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Abstract

In this paper we obtain some identities related to the Hamiltonian operator
composed with momentum and position operators and Euler polynomials and confirm these
properties through examples.
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1 Introduction
Various functions appear in many areas of theoretical physics, for example, Euler polynomials is

shown in the field of non-commutative operators in quantum physics. Let us define the commutator
of two operators p and ¢q as

[p,q] =pg — qp

and their anti-commutator as

{p,q} = pqg+ qp.

Generally we define the iterated anti-commutators as

{p,a}2 = {{p, ¢}, 4}, v ats ={{{p, ¢}, ¢}, ¢} = {{p, a}2, 4}

and moreover for all positive integers n, we have

P, a}n = {{p, ¢}n-1,4}-
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We introduce the Hamiltonian operator H as

1
Hzi(p2+q2).

C. Bender and L. Bettencourt [1] suggest the following result

gl =3 {a Bt + )] (1.1

where we can find the Euler polynomials E,, (z) (n € N) are given by the power series
>, z" 2e”*
En(z)— = . 1.2
; e (1.2)

The integers E,, = 2" E,,(1/2) are called Euler numbers. The first few Euler polynomials are

Eo(z) =1, El(ac):x—%, Eo(zx) = 2* —
Eg(a:)—x‘q’—ga:?—l—i, Ey(z) = 2" — 22° + z,
5 9 4,95 o 1
Es(z) ==z 5% + 5 5
It is well-known [2] that
n n .
E,(z) = (k) E,_x(0)x (1.3)
k=0
and
E.(z)+ En(z +1) = 22" foralln € N. (1.4)

In this article we start from the paper [3] and we try to generalize some identities shown on it thus
we obtain the following relations of the Hamiltonian operator involving Euler polynomials :

Theorem 1.1. Letn € N and a € R. Then we have

S (1) Es0 (fnar =}, 4 far -5 +1))

k=0

1 a
- H—f} .
on—1 {q’ 2S

Corollary 1.2. Letn € N anda € R. Then we have

§ (s (o33

k=0
1 a 1 a
- B O _¢ 1} .
g1 {q’H z}n g1 {q’H 5 Tlr,

The interesting thing of these results is that multiplying Hamiltonian operators by Euler polynomials
is simply modified to a Hamiltonian operator braket.
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2 Some identities for the Hamiltonian operator

Let N and R denote the sets of all positive integers and real numbers, respectively. We introduce the
symbolic notation, with a € R,

({g, H} +a) Xn: (n> a"*{q, H}x (2.1)

k=0

and the convention {¢q, H}o = q.

Proposition 2.1. (See [3]) Fora € R andn € N,

{eH+5} ={aH}+a),.
Corollary 2.1. Letn € Nanda € R. Then

(a)

n

R )

k=0

n
2n+1 2n—2k
H
k=0 <2k + 1) {0 fjaa

1 a a
(g, o3,
2 <{q 2 2n+1 1 2 2n—+1

Proof. By (2.1) and Proposition 2.1 we observe that

{eH+5} =({aH)+a), ’<Z>a”{q,H}k (2:2)
k=0
and
{o.n -5} =gty -a), = (’;)(—aw-’“{qﬂ}k. (2:3)
k=0

(a) After putting n = 2N in Eq. (2.2) and (2.3), adding them we obtain

QZ < ){q,H}ZkGQN 2k

=0

—Z <2N> N H}HZ <2N> —a)* " {q, H}x
:{q’H+§}2N+{ 2}2N
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(b) Letn=2N +1in(2.2) and (2.3). Then adding them we have

N
2N +1 2N —2k
2 E H
k=0 (2k+ 1>{q’ Jaraa

2N+1

2N +1 _
Z( ; )a”“ “{q, H}:

k=0
2N+1

. Z <2N+1> (a1 g H),

2 2N+1 2J)aNn+1

Proposition 2.2. (See [3]) An equivalent form of identity (1.1) is

1 1 1 n

From the above proposition we consider the following lemma and we can see that Proposition
2.2 is the special case a = 1.

Lemma 2.2. Letn € N anda € R. Then we have

won-gh e d fon-g ok ~{o(n-25))

Proof. From (1.1) we can easily know that

F{at-5) = lammy

2n

which deduces that by (1.4)

w5}t fer-g 4,
S{em (-t b o (a5t )
Hoam (=55 e feam (o *“;1“)}
(e (rt ) em (r ) )}
a2 (7

{
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Example 2.3. In Lemma 2.2 the case n = 1 implies that

o ({5} +{ar-541})
=5 (a(=5)+ (-5 ava(i-5+1)+ (-5 +1)0)

=qH +Hq—aq+q

a—1
= H — .
{ar-231}

But since
[p,H] = —ig and  [q,H]=1ip
we have
qH2 _2HqH+H2q = [q7H]H_ H[q7H] = [[q7H]7H] = [ZpaH} = Z[p7H]
= i(—iq)
=4q
and

2 2
Hop = 4+ Ha—q

This leads for the case n = 2 that

i{en=5},+{on—5+1})

g g)e (g g0
2(1=5)a(n—5)+(n-5)a
H*g+1)2+2(Hf%+1)q(Hf%+1)+(Hf%+1)QQ)
qH?

2
+T+HqH (a—l)Hq—(a—l)qH—!—(?—a—Fl)

—~
(S

— —~
|
\CINS]
~

H?

2
= H’q+qH” —(a—l)Hq—(a—l)qH+<&—a+ )

_{%(H_“;1>}.

Proof of Theorem 1.1. By (2.1) and Proposition 2.1 we note that
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)k (fo -2}, + o511

Then by replacing k& — [ with p and using

n\(k n! k! n! 1
E)\U) T K=k UE=—0! U (n—k)lk-10)

_ n! (n—=1)! _[n\[n=1) (n)({n-I
Tl =0 m—kNk-=0' \1J\k=1) "\ p )’

(1.3), and (1.4), the above identity becomes

" (n JH - —a+2\?
= l>{q21 lz;)( P >E"lp(0)< > )
5 () e o)

This concludes that by (2.1) and Proposition 2.1
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> (1) (fnr-g), +for -5 +1))
WZ(){qH}l a)"”!

= 5o (g HY — ),

1 a
- ,H—f} .
on—1 {q 2S.

Example 2.4. The casen =1 in Theorem 1.1 shows that

> (1) a0 (fwrr -4}, 4 fo -1},

k=0

)
—(é)El(O)-lﬂq—!—(i)Eo(O) ({a. 1t }+{qu })
+1)

i o= 2) - (1-2) a5 01) ¢ (-
=qH + Hq—aq

={or -3,

thus it is satisfied. Also if n = 2 in Theorem 1.1 then we have

> ()0 (o), for -5 1))

k=0

—<§>E2(O)-l-2q+<>E1 ({qH—} {q,H—%—!—l}l)
(2)mof (fan-g),+fon-g 1))
%({ -5}, +{et-5+1})
s({{en-sha-gte{{on-5afn-5e1})
o3 (o ) -5 0)
ci(a(r=g) w2 (r-5)a(r-5)+ (n1-5) "
- 2§ a3 00) 540

a
—aHq—aqH + HqH + —
2+2 aHq aq+q+2q

:%{%H_%}Q

)

a4
2
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and so it is satisfied.

Proof of Corollary 1.2. From Theorem 1.1 we deduce that

s (fun 8}, a5 +2),)
z)En-m<{q,H—;}k+{q7ﬂ—;+l},€>
(1) (1), + o3

_2%1{‘1’}[*5 2n1{’ 77+1}

Example 2.5. Ifn =1 in Corollary 1.2 then we obtain

5 (1) (o8}, o549

= 72q

a 1 a
A N N
{q 2J, o1 Y 2 T,

And ifn. = 2 in Corollary 1.2 then

NE

—0 <i> E-+(0) 21k ({q,H B %}k B {q,H B % + 2}k>

x

= —2qH — 2Hq + 2aq — 2q

1 a 1 a
. vl m-2 1} .
2{q’H 2}2 2{q’ 7 T,

3 Conclusion

We generalized the following identity

S (1) Eso e (fnar =5}, 4 far -5 +1))
k=0
~ g {or- ),

forn € Nand a € R. The case a = 1 was shown in [3].
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