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Abstract: A gauge transformation of a simple electromagnetic system is analyzed.

The Hamiltonian which is derived from the Dirac Lagrangian density is used for

determining the state of an electron. The fact that this Hamiltonian is free of time

differential operators plays a key role in the analysis and proves that this Hamiltonian

is not invariant under a general gauge transformation. An application of a specific

gauge transformation illustrates this fact. These results call for a further analysis of

the role of gauge transformations in the theoretical structure of electrodynamics.
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1. Introduction

This work discusses a paradox that is obtained from an application of a gauge

transformation to a simple electromagnetic system. Electrodynamics is a widely stud-

ied sector of theoretical physics and it is relevant to many physical disciplines, ranging

from solid state physics to astrophysics. Therefore, the entire physical community is

expected to belong the the readership of this work.

A paradox is regarded as a useful tool for finding out new properties and inter-

relations between elements of a theory. A physical paradox describes a hypothetical

device and relevant physical laws are assumed to determine the behavior of the sys-

tem. The outcome of a paradox is an apparent contradiction. Such a contradiction

provides a motivation for a further investigation of the relevant physical laws. This

kind of investigation generally contributes to a better understanding of these laws.

The following lines briefly describe two well known paradoxes which are used here as

an illustration of this matter.

In the 1930s, Einstein, Podolsky and Rosen (EPR) described a quantum paradox

of an action at a distance [1]. They used a principle which they called physical reality

and regarded the result as an indication that quantum mechanics is an incomplete

theory. For this reason, EPR put forward the need for finding hidden parameters

that will promote quantum mechanics to the status of a complete theory. Later

Bohm and Aharonov [2, 3] and Bell [4] have added elements that were used in an

experimental test of the EPR idea. Experimental results support the idea that there is

a kind of quantum information that propagates instantaneously (see [5] and references

therein). Thus, the apparent EPR paradox has provided a motivation for acquiring

new information on how physical processes work.

In the 1960s Shockley and James presented a paradox where a stationary system

of a charge and a magnet has an electromagnetic nonzero linear momentum [6]. Soon

2



after the publication of this paradox, Coleman and Van Vleck provided a general

proof showing that the system’s total linear momentum must be balanced [7]. Later

Comay has shown that an explicit mechanical linear momentum exists in the system.

In particular, if a nonvanishing pressure gradient exists along a closed loop of current

then effects related to the energy-momentum tensor yield a nonzero mechanical linear

momentum [8]. This mechanical momentum balances the electromagnetic linear mo-

mentum and also supports the validity of Coleman and Van Vleck general analysis.

Thus, the Shockley and James paradox has ended up with a better understanding of

elements of classical physics.

This paper discusses gauge transformations in the quantum domain. In classi-

cal physics, electrodynamic equations of motion - namely, Maxwell equations and

the Lorentz force - are independent of the 4-potentials. Therefore, classical electro-

dynamics is invariant under a gauge transformation. On the other hand, quantum

theories depend explicitly on the 4-potentials. The analysis abides by physical laws

and proves that the Dirac Hamiltonian is not invariant under a specific gauge trans-

formation. This outcome demonstrates the need for a further analysis of the role of

gauge in theoretical physics.

The paradox of this work is described in the second section. The third section

contains the conclusions. Expressions are written in units where h̄ = c = 1. The

relativistic metric is diagonal and its entries are (1,-1,-1,-1). Greek indices run from

0 to 3.

2. The Paradox

The paradox described below arises from an examination of a specific gauge trans-

formation that pertains to the state of an electron which obeys the Dirac equation.
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To this end, let us examine the Lagrangian density of a Dirac electron [9, see p. 78]

LD = ψ̄[γµ(i∂µ − eAµ)−m]ψ, (1)

where Aµ = (V,A) denote the components of the electromagnetic 4-potential [10,

see p. 10] or [11, see p. 48]. Here one sees that in this equation, like in any other

quantum equation, the charge interacts with the 4-potential.

It is well known that the Lagrangian density of (1) is invariant under the gauge

transformation Λ(x) which is an arbitrary function of the space-time coordinates

(denoted by x) [9, see p. 78] and [12, see p. 345]

Aµ(x) → Aµ(x) + Λ(x),µ ; ψ(x) → exp(−ieΛ(x))ψ(x). (2)

Here e is the electronic charge, which is a dimensionless Lorentz scalar in the units

where h̄ = c = 1. Indeed, substituting (2) into (1), one finds that the contribution of

the gauge 4-potentials Λ(x),µ is canceled out by the additional terms obtained from

the partial differentiation of exp(−ieΛ(x))ψ(x).

The symbol ψ(x) of the Dirac Lagrangian density (1) describes a general state of

the given Dirac particle, simply because this Lagrangian density holds for all cases.

The purpose of the following discussion is to find out how a gauge transformation

affects specific solutions of the Dirac equations. To this end, one must construct

the Hamiltonian and pick up the required solution from the entire spectrum of its

eigenfunctions. The discussion presented below is dedicated to this matter.

Let us turn to the paradox and examine a motionless electron located at the

vicinity of point P in a field-free space. The Dirac Hamiltonian is used for finding the

time evolution of this electron. (A quantum expression for the Hamiltonian is also

required by the Bohr correspondence principle. Here the classical limit of quantum

theories should agree with classical physics. Evidently, in classical physics energy is

a well defined quantity. Therefore, one requires that quantum theories should have

4



a self-consistent expression for energy.) This Hamiltonian can be derived from the

Lagrangian density of (1) in the following steps.

The Hamiltonian density H is derived from the Lagrangian density by the well

known Legendre transformation

H =
∑

i

∂L

∂ψ̇ i

ψ̇i − L, (3)

where the index i runs on all functions. In the specific case of a Dirac particle one

obtains from (1) and (3)

HD = ψ†[α · (−i∇− eA) + βm+ eV ]ψ, (4)

which is written here in the standard notation [10, see p. 11]. The density of a Dirac

particle is ψ†ψ [10, see p. 9]. Thus, removing the density from (4), one obtains the

operator form of the Dirac Hamiltonian

HD = [α · (−i∇− eA) + βm+ eV ]. (5)

This Hamiltonian stands on the right hand side of the Dirac equation [10, see p. 11]

i
∂ψ

∂t
= HDψ = [α · (−i∇− eA) + βm+ eV ]ψ. (6)

As is well known, the Dirac Hamiltonian (5) does not contain a time differential

operator.

The Dirac equation (6) is used for finding the time evolution of an electron at

the vicinity of point P . Here the field-free 4-potential is

Aµ = 0. (7)

Hence, the Dirac equation for a free electron

i
∂ψ

∂t
= [α · (−i∇) + βm]ψ (8)

determines the electronic state.
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Let us examine how this system is affected by the following gauge function

Λ(x) = et/r. (9)

Here e is the absolute value of the electronic charge, t is the time and r is the distance

from the origin of the spatial coordinates. Certainly, the gauge function of (9) is a

legitimate gauge expression because it depends on space-time coordinates. This gauge

transformation casts the null 4-potential of (7) into the following expression

A′
µ =

∂(et/r)

∂xµ
= (e/r,−etr/r3). (10)

The gauge transformation of (2) also transforms the Dirac wave function. Introducing

the specific gauge function of (9), one finds that the transformed wave function (2) is

ψ′(x) = exp(ie2t/r)ψ(x). (11)

And indeed, substituting (10) and (11) into the Dirac Lagrangian density (1), one

finds that this Lagrangian density is invariant under the transformation of the gauge

function (9).

On the other hand, the new function ψ′(x) of (11) must satisfy the Dirac equation

(6), where the gauge terms of (10) are used in the expression for the 4-potential. Here

one obtains

i
∂ψ′

∂t
= HDψ

′(x) = [α · (−i∇− eA) + βm+ eV ]ψ′(x)

= exp(ie2t/r)[α · (−i∇) + βm− e2/r]ψ(x) (12)

It turns out that similarly to the case of the Dirac Lagrangian density (1), the contri-

bution of the 3-vector part of the gauge (10) is eliminated from the Dirac Hamiltonian

of (12). On the other hand, the 0-component of that gauge remains as is. This out-

come stems from the fact that the Dirac Hamiltonian (5) contains spatial differential

operators but is free of a time differential operator.
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Let us define the point P of the electron so that its distance from the origin of

the spatial coordinates is about the Bohr radius. It turns out that the gauge trans-

formation (9) produces (12) and the differential equation inside the square brackets

of its last line is the Dirac equation of a bound electron of the hydrogen atom [10, see

p. 52], because it contains an additional Coulomb-like term −e2/r. This equation is

an eigenvalue problem which is thoroughly discussed in the literature. In particular,

the bound states of the hydrogen atom have a radially decreasing exponential factor

of the form exp(−kr), where k is a positive constant [10, see p. 55]. Now, ψ′(x) and

ψ(x) of (12) differ by a phase factor whose absolute value is unity. It means that

also the absolute value of ψ′(x) decreases exponentially. Evidently, the exponentially

decreasing factor of the solution ψ′(x) of the gauge transformed problem of (9) is

inconsistent with the free wave of the electronic state of the null potential (7). This

result proves that an application of the legitimate gauge transformation (9) yields a

paradox.

The foregoing analysis shows a problem with the gauge-transformed Dirac Hamil-

tonian which stands on the right hand side of (12), because it contains the unphysical

Coulomb-like term −e2/r. This outcome indicates that a corresponding problem

should exist with the left hand side of this equation. And indeed, it is proved here

that this additional unphysical term is also found on the left hand side of (12). Thus,

let us examine the gauge transformed function ψ′ of (11) which stands on the left

hand side of (12). As is well known, an ordinary wave function of a motionless particle

in a well-defined energy state takes the form

ψ(x) = exp(−iEt)χ(x, y, z). (13)

Here the time dependence of ψ(x) appears only in the phase where the energy E is

a constant and χ(x, y, z) is a spatially dependent energy eigenfunction. On the other

hand, the phase factor of the gauge transformed function ψ′ of (11) also depends on
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the radial coordinate r and on the time t. In the present case one obtains for the

motionless free electron

i
∂ψ′

∂t
= i

∂ exp(ie2t/r)

∂t
ψ + i exp(ie2t/r)

∂ψ

∂t

= (−e2/r +m)ψ′, (14)

where m is the electronic mass. Therefore, the coordinate-dependent quantity −e2/r

of (14) proves that the gauge-transformed wave function ψ′ is not an energy eigen-

function. This is a contradiction because an electron in a free space has a well defined

energy and in the case of a motionless electron E = m [10, see p. 28]. Hence, the

same contradiction appears on each side of (12) where the unphysical Coulomb-like

term −e2/r appears. This analysis shows a counter-example which proves that the

gauge phase factor of the wave function ψ′ of (12) destroys a specific eigenfunction of

the Hamiltonian and casts it into an unacceptable form.

The foregoing discussion shows the two sides of the inconsistency that emerges

from the application the gauge transformation (9) to the quite simple state of a

motionless Dirac particle in a field free space. The transformed Hamiltonian (12)

has a new unphysical term −e2/r that takes the form of the hydrogen atom problem.

Hence, its eigenfunctions should be those of the hydrogen atom. On the other hand,

(14) shows that the same gauge transformation casts an eigenfunction of a motionless

particle into a function that is not an eigenfunction of the operator i∂/∂t.

3. Conclusions

This work relies on three general principles of quantum theories of electromagnetic

systems: the variational principle and its Lagrangian density, the key role of the

Hamiltonian which is derived from this Lagrangian density and the gauge invariance
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of the system. Another general principle is the reliability of mathematical results that

are obtained from an analysis of fundamental mathematical expressions of a physical

theory.

The main result of this work is derived from an application of these principles.

The analysis proves the following new property of the Hamiltonian of an electrically

charged Dirac particle.

• Unlike the Lagrangian density, which is invariant under a gauge transformation,

the associated Hamiltonian is not invariant under such a transformation.

This conclusion depends on the well known fact that the Dirac Hamiltonian is free of

a time-derivative operator.

The paradox described herein provides an illustration of this conclusion. This

paradox is related to two expressions of the 4-potential (7) and (10), which differ by a

gauge transformation. It turns out that contrary to a general expectation, the Dirac

Hamiltonian yields two physically different results. The state of a free electron which

is derived from (8) is inconsistent with that of the solution of (12), where the electron

is bound to the hydrogen atom and its wave function decreases exponentially with

the distance r from the origin. This outcome illustrates the main point of this work:

the Hamiltonian is not invariant under a general gauge transformation. Obviously,

the Hamiltonian is a crucial element of classical and quantum theories because it

determines the time evolution of the system. Other problematic aspects of the gauge

transformations have been published earlier [13].

The problematic aspects of the result of this work apply to quantum mechanics

and to quantum field theory (QFT) as well. Indeed, the close relationships between

these theories is stated clearly in S. Weinberg’s well known textbook: ”First, some

good news: quantum field theory is based on the same quantum mechanics that was

invented by Schroedinger, Heisenberg, Pauli, Born, and others in 1925-26, and has
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been used ever since in atomic, molecular, nuclear and condensed matter physics”

(see [12], p. 49). The same conclusion can also be found in Rohrlich’s textbook

which explains the hierarchical relationships between QFT and quantum mechanics

(see [14], pp. 1-6).

The result of this work provides a motivation for a further investigation of the

role of gauge in electrodynamics and of the Lagrangian-Hamiltonian relationships.

Such an investigation is expected to end up with a deeper understanding of the role

of gauge in electrodynamics.
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