsden-Weinstein-Meyer reduction, one finds that ,G G ; the998

factor-space 3( )P T
 R; is endowed with a suitably reduced symplectic structure999

(2) (T
 )P and the corresponding Poisson brackets on the reduced manifold P are1000

{ , } = 0,{ , } = ,

{ , } = ( )

i j i i
j j

i j ij

r r p r
p p F r

 






(124)1001

for , = 1,3,i j considered with respect to the reference frame .tK Introducing a new1002
momentum variable1003

:= ( )p A r  (125)1004
on P , it is easy to verify that (2) (2) :=< , >d dr      , giving rise to the following "minimal1005
interaction" canonical Poisson brackets:1006

(2) (2) (2){ , } = 0, { , } = , { , } = 0i j i i
j j i jr r r

    
   

  
   (126)1007

for , = 1,3i j with respect to some new reference frame ,'t
K characterized by the phase space1008

coordinates ( , )r P   and a new evolution parameter 't R if and only if the Maxwell field1009
compatibility equations1010

/ / / = 0ij k jk i ki jF r F r F r        (127)1011

are satisfied on 3R for all , , = 1,3i j k with the curvature tensor (123).1012
Now we proceed to a dynamic description of the interaction between two moving1013

charged point particles  and ,f moving respectively, with the velocities := /u dr dt and1014

:= /f fu dr dt subject to the reference frame .tK Unfortunately, there is a fundamental problem1015
in correctly formulating a physically suitable action functional and the related least action1016
condition. There are clearly possibilities such as1017

( ) ( )2

1
:= [ ; / ]t t

p pt

tS dt r dr dt L (128)1018



31

on a temporal interval 1 2[ , ]t t  R with respect to the laboratory reference frame ,tK1019

( (2

1

) ):= [ ; / ]
'' 't t' '

p p't

tS dt r dr dt L (129)1020

on a temporal interval 1 2[ , ]' 't t  R with respect to the moving reference frame 't
K and1021

( ) ( )2

1
:= [ ; / ]p pS d r dr d 




  L (130)1022

on a temporal interval 1 2[ , ]   R with respect to the proper time reference frame ,K1023
naturally related to the moving charged point particle .1024

It was first observed by Poincaré and Minkowski [65] that the temporal differential d1025
is not a closed differential one-form, which physically means that a particle can traverse many1026
different paths in space 3R with respect to the reference frame tK during any given proper1027
time interval ,d naturally related to its motion. This fact was stressed [65] [111] [112] [113]1028
[114] by Einstein, Minkowski and Poincaré, and later exhaustively analyzed by R. Feynman, who1029
argued [1] that the dynamical equation of a moving point charged particle is physically sensible1030
only with respect to its proper time reference frame. This is Feynman's proper time reference1031
frame paradigm, which was recently further elaborated and applied both to the1032
electromagnetic Maxwell equations in [23] [24]  [74] and to the Lorentz type equation for a1033
moving charged point particle under an external electromagnetic field in [47] [49] [50] [51]. As1034
was there argued from a physical point of view, the least action principle should be applied only1035
to the expression (130) written with respect to the proper time reference frame ,K whose1036
temporal parameter  R is independent of an observer and is a closed differential one-form.1037
Consequently, this action functional is also mathematically sensible, which in part reflects the1038
Poincaré's and Minkowski's observation that the infinitesimal quadratic interval1039

2 2 2= ( ) | | ,'
fd dt dr dr   (131)1040

relating the reference frames 't
K and ,K can be invariantly used for the four-dimensional1041

relativistic geometry. The most natural way to contend with this problem is to first consider the1042
quasi-relativistic dynamics of the charged point particle  with respect to the moving1043
reference frame 't

K subject to which the charged point particle f is at rest. Therefore, it is1044

possible to write down a suitable action functional (129), up to 4(1/ ),O c as the light velocity1045

c , where the quasi-classical Lagrangian function ( )[ ; / ]
't '
p r dr dtL can be naturally chosen1046

as1047
2( )[ ; / ] := ( ) / / / 2 ( ).

't ' ' ' ' '
p fr dr dt m r dr dt dr dt r L (132)1048

where ( )'m r R is the inertial mass parameter of the charged particle  and ( )' r is the1049

potential function generated by the charged particle f at a point r 3R with respect to the1050

reference frame .'tK Since the standard temporal relationships between reference frames tK1051

and :'tK1052
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2 1/2= (1 / ) ,' '
fdt dt dr dt (133)1053

as well as between the reference frames 't
K and :K1054

2 1/2= (1 / / ) ,' ' '
fd dt dr dt dr dt   (134)1055

This gives rise, up to 2(1/ ),O c as ,c to 'dt dt; and ,'d dt ; respectively, it is easy to1056

verify that the least action condition ( ) = 0
't
pS is equivalent to the dynamical equation1057

2( 1)/ = [ ; / ] = ( / / ) ( ),
2

't
p fd dt r dr dt dr dt dr dt m r      L (135)1058

where we have defined the generalized canonical momentum as1059
( ):= [ ; / ] / ( / ) = ( / / ),
't
p fr dr dt dr dt m dr dt dr dt   L (136)1060

with the dash signs dropped and denoted by "  " the usual gradient operator in 3.E Equating1061
the canonical momentum expression (136) with respect to the reference frame 't

K to that of1062

(125) with respect to the canonical reference frame ,'t
K and identifying the reference frame1063

K 't
with ,'tK one obtains that1064

( / / ) = / ( ),fm dr dt dr dt mdr dt A r  (137)1065
giving rise to the important inertial particle mass determining expression1066

= ( ),m r (138)1067
which right away follows from the relationship1068

( ) / = ( ).fr dr dt A r (139)1069
The latter is well known in the classical electromagnetic theory [2] [5] for potentials1070

4( , ) ( )A T M  satisfying the Lorentz condition1071
( ) / < , ( ) >= 0,r t A r    (140)1072

yet the expression (138) looks very nontrivial in relating the " inertial" mass of the charged1073
point particle  to the electric potential, being both generated by the ambient charged point1074
particles .f As was argued in articles [49] [50], the above mass phenomenon is closely related1075
and from a physical perspective shows its deep relationship to the classical electromagnetic1076
mass problem.1077

Before further analysis of the relativistic motion of the charge  under consideration,1078
we substitute the mass expression (138) into the quasi-relativistic action functional (129) with1079
the Lagrangian (132). As a result, we obtain two possible action functional expressions, taking1080
into account two main temporal parameters choices:1081

2( 2

1

1) = ( )(1 / / )
2

''t ' ' ' '
p f't

tS r dr dt dr dt dt   (141)1082

on an interval 1 2[ , ] ,' 't t  R or1083
2( ) 2

1

1= ( )(1 / / )
2

'
p fS r dr d dr d d




      (142)1084

on an 1 2[ , ]   R . The direct relativistic transformations of (142) entail that1085
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2( ) 2

1

2 1/22

1

1/22 2

1 1

1= ( )(1 / / )
2

( )(1 / / ) =

= ( )(1 | / / |) = ( ) ,

'
p f

'
f

'
' ' ' ' '

f 't

S r dr d dr d d

r dr d dr d d

tr dr dt dr dt d r dt










   


   


  

  

  

   





 

;

; (143)1086

giving rise to the correct, from the physical point of view, relativistic action functional form1087
(129), suitably transformed to the proper time reference frame representation (130) via the1088
Feynman proper time paradigm. Thus, we have shown that the true action functional1089
procedure consists in a physically motivated choice of either the action functional expression1090
form (128) or (129). Then, it is transformed to the proper time action functional representation1091
form (130) within the Feynman paradigm, and the least action principle is applied.1092

Concerning the above discussed problem of describing the motion of a charged point1093
particle  in the electromagnetic field generated by another moving charged point particle ,f1094
it must be mentioned that we have chosen the quasi-relativistic functional expression (132) in1095
the form (129) with respect to the moving reference frame ,'tK because its form is physically1096

reasonable and acceptable, since the charged point particle f is then at rest, generating no1097
magnetic field.1098

Based on the above relativistic action functional expression1099
2( ) 1/22

1
:= ( )(1 / / )'

p fS r dr d dr d d




      (144)1100

written with respect to the proper reference from ,K one finds the following evolution1101
equation:1102

2 1/2/ = ( )(1 / / ) ,'
p fd d r dr d dr d         (145)1103

where the generalized momentum is given exactly by the relationship (136):1104
= ( / / ).p fm dr dt dr dt  (146)1105

Making use of the relativistic transformation (133) and the next one (134), the equation1106
(145) is easily transformed to1107

2
( ) = ( )(1 ),f
d p A r u
dt

    (147)1108

where we took into account the related definitions: (138) for the charged particle  mass, (139)1109

for the magnetic vector potential and ( ) =r
2 1/2( ) / (1 )'

fr u  for the scalar electric potential1110

with respect to the laboratory reference frame .tK Equation (147) can be further transformed,1111
using elementary vector algebra, to the classical Lorentz type form:1112

/ = < , >,fdp dt E u B u u A       (148)1113
where1114

:= /E A t    (149)1115
is the related electric field and1116

:=B A (150)1117
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is the related magnetic field, exerted by the moving charged point particle f on the charged1118

point particle  with respect to the laboratory reference frame .tK The Lorentz type force1119
equation (148) was obtained in [49] [50] in terms of the moving reference frame ,'tK and1120

recently reanalyzed in [34] [50]. The obtained results follow in part [16] [17] from Ampère's1121
classical works on constructing the magnetic force between two neutral conductors with1122
stationary currents.1123

1124
3. The self-interaction problem: historical preliminaries1125

1126
The elementary point charged particle, like the electron, mass problem was inspiring1127

many physicists [20] from the past as J. J. Thompson, G.G. Stokes, H.A. Lorentz, E. Mach, M.1128
Abraham, P.A. M. Dirac, G.A. Schott, J. Schwinger and many others. Nonetheless, their studies1129
have not given rise to a clear explanation of this phenomenon that stimulated new researchers1130
to tackle it from different approaches based on new ideas stemming both from the classical1131
Maxwell-Lorentz electromagnetic theory, as in [1] [21] [22]  [24]  [25] [26] [34]  [74] [109], and1132
modern quantum field theories of Yang-Mills and Higgs type, as in [40] [41]  [43]  [108] and1133
others, whose recent and extensive review is given in [44].1134

In the present work we mostly concentrate on a detailed quantum and classical analysis1135
of the self-interacting shell model charged particle within the Fock multi-time approach [115]1136
[116] and the Feynman proper time paradigm [1] [22] [45] [46] subject to deriving the1137
electromagnetic Maxwell equations and the related Lorentz like force expression within the1138
vacuum field theory approach, devised in works [24] [49] [50]  [51]  [74]  [117], and further, we1139
elaborate the obtained results to treating the classical H. Lorentz and M. Abraham [12] [27]1140
[28]  [29] [30] [31] [32] [33] [35]  [36] [37]  [39] [52]  [53] [54] [107]  [118] electromagnetic1141
mass origin problem.  For the first time the proper time approach to classical electrodynamics1142
and quantum mechanics was possibly suggested in 1937 by V. Fock [119], in which, in1143
particular, there was constructed an alternative proper time based Lagrangian description of a1144
point charged particle under an external electromagnetic field. A more detailed motivation of1145
using the proper time approach was later presented by R. Feynman in his Lectures [1].1146
Concerning the alternative and much later investigations of the a priori given quantum1147
electromagnetic Maxwell equations in the Fock space one can mention the Gupta-Bleiler [120]1148
[121] [122] and [61] [71] [88] approaches. The first one, as it is well known [71] [121],1149
contradicts one of the most important field theoretical principles - the positive definiteness of1150
the quantum event probability and is strongly based on making nonphysical use of an indefinite1151
metric on quantum states. The second one is completely non-relativistic and based on the1152
canonical quantization scheme [71] in the case of the Coulomb gauge condition.  Inspired by1153
these and related classical results, we have stated that the self-interacting quantum mechanism1154
of the charged particle with its self-generated electromagnetic field consists of two physically1155
different phenomena, whose influence on the structure of the resulting Hamilton interaction1156
operator appeared to be crucial and gave rise to a modified analysis of the related classical shell1157
model charged particle within the Lagrangian formalism. As a result of our scrutinized study of1158
the classical electromagnetic mass problem there was demonstrated  that it can be satisfactory1159
solved within the classical H. Lorentz and M. Abraham reasonings augmented with the1160
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additional electron stability condition, which was not taken into account before yet appeared1161
to be very important for balancing the related electromagnetic field and mechanical electron1162
momenta. The latter, following the recent works [31] [35] [118] devoted to analyzing the1163
electron charged shell model, was realized within the suggested pressure-energy compensation1164
principle, suitably applied to the ambient electromagnetic energy fluctuations and the self-1165
generated electrostatic Coulomb electron energy. In the case of a point charged particle the1166
alternative relativistic invariant approach to studying the radiation reaction force was1167
suggested by Teitelbom [37], and was based on a formal relativistic invariant splitting of the1168
electromagnetic energy-momentum tensor. He derived the related suitably renormalized1169
charged particle equations of motion.1170

1171
4. The charged particle self-interaction quantum origin1172

1173
Consider a free relativistic quantum fermionic a priori massless particle field described1174

[121] [123] by means of the secondly-quantized self-adjoint Dirac-Weil type Hamiltonian1175
3

3= < , > ,fH d x c
i

   


R
(151)1176

where 3 End  E 4M denotes the standard Dirac spin matrix vector representation in the1177
Minkowski space 4 ,M c R is the light velocity, < , >  denotes the usual scalar product in1178

the Euclidean space 3,E 3: (End R 4) - a spinor of the quantum annihilation operators,1179
acting in a suitable Fock space  endowed with the usual scalar product ( , )  and1180

3: (End  R 4) - the respectively adjoint co-spinor of creation operators in the Fock space1181
. The following anticommuting [121] [123] operator relationships1182

( ) ( ) ( ) ( ) = ( ),

( ) ( ) ( ) ( ) = 0,

( ) ( ) ( ) ( ) = 0

j l l j jl

j l l j

j l l j

x y y x x y

x y y x

x y y x

     

   

   

 

   

 





(152)1183

hold for any 3,x yR and , 1, 4,j l being compatible with the related Heisenberg operator1184
dynamics, generated by the fermionic Hamiltonian operator (151):1185

/ := [ , ], / := [ , ]f f
i it H t H       
 

(153)1186

with respect to its own laboratory reference frame ,tK parameterized by the evolution1187
parameter .t R1188

It is clear that the Hamiltonian (151) possesses no information of such an important1189
characteristic as the electric charge , R which generates the own electromagnetic field1190
interacting both with it and with other ambient charged particles. As is usually accepted, we1191
will model a free electromagnetic field by its bosonic self-adjoint operator four-potential1192

3( , ) :A Hom R 4( , ),  whose evolution is generated by the self-adjoint Hamiltonian1193
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3 2
3= 2 | | [< ( ), ( ) > ( ) ( )],bH d k k A k A k k k  R (154)1194

acting in the introduced common Fock space  and represented by means of the field1195
operators expanded into the Fourier integrals1196

3 3
3 33/2 3/2

3 3
3 33/2 3/2

1 1( ) : = ( ) exp( < , >) ( ) exp( < , >),
(2 ) (2 )

1 1( ) : = ( ) exp( < , >) ( ) exp( < , >) .
(2 ) (2 )

x d k k i k x d k k i k x

A x d kA k i k x d kA k i k x

  
 

 





 

 

 

 

R R

R R

(155)1197

The coefficients of the expansions (155) satisfy the following [115] [116] [121]1198
commutation operator relationships:1199

( ), ( )] = ( ),
2 | |

( ), ( )] = 0,

[ ( ), ( )] = 0 = [ ( ), ( )],

[ ( ), ( )] = ( ),
2 | |

[ ( ), ( )] = 0 = [ ( ), ( )]

j

j l jl

j l j l

ck s k s
k

k A s

k s k s

cA k A s k s
k

A k A s A k A s

  



   

 



 



 

 







(156)1200

for all 3,k sE and , 1,3,j l compatible with the related Heisenberg operator dynamics [121]1201
generated by the electromagnetic field Hamiltonian (154):1202

:= [ , ], := [ , ],b b
A i iH A H
t t

  
   

(157)1203

with respect to its own laboratory reference frame ,tK parameterized by the temporal1204
parameter .t  R In particular, based on the commutation relationships (156), one can check1205
that the electric1206

1:= AE
c t

 
 


(158)1207

and magnetic1208
:=B A (159)1209

fields satisfy the operator Maxwell equations in vacuum, and the following weak Lorenz type1210
constraints1211

0

0

( ) : = [< , ( ) > | | ( )] = 0,

( ) : = [< , ( ) > | | ( )] = 0

C k i k A k k k

C k i k A k k k



  

  

   

(160)1212

hold in the Fock space  for all 3.k E As the operators 0 ( ) :C k  and 0 ( ) :C k 1213
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are commuting both to each other for all 3kE and with the Hamiltonian (154), that is1214

0 0 0 0

0 0

( ), ( )] = 0 = [ ( ), ( )],

( ), ] = 0 = [ ( ), ]b b

C k C l C k C l

C k H C k H





(161)1215

for any 3, ,k lE the constraints (160) are compatible with the evolution operator equations1216
(157). Moreover, concerning the Hamiltonian operator (154), whose equivalent operator1217
expression is1218

2 2
3

1= (| | | | ),
2bH E BR (162)1219

the following proposition holds.1220
1221

Proposition 9. The Hamiltonian operator (154) on the Fock subspace  reduced by means of1222
constraints (160) is Hermitian and non-negative definite.1223

1224
Proof. In order to define the operator1225

2( ) := ( ) < , ( ) >,
| |
kB k A k k A k
k

 (163)1226

the Hamiltonian operator (154) can be rewritten equivalently as1227
3 2

3

0 0 02

= 2 | | {< ( ), ( ) >
| | | |

1( ) ( ) [ ( ) | | ( )] ( )}.
| | | |

b
k kH d k k B k B k
k k

i k C k k i k k C k
k k
 



  

  

  

R
(164)1228

The latter, owing to the weak Lorenz type constraints (160), gives rise to the inequality1229
3 2

3

3 2
3

( , ) = 2 | | | (< ( ) , ( ) >) =
| | | |

= 2 || ( ) || 0

b
k kf H f d k k B k f B k f
k k

d k k B k f

 

 





R

R

(165)1230

for any vector ,f  proving the proposition.1231
1232

Remark 5. The Hamiltonian operator expression (154) easily follows [116] [121] [123] from the1233
well known relativistic invariant classical Fock-Podolsky electromagnetic Lagrangian1234

3
3

2

1 1 1: = [< , >
2

1< , > ( < , >) ]

b
A Ad x

c t c t

A A A
c t

 



 
    

 


     



  



R
L

(166)1235

Based on the Euler-Lagrange equations corresponding to (166) one finds that1236



38

2 2

2 2 2 2

1 1= 0, = 0,A A
c t c t

  
   

  
(167)1237

whose wave solutions allow to determine the electromagnetic fields (158) and (159) and to1238
check that the related Maxwell field equations in vacuum are satisfied if the Lorenz condition1239

0
1( , ) := < , >= 0C t x A
c t

 


(168)1240

holds for all 4( , ) .t x M Moreover, from the Lagrangian expression (166) one easily obtains by1241
means of the corresponding Legendre transformation [64] [96] [121] the Hamiltonian operator1242

3 2 2 2 3 2
03 3

1= (| | | | ) (< , > < , >),
2bH d x E B C d x A         R R

(169)1243

being equivalent in the Fock space  , modulo the solutions (155) of the wave equations (167),1244
to the operator expression (154).1245

1246
Taking into account the operator equations (157), one easily obtains that1247

0

0

( ) = [< , ( ) > | | ( )] 0,

( ) = [< , ( ) > | | ( )] 0,

C k i k A k k k

C k i k A k k k



  

 

  

(170)1248

contradicting the imposed Lorenz constraint (168). As the latter should be vanishing in the1249
Fock space, it was suggested in [115] to reduce the Fock space  to a subspace, on which there1250
only the weak Lorenz type operator constraints (160) are satisfied. Concerning these1251
constraints, imposed on the Fock space , it is necessary to mention that a corresponding1252
vacuum vector | 0 >  does not, evidently, annihilate the operators ( ) :k   and1253

3( ) : ,A k  as they do not form computing pairs with operators 0 ( )C k and 0 ( ),C k1254
respectively.1255

1256
5. The transformed Fock space, its Lorenz type reduction and the1257

Quantum Maxwell equations1258
1259

As we are interested in describing the self-interaction of the fermionic quantum particle1260
field 4:  with the related self-generated bosonic electromagnetic potentials field1261

4( , ) : ,A  we need, within the Fock multi-time description approach [115] [116], first to1262
consider the fermionic particle and bosonic electromagnetic fields with respect to the common1263
reference frame tK specified by the temporal parameter .tR Secondly, we need to make use1264
of the classical "minimum interaction" principle [47] [117], (whose sketched backgrounds are1265
presented in Supplement, Section 9. and to apply to the Hamiltonian operator expression (151)1266
:1267

( ) 3 3
3 3= < , > ( < , > ),int

fH d x c d x c A
i

            


R R
(171)1268

in which the fermionic 4:  and bosonic 4( , ) :A  operators are commuting a1269
priori to each other as quantum fields of different nature. Since the whole quantum field1270
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system consists of the fermionic particle and bosonic self-generated electromagnetic fields, its1271
evolution is described by means of the joint Hamiltonian operator1272

( ):= int
f b f bH H H  (172)1273

via the Heisenberg equations1274

: = [ , ], := [ , ],

: = [ , ], := [ , ]

f b f b

f b f b

i iH H
t t

A i iH A H
t t

  

 




 

 

 
 

 
 

 

 

(173)1275

with respect to the common temporal parameter ,tR as in this case there is assumed that1276
the corresponding temporal parameters t R and t R coincide, that is = =t t t R and,1277
by definition, the operator spinor = =( , ) := ( , ) | .t t tt x t t  

 Simultaneously, the before derived1278
both the electromagnetic field evolution equations (157) should be satisfied with respect to1279
the own reference frame tK and the modified fermionic charged particle field equations1280

( ) ( ):= [ , ], := [ , ]int int
f f

i iH H
t t
  


 

  
(174)1281

with respect to the own reference frame .tK1282
Being mostly interested in the evolution of the quantum particle fermionic field1283

: ,  we can get rid of the bosonic Hamiltonian impact into (174) having applied to the1284
Fock space  the unitary canonical transformation1285

:= ( ) ,U t  (175)1286
where we denoted by ( ) :U t   the unitary operator satisfying the determining equation1287

( ) / = ( )b
idU t dt H U t


(176)1288

subject to the bosonic Hamiltonian operator (154) and the temporal parameter .tR As a1289
consequence of the transformation (175) we obtain the effective fermionic particle field1290
interaction Hamiltonian operator1291

( ) ( )

3 3
3 3

: = ( ) ( ) =

= < , > ( < , > ),

int int
f fH U t H U t

d x c d x c A
i

       



     



 
R R

(177)1292

where, by definition,1293
:= ( ) ( ), := ( ) ( )],A U t AU t U t U t    (178)1294

subject to which the evolution in the transformed Fock space , induced by the Hamiltonian1295
operator (154)1296

3 2
3:= ( ) ( ) = 2 | | [< ( ), ( ) > ( ) ( )],b bH U t H U t d k k A k A l k k       
R

(179)1297

became completely eliminated. Concerning the Hamiltonian operator (179) here we need to1298
mention that the related commutation relationships for the operators 4( ( ), ( )) :k A k   1299
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and 4( ( ), ( )) :k A k      remain the same as (156), that is1300

( ), ( )] = ( ), [ ( ), ( )] = 0,
2 | |

( ), ( )] = ( ),
2 | |

[ ( ), ( )] = 0 = [ ( ), ( )],

[ ( ), ( )] = 0 = [ ( ), ( )],

j

j l jl

j l j l

ck s k s k A s
k

cA k A s k s
k

k s k s

A k A s A k A s

   

 

   





 

 

 



   

 

   

   

(180)1301

for all 3,k sE and , 1,3.j l1302
Now, concerning the Hamiltonian operators (177) and (179), the following Heisenberg1303

evolution equations1304
( ) ( ):= [ , ], := [ , ]int int
f f

i iH H
t t
  


 

 
 

 
(181)1305

with respect to the reference frame tK and the Heisenberg evolution equations1306

:= [ , ], := [ , ]b b
i A iH H A

t t
  
 

  
  

(182)1307

with respect to the reference frame tK hold. Being further interested in the evolution1308
equations (173), suitably rewritten in the transformed Fock space  with respect to the1309
common temporal parameter ,tR we need to take into account [116] that the following1310
functional relationships1311

= = = =( ) := ( , ) | , ( ) := ( , ) |t t t t t tt t t A t A t t   
   (183)1312

hold. In particular, from (183) the following evolution expressions1313
= = = =

= = = =

( ) / = ( , ) / | ( , ) / | ,

( ) / = ( , ) / | ( , ) / | ,

t t t t t t

t t t t t t

t t t t t t t t

A t t A t t t A t t t

       

     

 

 

  

    

(184)1314

hold for all .tR The latter will be useful when deriving the resulting quantum Maxwell1315
electromagnetic equations.1316

Before doing this, we need to take into account that the weak operator Lorenz1317
constraints (160), rewritten in the transformed Fock space , is compatible with the evolution1318
equations (182):1319

0 0[ ( ), ] = 0 = [ ( ), ],b bC k H C k H   (185)1320
yet they fail to be compatible with the evolution equations (181), that is1321

( ) ( )
0 0[ ( ), ] 0 [ ( ), ].int int

f fC k H C k H   1322

This means that we can not impose on the transformed Fock pace  the constraints1323
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0

0

( ) : = (< , ( ) > | | ( )) 0,

( ) : = (< , ( ) > | | ( )) 0

C k i k A k k k

C k i k A k k k



  

   

    

  

  

(186)1324

invariantly for all 3.k E Notwithstanding, it is easy to check that the following slightly1325
perturbed operators1326

3
0 33/2

3
0 33/2

exp( | | )( ) : = ( ) exp( < , >) ( ) ( ) ,
2 | | (2 )

exp( | | )( ) : = ( ) exp( < , >) ( ) ( ) ,
2 | | (2 )

i ic k tC k C k i k y y y d y
k

i ic k tC k C k i k y y y d y
k

  


  




  


 







 

 

R

R

(187)1327

are commuting both to each other and with the Hamiltonian operators (177) and (179):1328

( ) ( )

[ ( ), ( )] = 0 = [ ( ), ( )]

[ ( ), ] = 0 = [ ( ), ],

[ ( ), ] = 0 = [ ( ), ]

int int
f f

b b

C k C s C k C s

C k H C k H

C k H C k H







   

  

  

(188)1329

for all 3, .k sE Thus, the related evolution flows (181) and (182) in the transformed Fock space1330
 should be considered under the modified constraints1331

( ) = 0 = ( )C k C k    (189)1332
for all 3.k E Taking into account the exact expressions (187), the constraints (189) can be1333
equivalently rewritten as1334

( ; , ) = 0,C t t x   (190)1335
where for all xR and the corresponding temporal parameters t and t  R1336

3
33/2

3
33/2

3
3

1( ; , ) := ( )exp( < , > | | )
(2 )

1 ( )exp( < , > | | ) =
(2 )

1=< , > ( ( ),| |) ( ) ( )
2

C t t x d kC k i k x i k t

d kC k i k x i k t

A d y c t t x y y y
c t





   






 

  


     









  

 

 


R

R

R

(191)1337

in which we put, by definition, the relativistic generalized function1338
(| | ( )) (| | ( ))( ( ),| |) := ,

2 | |
x y c t t x y c t tc t t x y

x y
       

  


 
(192)1339

dual to the well known generalized solution [123] [124]1340
2 2 2 (| | ( )) (| | ( ))(| | ( ) ) =

2 | |
x y c t t x y c t tx y c t t

x y
        

  


 
1341
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to the relativistic wave equation.1342
1343

Remark 5. It is here worthy to mention that the above defined operator ( ) : ,C t   1344
depending parametrically on the bosonic temporal parameter ,t R satisfies the relativistic1345
wave equation1346

2

2 2

1 = 0,C C
c t

 







(193)1347

that can be easily checked, by making use of the wave equations (167) rewritten in the Fock1348
space:1349

2 2

2 2 2 2

1 1= 0, = 0.A A
c t c t

  
  

 

  
 

(194)1350

Moreover, as can be shown by means of direct calculations, the transformed bosonic1351
Hamiltonian operator (179) on the Fock space  reduced via the modified Lorenz type1352
constraints (190) persists to be, as before, non-negative definite.1353

1354
Now we can proceed to derive the quantum Maxwell equations starting from the1355

operator equations (194) and the electromagnetic fields definitions (158) and (159) suitably1356
transformed to the Fock space  :1357

3

3
1( ) = ( ( ),| |) ( ) ( )

2
EB y c t t x y y y

c t
  



       

 


  
 R

(195)1358

and1359
3

3< , > = ( ( ),| |) ( ) ( ) ,
2

E d y c t t x y y y
t

  



      

 
  

 R
(196)1360

which are considered in the weak operator sense. Taking now into account the relationships1361
(182) and (184), one can obtain strong operator relationships for the electrical and magnetic1362
fields1363

1 1= = , = .A AE B A
c t c t

  
    
 

 
  

 
(197)1364

with respect to the common reference frame .tK Similarly one can easily calculate the weak1365
operator relationship1366

1( < , >) = 0,A
c t

  


   (198)1367

which holds for the common temporal parameter .tR Now we will calculate the weak1368
Maxwell type operator relationships (195) and (196) with respect to the common reference1369
frame :tK1370

3
= = = =3

1( ) | = ( ( ),| |) ( ) ( ) | = 0
2t t t t t t

EB d y c t t x y y y
c t

  



       

  


  

 R
(199)1371

and1372
3

= =3< , > = ( ( ),| |) ( ) ( ) | = ,
2 t t tE d y c t t x y y y
t

    


 
       

  
   

 R
(200)1373

where we used the known [121] [124] generalized function relationship1374
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=0
1 ( ,| |) | = 2 ( )scs z z
c s


 


(201)1375

for all 3.zR To calculate further the expression (199), we need to make use of the strong1376
operator relationships (184) and find that1377

( )
= = = =| = | = [ , ] = .int

ft t t t t t
E E E E i EH E
t t t t t

     
  

     

    
 

 
(202)1378

Thus, from (202) and (199) one can obtain that1379
1( ) =EB
c t

 
   




   (203)1380

with respect to the common reference frame .tK The combined together weak operator1381
relationships (200) and (203)1382

1( ) = , < , > =EB E
c t

    
      




     (204)1383

in the Fock space  reduced by the weak constraint (198) jointly with the evident strong1384
operator relationships1385

1 = 0, = 0BE B
c t


  



 


(205)1386

compile the complete system of the quantum Maxwell equations with respect to the common1387
reference frame .tK1388

From the Heisenberg evolution equations (181) one easily obtains the strong operator1389
charge conservative flow relationship1390

( ) < , >= 0,
t
    

 


(206)1391

in which the quantity1392
:=   (207)1393

is interpreted as the operator charge density and the quantity1394
:=J c  (208)1395

is naturally interpreted as the operator current density in the space 3.R Whence the weak1396
operator equations (204) can be rewritten, taking into account the definitions (207) and (208),1397
in the weak form  of the standard Maxwell equations:1398

1( ) = , < , > =E JB E
c t c


      




     (209)1399

under the Fock space  constraint (198). Moreover, based on the weak operator Maxwell1400
equations (209) and the Lorenz constraint (198), one can derive easily the following weak1401
operator linear wave equations1402

2 2

2 2 2 2

1 1( ) = , ( ) =A JA
c t c t c
   
      

 

     (210)1403

with respect to the common laboratory reference frame ,tK allowing to calculate the causal1404

quantum bosonic potentials 4( , ) :A     induced by the charged fermionic field in the1405
analytical form:1406
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3 3

3 3
1 ( , ) 1 ( , )= , = ,

4 | | 4 | |

' 't y d y J t y d yA
x y c x y 


   

R R
(211)1407

where the "retarded" temporal parameter := | | / ,'t t x y c  R making the equations (210)1408
exactly satisfied modulo the solutions to their uniform forms. Moreover, owing to (206), the1409
expressions (211) satisfy exactly the strong operator Lorenz constraint1410

1 < , >= 0A
c t





 




 (212)1411

with respect to the laboratory reference frame .tK1412
From the analysis of the quantum charged particle fermionic field model, interacting1413

with the self-generated quantum bosonic electromagnetic field, one can infer the following1414
important consequences:1415

1416
• the physical effective evolution of the fermionic-bosonic system with respect to the1417

common reference frame tK is governed by the reduced fermionic Hamiltonian operator (177),1418

acting on the canonically transformed Fock space , reduced by means of the weak Lorenz1419
type operator constraint (198);1420

1421
• the compatibility of evolutions of the quantum fermionic and bosonic fields with1422

respect to the common temporal reference frame tK entails the reciprocal influence of the1423
fermionic field on the bosonic one and vice versa, being clearly demonstrated both by the weak1424
field potentials operator equations (210) and the Lorentz type weak constraint (198) imposed1425
on the Fock space ;1426

1427
• subject to the basic self-interacting fermionic-bosonic system described by the joint1428

Hamiltonian operator (172) in the transformed Fock space , one can claim that the bosonic1429
electromagnetic impact into the quantum charged particle dynamics is decisive, as owing to it1430
the fermionic system can realize its charge interaction property through the physical vacuum1431
deformation, caused by the related deformation of the weak Lorenz type operator constraint1432
(190), and resulting in the weak operator potential equations (211).1433

1434
The consequences formulated above subject to the quantum fermionic-bosonic self-1435

interacting phenomenon, as it was shown in [125], appeared to be very important from a1436
classical point of view, especially for physical understanding the inertial properties of a charged1437
particle under action of the self-generated electromagnetic field.1438

1439
6. Classical reduction of the quantum charged particle and1440

electromagnetic field evolutions1441
1442

Let's consider the vector position operator 3ˆ :x    and its weak evolution in the1443
reduced Fock space  with respect to the complete and suitably renormalized charged particle1444
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Hamiltonian operator (177). Taking into account that the Hamiltonian operator ( ) :int
fH   1445

can be represented as1446
( ) 3 3

3 3ˆ= < , > ( < , > ),int
f xH d x c p d x c A              

R R
(213)1447

within which the operators 3( , ) :A     are given by the nonlocal integral expressions1448

(211) and 3ˆ :xp   is the locally defined charged particle  momentum operator1449

ˆ := ,x xp
i

 canonically conjugated [71] to the position operator 3ˆ : ,x   that is1450

ˆ ˆ[ , ] = ( )yp x x y
i
 
 (214)1451

for any 3, .x yR This also, in particular, means that the position operator 3ˆ :x    is a1452
priori given in the diagonal representation: ˆ :=xf xf  for any vector .f  1453

As a result of a simple calculation one finds the expression1454
ˆ / = ,dx dt c  (215)1455

which can be used for obtaining the classical charged particle  velocity 3( , ) ( )u t x T R as1456
ˆ( , ) := ( , / ) = ( , ),u t x dx dt c     (216)1457

where the vector  is the ground state of the Hamiltonian operator (213) acting in the1458
Lorenz type reduced and suitably renormalized [71] [88] [121]  [123] Fock space .1459
Substituting (215) and (207) into the Hamiltonian expression (213) one obtains the expression1460

( ) 3 3
3 3

1ˆ ˆ= < / , > ( , >),int
f xH d x dx dt p d x J A

c     
R R

(217)1461

whose classical counterpart looks as1462
( ) 3

3
1= ( < , >),int

fH d x J A
c   

R
(218)1463

within which there was taken into account the previously assumed quantum massless charged1464
particle  fermionic field. The expression (218) jointly with the renormalized bosonic field1465
Hamiltonian (162) gives rise to the complete classical Hamiltonian function1466

( ) 3 2 2
3

1 1= [ (| | | | ) < , >],
2

int
f bH d x E B J A

c       
R

(219)1467

governing the temporal evolution both of the charged particle  and of the electromagnetic1468
fields with respect to the laboratory reference frame .tK The obtained Hamiltonian function1469
and its corresponding Lagrangian form (166) have been effectively used before in [125] for1470
describing the classical self-interacting charged particle dynamics and its inertial properties.1471

Being experienced with the analysis of a self-interacting charged quantum particle1472
fermionic field with the self-generated quantum bosonic electromagnetic field, we understand1473
well that the influence of the electromagnetic field on the charged particle should be1474
considered as crucial, strongly modifying the related fermionic Hamiltonian operator,1475
describing the charged particle dynamics. As the simultaneously modified bosonic1476
electromagnetic operator depends, owing to the self-interaction, on the charge and current1477
particle field densities, the joint impact on the charged particle dynamics can be effectively1478
classically modeled by means of its inertial mass parameter. In the quantum operator case the1479
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physical charged particle mass parameter phm R can be naturally defined by means of the1480
least quantum renormalized Hamiltonian (172) eigenvalue1481

1482
2 ( ) ( ) ( )

,|| ||=1
:= ( , ), := ,inf int int int

ph f b f b f b
f f

m c f H f H H H
 




 

     (220)1483

in the suitably transformed Fock space  and reduced by means of the operator Lorenz type1484
constraint (198) with respect to the common reference frame .tK As the quantum spectral1485
problem (220) is very complicated, new tools are needed to be developed for its successful1486
analysis.1487

1488
7. Classical self-interacting charged particle dynamics and its1489

inertial properties1490
1491

The quantum operator Hamiltonian approach of Section 4. makes it possible to treat1492
analytically the charged particle self-interaction mechanism, which can be described by means1493
of the following two steps. The first one consists in producing the charged particle dynamics1494
governed by the gauge type component of the charged particle Hamiltonian operator (177),1495
and the second one - consists in modifying this dynamics by means of the self-generated1496
electromagnetic field, whose influence is governed by the bosonic Hamiltonian (179), perturbed1497
by the dependence of the electromagnetic field potentials on the related charge and current1498
densities through the differential relationships (210). This mechanism can be classically realized1499
analytically by means of the alternative and already before mentioned Lagrangian least action1500
formalism, following the well known slightly modified [5] Landau-Lifschitz scheme. Namely, the1501
Lagrangian function for the classical charged particle , interacting with the self-generated1502
electromagnetic field, is easily derived from the corresponding Hamiltonian function (219),1503
giving rise to the classical Lagrangian expressions (166) in the following slightly extended form:1504

3
( ) 3

3
3

1= (< , > )

1 1 1(< , >
2

< , >) < , / >,

f b d x J A
c

A Ad x
c t c t

A A k dx dt



 

  

 
     

 

   





  

 
 

 

R

R

L

(221)1505

where vector 3:= ( , )k k t x E models the related radiation reaction momentum, caused by the1506
accelerated charged particle  with respect to the laboratory reference frame ,tK as well as1507
assuming that the classical Lorenz type constraint (198) is satisfied a priori. Here we need to1508
mention that the first part of the Lagrangian (221) is responsible for the internal gauge type1509
charged particle self-interaction and the second one is responsible for the external charged1510
particle self-interaction induced by the suitably perturbed electromagnetic field, depending on1511
the particle charge and current densities. The physical difference between these two1512
phenomena proves to be especially important for calculation of an effective Lagrangian1513
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function for the related dynamical properties of the self-interacting charged particle.1514
Before proceeding further we need to make an important comment concerning the1515

least action properties of the classical relativistic self-interacting Lagrangian (221). Namely,1516
taking into account a deep quantum vacuum origin [121] of the electromagnetic field and its1517
effective measuring only with respect to the common laboratory reference frame ,tK we can1518
state that the related Maxwell equations should be naturally derived from the following least1519
action principle: the variation ( ) = 0,t

f bS 
 where by definition, the action functional1520

( ) 2
( )

1
:=t

f b f bt

tS dt  L (222)1521

is calculated with respect to the laboratory reference frame tK on a fixed temporal interval1522

1 2[ , ] .t t  R Yet, as it is easy to check, the above action functional (222) fails to derive the1523
corresponding Lorentz type dynamical equations for the self-interacting charged particle , if1524
to take into account that the related charged particle is considered to be pointwise, located at1525
point 3( )x t E for tR and endowed with the current density vector 3= ( ) /J dx t dt E and1526
the charge density 3:= ( ( )), .x x t x   E This, evidently, means that the action functional1527
(222) should be suitably modified with respect to the [1] [51] Feynman proper time reference1528
frame paradigm, owing to which the action functional for the charged particle dynamics has a1529
physical sense if and only if it is considered with respect to the proper time reference frame1530

:K1531

( ) 2 22
( )

1
:= ) (1 | | / )f b f bS x c d




    L (223)1532

on a fixed temporal interval 1 2[ , ] ,   R where we took into account, that1533
2 2:= (1 | | / )dt x c d  and, by definition, the velocity := /x dx d with respect to the proper1534

temporal parameter . R Then from the least action condition ( ) = 0f bS
 
 on the fixed1535

temporal interval 1 2[ , ]   R one easily obtains the well known classical Lorentz dynamical1536
equation1537

( ) = ,d mu E u B
dt

    (224)1538

written with respect to the laboratory reference frame .tK When deriving (224) we defined1539

the inertial mass by 2:= / .m c  The reasonings presented above will be in part employed1540
below when analyzing a suitably reduced Lagrangian function (221).1541

For the self-interacting charged particle to be physically specified by the mentioned1542
above phenomena in detail, we will consider below a so-called shell model particle, whose1543
charge is uniformly distributed on a sphere of a very small yet fixed radius. Then, following the1544
similar calculations from [5], one can obtain from (221) that1545
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3
( ) 3

3 3
3 3

2
2

1 1 1= ( < , > < , > < , >)
2
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1 < , > < , / >=lim2

f b

r
r r

E Ad x E A A J
c t c t
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3 3
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 
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 

R
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(225)1548

1549
where we took into account that 2

2 < , >= 0,limr r
r

E A B dS    
S

meaning vanishing of1550

radiated energy. Also we denoted by ( ) := supp 2  S and by ( ) := supp 2  S the1551
charge  supports, located on the electromagnetic field shadowed rear and1552
electromagmetic field excited front sides of the charged particle spherical shell1553

( ) := ( ) ( ),      respectively (see Fig 1.), subject to its motion  with respect to the1554
laboratory reference frame .tK The expression (225) demonstrates explicitly that during the1555
charged particle motion the self-generated electromagnetic field interacts effectively only with1556
its frontal part 2( )  S of1557

1558
1559
1560
1561
1562
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1563
1564

1565
Fig. 1. The courtesy picture from [31]1566

1567
the particle spherical shell 2 ,S as the rear part 2( )  S of the particle shell enters during its1568
motion into the shadowed interior region of the sphere, where the net electric field E 3E is1569
vanishing owing to the charged particle spherical symmetry. To proceed further we need to1570
calculate the electromagnetic potentials 4 3( , ) : ,A M   R E using the determining1571
expressions (211) as 1/ 0 :c1572
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1574

where the limit 0 (...)lim was treated physically, that is taking into account the assumed1575
spherical shell model of the charged particle  and its corresponding self-interaction during its1576
motion. Now, as a result of calculations based on the electromagnetic potentials (226), the1577
effective expression for the classical Lagrangian (225) can be equivalently rewritten up to1578

4(1/ )O c accuracy with respect to the laboratory reference frame tK as1579

( ) 2
( ) 2= | | ,

2
t es
f b u

c
 EL (227)1580

Where we have made use of the following integral expressions:1581
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(228)1582

obtained owing to reasonings similar to those in [2] [126]. Now, to derive from the reduced1583
Lagrangian function (227) the corresponding dynamic equation for the charged shell model1584
particle , we need the Feynman proper time paradigm to transform this Lagrangian with1585
respect to the charged particle proper time reference frame :K1586

( ) ( ) 2
( ) ( ) = | | < , >,

2
t es
f b f b

m x k x
     L L (229)1587

where we denoted by1588
2 2:= 1 | | /es esm m u c (230)1589

the so-called relativistic rest mass of the charged particle with respect to the proper time1590
reference frame ,K and by1591

2:= /es esm cE (231)1592
the so-called charged particle electromagnetic mass with respect to the laboratory reference1593
frame .tK Based on the Lagrangian function (229) one can construct up to 2(1/ )O c the1594
generalized charged particle inertial momentum1595

:=f phm u k  (232)1596
as1597

( )
( )= / = ,f f b esx m u k    L (233)1598

Satisfying, with respect to the proper time reference frame K , the evolution equation1599
( )
( )/ = / = 0,f f bd d x    L (234)1600

which is equivalent to the Lorentz type equation1601
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( ) / = ( ) / :=es rd m u dt dk t dt F (235)1602
with respect to the laboratory reference frame ,tK where the right hand side of (235) means,1603
by definition, the corresponding radiation reaction force .rF Having applied to the Lagrangian1604
function (229) the standard Legendre transformation, one finds the quasi-classical conserved1605
Hamiltonian function1606

2
( ) ( ) 2 2

( )
| | 1:=< , > = (1 | | / ),
2 2

t es
f b f f b

m ux u c   H L (236)1607

Satisfying, with respect to the laboratory reference frame tK , the condition ( ) / = 0t
f bd dtH for1608

all .tR Yet, the most interesting and important consequence from (236)and the dynamic1609
equation (235), consists in coinciding the electromagnetic mass parameter :esm R1610

:= ,phys esm m (237)1611
defined by (231), with the naturally related and physically observed inertial mass ,physm R as1612
it was conceived by H. Lorentz and M. Abraham more than one hundred years ago.1613

1614
8. The radiation reaction force analysis1615

1616
To calculate the radiation reaction force (235) one can make use of the classical Lorentz1617

type force expression (224) and obtain in the case of the charged particle shell model, similarly1618
to [2], [126],[127], up to 4(1/ )O c accuracy, the resulting self-interacting Abraham-Lorentz1619
type force expression with respect to the laboratory reference frame .tK Owing to the zero net1620
force condition, we have that1621

/ = 0,f sd dt F   (238)1622
where, by definition, := ,f phm u the Lorentz force can be rewritten in the following form:1623

3

3

3 2

3 2

1= ( , ) ( , )( )2

1 ( , ) ( , )( ) ( )2

1 ( , ) ( , ) (1 | / | )( )2

1 ( , ) ( , ) (1 | / | ).( ) ( )2

s
dF d x t x A t x

c dt

dd x t x A t x
c dt

d x t x t x u c

d x t x t x u c



 

 

  



 



 

 

 

   

  

















(239)1624

Based on calculations similar to those of [2] [126], from (239) and (226) one can obtain, within1625
the charged particle shell model, for small | / | 1u c = and slow enough acceleration that1626
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The relationship above can be rewritten, owing to the charge continuity equation (206)-(208)1628
and the rotational symmetry property, giving rise to the radiation force differential-integral1629
expression:1630
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Taking into account the integral expressions (228), one finds from (241) up to the1632
4(1/ )O c accuracy the final radiation reaction force expression1633
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(242)1634

holds. We mention here that following the reasonings from [7] [31]  [35]  [105] [106], in the1635
expressions above there is taken into account an additional hidden and velocity 3( )u T R1636
directed electrostatic Coulomb surface self-force, acting only on the front half part of the1637
spherical electron shell. As a result, from (238), (239) and the relationship (232) one obtains1638
that the generalized charged particle momentum1639

2

3

2:= = ,
3p es es
dum u m u k

c dt
   (243)1640

thereby defining both the radiation reaction momentum
2

3

2 ( )( ) =
3
du tk t

c dt
 for all tR and the1641

corresponding radiation reaction force1642
2 2

3 2

2= ,
3r
d uF

c dt
 (244)1643

which coincides exactly with the classical Abraham-Lorentz--Dirac expression. From (243) it1644
follows that the observable physical charged particle shell model inertial mass1645

2= = /ph es esm m cE (245)1646
is of the electromagnetic origin, coinciding exactly with the result (237) obtained above.1647
Moreover, (243) ensues the final force expression1648

2 2
4

3 2

2( ) = (1/ ).
3es

d d um u O c
dt c dt


 (246)1649

The latter means, in particular, that the real physically observed " inertial" mass phm of1650
the charged shell model particle  is strongly determined by its electromagnetic self-1651
interaction energy esE with respect to the laboratory reference frame .tK A similar statement1652
was recently discussed in [31] [35], based on the vacuum Casimir effect type considerations.1653
Moreover, the assumed boundedness of the electrostatic self-energy esE appears to be1654
completely equivalent both to the presence of the so-called intrinsic Poincaré type " tensions" ,1655
analyzed in [7] [31] [118], and to the existence of a special compensating Coulomb " pressure" ,1656
suggested in [35], guaranteeing the assumed electron stability in the works of H. Lorentz and1657
M. Abraham.1658

1659
1660

9. Supplement: the "minimum" interaction principle and its1661

geometric backgrounds1662
1663

In this Section we will sketch analytical backgrounds of the "minimum" interaction1664
principle widely used in modern theoretical and mathematical physics. For description of a1665
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moving point charged particle under an external electromagnetic field, we will make use of the1666
geometric approach [64]. Namely, let a trivial fiber bundle structure  3 3: , = G R RM M ,1667
with the abelian structure group := \{0G R }, equivariantly act on the canonically symplectic1668
coadjoint space ( ).T  M The latter possesses  the canonical symplectic structure1669

(2) (1)

1 1

( , ; , ) := ( ) ( , ) =< , >

< , > < , >

p z x g d pr x g dp dx
dz g dg zdg dg

 
 

 

   G G

(247)1670

for all ( , ; , ) ( ),p z x g T  M where (1) 1( , ) :=< , > < , > ( )x g p dx z g dg T   G M is the1671

corresponding Liouville form on ( )T  M and < , >  is the usual scalar product in 3.E On the1672
fibered space M one can define a connection  by means of an one-form1673

: ( ) ,M T  A M G determined as1674
1 1( , ) := < ( ), >x g g A x dx g g dg A (248)1675

with 3, ( , ) .x g G   RG The corresponding curvature 2-form (2) 2 3( )  R G is1676
3
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where1678
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ij i j

A AF x
x x
 
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 
(250)1679

for , = 1,3i j is the spatial electromagnetic tensor with respect to the reference frame .tK For1680

an element  G to be compatibly fixed, we need to construct the related momentum1681
mapping : ( )l T  M G with respect to the canonical symplectic structure (247) on ( )T  M ,1682
and put, by definition, ( , ) :=l x p  G to be constant, 1:= ( )P l   ( )T  M and1683

= { : }GG g G Ad  to be the corresponding isotropy group of the element . G Next we1684
can apply the standard [47] [64] [96] invariant Marsden-Weinstein-Meyer reduction scheme to1685
the orbit factor space := /P P G  

 subject to the corresponding group G action. Then, as a1686
result of the Marsden-Weinstein-Meyer reduction, one finds that ,G G ; the factor-space1687

3( )P T
 R; becomes Poisson space with the suitably reduced symplectic structure1688

(2) (T
 ).P The corresponding Poisson brackets on the reduced manifold P equal to1689
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(251)1690

for , = 1,3,i j being considered with respect to the laboratory reference frame .tK Based on1691
(251) one can observe that  a new so called "shifted" momentum variable1692

:= ( )p A x  (252)1693
on P gives rise to the symplectomorphic transformation (2) (2) :=< , >d dx      1694

2 3( ( )).T  R The latter  gives rise to the following "minimal interaction" canonical Poisson1695
brackets important in theoretical physics:1696



56

(2) (2) (2){ , } = 0, { , } = , { , } = 0i j i i
j j i jx x x

    
   

  
   (253)1697

for , = 1,3,i j represented with respect to some new reference frame ,'t
K characterized by the1698

phase space coordinates ( x , ) P   and a new evolution parameter ,'t R as the spatial1699
Maxwell field compatibility equations1700

/ / / = 0ij k jk i ki jF x F x F x        (254)1701

are identically satisfied on 3R for all , , = 1,3,i j k owing to the electromagnetic curvature tensor1702
(250) definition.1703

1704
1705

10. Conclusion1706
1707

The electromagnetic mass origin problem was reanalyzed in details within the Feynman1708
proper time paradigm and related vacuum field theory approach by means of the fundamental1709
least action principle and the Lagrangian and Hamiltonian formalisms. The resulting electron1710
inertia appeared to coincide in part, in the quasi-relativistic limit, with the momentum1711
expression obtained more than one hundred years ago by M. Abraham and H. Lorentz  [53]1712
[54] [55] [64], yet it proved to contain an additional hidden impact owing to the imposed1713
electron stability constraint, which was taken into account in the original action functional as1714
some preliminarily undetermined constant component. As it was demonstrated in [31] [35],1715
this stability constraint can be successfully realized within the charged shell model of electron1716
at rest, if to take into account the existing ambient electromagnetic " dark" energy fluctuations,1717
whose inward directed spatial pressure on the electron shell is compensated by the related1718
outward directed electrostatic Coulomb spatial pressure as the electron shell radius satisfies1719
some limiting compatibility condition. The latter also allows to compensate simultaneously the1720
corresponding electromagnetic energy fluctuations deficit inside the electron shell, thereby1721
forbidding the external energy to flow into the electron. Contrary to the lack of energy flow1722
inside the electron shell, during the electron movement the corresponding internal momentum1723
flow is not vanishing owing to the nonvanishing hidden electron momentum flow caused by the1724
surface pressure flow and compensated by the suitably generated surface electric current flow.1725
As it was shown, this backward directed hidden momentum flow makes it possible to justify the1726
corresponding self-interaction electron mass expression and to state, within the electron shell1727
model, the fully electromagnetic electron mass origin, as it has been conceived by H. Lorentz1728
and M. Abraham and strongly supported by R. Feynman in his Lectures [1]. This consequence is1729
also independently supported by means of the least action approach, based on the Feynman1730
proper time paradigm and the suitably calculated regularized retarded electric potential impact1731
into the charged particle Lagrangian function.1732

The charged particle radiation problem, revisited in this Section, allowed to conceive the1733
explanation of the charged particle mass as that of a compact and stable object which should1734
be exerted by a vacuum field self-interaction energy. The latter can be satisfied by  imposing1735
on the intrinsic charged particle structure [30] some nontrivial geometrical constraints.1736
Moreover, as follows from the physically observed particle mass expressions (245), the1737
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electrostatic potential energy being of the  self-interaction origin, contributes in the inertial1738
mass as its main relativistic mass component.1739

There exist different relativistic generalizations of the force expression (246), which1740
suffer the common physical inconsistency related to the no radiation effect of a charged1741
particle in uniform motion.1742

Another deeply related problem to the radiation reaction force analyzed above is the1743
search for an explanation to the Wheeler and Feynman reaction radiation mechanism, called1744
the absorption radiation theory, strongly based on the Mach type interaction of a charged1745
particle with the ambient vacuum electromagnetic medium. Concerning this problem, one can1746
also observe some of its relationships with the one devised here within the vacuum field theory1747
approach, but this question needs a more detailed and extended analysis.1748
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