
1 

 

Original Research Article 1 

Series Expansion Method for Exploring Critical Behavior in 2 

                         Diluted Magnetic Semiconductors 3 

 4 

In this study the author focuses on thermal and magnetic properties of diluted 5 

magnetic semiconductors at critical point. Such properties are discontinuous at 6 

some point in the critical region so that it is very important to study their critical 7 

behavior in these regions. In order to study these critical behaviors the author 8 

use series expansion technique and quantum lattice model with help of 9 

computer program. 10 
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1. Introduction 13 

The role of disorder in magnetism is important property in condensed matter 14 

physics and materials science. Widely accepted recent research activities [1–3] 15 

in diluted magnetic semiconductors (DMS) i.e. cationic substitution doping (by 16 

a few percent) of a semiconductor with magnetic impurities (e.g. ���������	 17 

with � ≈ 0.01 − 0.1) seemingly leads to an intrinsic ferromagnetic. The 18 

intrinsic mechanism of ferromagnetism is a big research topic recently, both 19 

from understanding the competition between disorder and magnetic interactions 20 

as well as for technological advancement i.e. the subject of ‘spintronics’ (or spin 21 

electronics)[4]. In this article, the author deals with theoretically the competition 22 

between thermal and magnetic correlations in DMS materials using analytical 23 

arguments on a disordered Ising spin model[5]. 24 

     In some cases, it is very difficult to get exact solutions, for such cases; there 25 

is a branching set of approaches which can be used. Among these techniques, 26 

the most popular one is series expansion method. This paper will be considered 27 
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the so called series expansion methods, of which there are again a number of 28 

different kinds. The common feature of all of these techniques is that, they can 29 

compute a number of coefficients in a power series expansion for some 30 

quantity. 31 

2.  Model 32 

 After the investigation of quantum mechanics, the two known scientists 33 

(Heisenberg and Dirac) independently proposed that the magnetic order in 34 

solids might be understood on the basis of a model of exchange coupled 35 

quantum angular momenta (‘spins’), with a Hamiltonian of the form [5] 36 

                                  � = −� ∑ σ�〈��〉 σ�,                                                (2.1) 37 

where  σ�  is Ising spin variable at site i, and its values are ±1, and J is constant 38 

interaction coupling parameter with dimension of energy. In this case we can 39 

assume a regular lattice of N sites, with nearest-neighbor interactions. The 40 

thermodynamic and magnetic properties can be derived from the partition 41 

function [6-7] 42 

                              Z�K� = ∑  �!" = ∑  �#$% ∑ σ�〈&'〉 σ�(.)*+,)-+,          (2.2) 43 

Where the first sum is over all spin configurations, and  K = βJ is a temperature 44 

dependent coupling constant, and  β = 1 K0⁄ T as usual. We note that at high 45 

temperatures %  is small. 46 

The power series expansions of the partition function in terms of K [8-9]. We 47 

obtain  48 

                  3�%� = ∑ ∏  �!*+*5〈&'〉 = ∑ ∏ ∑ 67
8!

∞8:;〈&'〉 �σ�σ��8)*+,)*+,       (2.3) 49 

The term  �σ�σ��8   is related with an l-fold line joining sites i and j on the 50 

lattice. The equation (2.3) can be represented by a diagram of the entire lattice 51 

with each bond  〈<=〉 and multiplicity  >&'. At each site i there will be a factor ?@, 52 

where p is the sum of multiplicities of all bonds connecting to site i. We refer to 53 

this as the degree of site i. The simple result[9] 54 

                        55 
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                   ∑  σA =B:±C D2, p  even
0, p  odd L                                                (2.4) 56 

 57 

immediately shows that the only non-zero terms come from graphs in which 58 

every vertex is of even  degree (including zero). Therefore, the partition 59 

function will be 60 

                           ZM�K� = 2M ∑ N�O�
P�O�)OQ, KRS                                         (2.5) 61 

where the sum is over all possible graphs with all even vertices, lO is the number 62 

of lines, including multiplicities, w(g) is a combinatorial factor for multiple 63 

lines, and C�g� is the number of ways in which the graph can be located on the 64 

lattice of N sites (the embedding factor)[10-13]. 65 

In the case of the Ising model, an immediate simplification is possible by use of 66 

the identity[9] 67 

                        �!*+*5 = WX	ℎ%�1 + [σ�σ��                                        (2.6) 68 

which is valid for σ�, σ� = ±1 , with [ = \��ℎ%. The zero-field partition 69 

function can then be written as 70 

                        ZM�K� = �coshK�M` a⁄ ∑ ∏ $1 + [σ�σ�(〈��〉)*,  71 

                                  = 2b�coshK�M` a⁄ ∑ C�g�)OQ, vRS                            (2.7) 72 

In equ.(2.7) q is the coordination number of the lattice, i.e. the number of 73 

neighbors of any site (Nq 2 ⁄  is the number of nearest-neighbor pairs), and the 74 

sum is again over a set of even-vertex graphs. However, only single-bonded 75 

graphs occur. 76 

Taking the embedding constant data [13] and  the logarithm as before, yields  77 

                
�
b >�ZM = ln2 + 3ln coshK + 2υa + 3υg + 6υi + 11υj + ⋯   (2.8) 78 

There is usually no need to do this, as υ can itself serve as a high-temperature 79 

expansion variable. We note that the number of graphs (to sixth order) has been 80 

reduced from 25 to 6.  This is a simple example of renormalization, which is an 81 

idea that will recur later. 82 
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Let us now return to the full Hamiltonian, with the field term, and derive a high 83 

temperature series [14-19] for the zero-field magnetic susceptibility from the 84 

corresponding thermodynamic potential, or the logarithm of the partition 85 

function, one obtains the usual thermodynamic and magnetic quantities, per site. 86 

 Internal energy: 87 

                          l = − m
m! n�

b >�3o                                                         (2.9) 88 

Specific heat: 89 

                           p = qr
qs = −tuva qr

q!.                                                  (2.10) 90 

 91 

Magnetization or order parameter: 92 

                             w = − �
!

m
mx n�

b >�3o                                                (2.11) 93 

(h is an appropriate field which couples to the order parameter operator in the 94 

Hamiltonian). 95 

 96 

 Susceptibility:      97 

                            y = mz
mx = − �

!
m{

mx{ n�
b >�3o                                         (2.12)      98 

                                           99 

 Using the identity (2.6), and a similar one for the field term, yields   100 

    101 

        ZM�K� = �coshK�M` a⁄ �coshβh�M ∑ ∏ $1 + [σ�σ�(〈��〉)*, ∏ �1 + τσ}�}  102 

                 = �coshK�M` a⁄ �coshβh�MΛM    �τ = tanhβh�                   (2.13) 103 

where 104 

   ΛM = ∑ ∏ $1 + [σ�σ�(〈��〉)*, ∏ �1 + τσ}�}  105 

and hence 106 

               
�
b >�3 = �

a ln WX	ℎ% + ln cosh vℎ + �
b >�ΛM                          (2.14) 107 

The quantity  >�ΛM can be expanded graphically, as before. In every bond in the 108 

graph there is a term [σ�σ� and, in addition, each site carries a factor either 1 109 

or  τσ}. Only those graphs with precisely two τ  factors contribute to (2.12). 110 

According to equ. (2.4) the graphs which contribute are those which have with 111 

precisely two vertices of odd degree, those to be compensated by the two  τσ}  112 

factors. Based on the above calculations we obtain the following expression for 113 

susceptibility: 114 
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                v��y��� ≡ y̅��� = 1 + 2 ∑ W����8� .)�{,                                (2.15) 115 

In this equ. the sum is over the set of graphs {�a}, and W��� denotes the 116 

coefficient of N  in the embedding factor ( the lattice constant of the graph). 117 

Therefore, expression for internal energy will be: 118 

l = − m
m! n�

a ln WX	ℎ% + ln cosh vℎ + �
b >�ΛMo                                     (2.16) 119 

                          120 

and based on equ.(2.16) we will find thermal specific heat and magnetization 121 

respectively as: 122 

                  p = tuva q
q!

m
m! n�

a ln WX	ℎ% + ln cosh vℎ + �
b >�ΛMo       (2.17)  123 

                             124 

                                      and 125 

 126 

                       w = − �
!

m
mx n�

a ln WX	ℎ% + ln cosh vℎ + �
b >�ΛMo           (2.18) 127 

                             128 

    The author will be concerned with models which exhibit finite-temperature 129 

phase transitions, particularly critical points, where the free energy develops a 130 

mathematical singularity at some temperature  �� (for this the thermodynamic 131 

limit is crucial). Not only is the determination of  ��  important but, even more 132 

so, the asymptotic behavior of thermodynamic quantities in the vicinity of  ��. 133 

   Results and Discussion 134 

 135 

Finding exact finite-temperature properties of such quantum lattice models can 136 

be very difficult but in order to get approximate values, one has to devise series 137 

expansions techniques for the lattice model in the thermodynamic limit. A very 138 

popular approach of these series expansions are high-temperature expansions 139 

(HTEs), in which the partition function Z and other extensive properties of the 140 

system are expanded in powers of the inverse temperature v = �tu����. Based 141 

on these techniques the author identified critical properties of diluted magnetic 142 

semiconductors.  143 
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 144 

Fig.1 The dependence of internal energy on temperature 145 

According to the mathematical derivation above the internal energy of the 146 

system strongly depends on temperature. As the figure 1 indicated when the 147 

temperature increases, internal energy also increases. This is in line with the 148 

theoretical explanations i.e internal energy (kinetic energy) of the system 149 

directly related to the temperature. In general, this series expansion technique is 150 

suitable technique in order to determine magnetic and thermodynamic 151 

properties at critical region . 152 
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 153 

  Fig.2 explains the relationship between magnetization and temperature 154 

Usually, magnetization is the order parameter that distinguish the phase 155 

transition in magnetic materials. Therefore magnetization is strongly related 156 

with temperature i.e. at high temperature the magnetization approaching to zero 157 

and there is no magnetic alignment in the system (see.fig2).  According to the 158 

figure the value of magnetization (order parameter) is high at low temperature 159 

and its magnitude decreases with increasing temperature.  160 

 Conclusion  161 

In conclusion, the series expansion technique that we have used here is very 162 

important to identify the critical behavior of materials. In this study we have 163 

mainly used high temperature series expansion with the concept of quantum 164 

lattice model in order to determine the magnetic and thermodynamic property of 165 

materials at critical region. Specifically the properties that we have identified 166 
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(Energy, heat capacity and magnetization) are in line with results from other 167 

mathematical and computational methods.    168 

  169 
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