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ABSTRACT  16 
Magnetic field effects on a free convective mass transfer flow of chemically reactive micropolar 
fluid over a vertical porous plate are investigated in this work. A mathematical model related to the 
problem is developed from the basis of studying magnetohydrodynamics(MHD). A usual 
mathematical transformation is applied on the model to obtain a system of non-dimensional 
equations. Analytical solution of the dimensionless problem is obtained using perturbation 
technique. The influence of different parameters (Modified grashof number Gm ,Suction parameter 
fw, Magnetic force number M, permeability of porous plate K, Micro-rotational number ∆, Vortex 
viscosity λ, Spin gradient viscosity number, Schmidt number Sc  and Chemical reaction parameter 
Cr) on velocity, angular velocity and species concentration profiles are presented graphically. 
Based on these curves the results and conclusion are depicted.  
 17 
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 19 
1. INTRODUCTION  20 
Micropolar fluids are the combination of microstructure which are first observed Eringen (1960) by the micropolar fluid 21 
theory. The theory described about local effect increasing due to microstructure and the intrinsic motion of the fluid 22 
elements. Physically, micropolar fluids consist of small, rigid, cylindrical macromolecules with individual motion and are 23 
influenced by spin inertia. Kucaba-Pietal (2004), Khedr (2009) investigated colloidal, Muthu (2008) analyzed human and 24 
animal blood, Lockwood et al. (1987) driven liquid crystal as well as exotic lubricants. Kelson and Desseaux (2001) 25 
investigated the effect of surface circumstance on micropolar fluid flow. The unsteady micropolar fluid flow between two 26 
parallel porous plates was driven Srinivasacharya et al. (2001). Mixed convection micropolar fluid on a porous stretching 27 
sheet is investigated by Bhargava (2003). Mohanty et al. (2015) investigated heat and mass transfer effect on micropolar 28 
fluid on a porous stretching sheet.  29 
Prathap kumer (2010) stuied on free convection flow of micropolar and viscous fluids through a vertical duct. Raptis 30 
(2011), Samiulhaq et al. (2012) and Seth et al. (2015) studied on free convective oscillatory flow and mass transfer with 31 
ramped temperature on a porous plate. Thereafter, Chamkha (2000), Chaudhary (2007), Samad and Mohebujjaman 32 
(2009), Eldabe (2011) and Seth (2015) have paid attention to the study of MHD free convection and mass transfer flows. 33 
At present time, chemical and hydrometallurgical industries need the study of heat and mass transfer with chemical 34 
reaction. Ahmmed and Das (2013) analyzed an unsteady free convection with heat and mass transfer chemically reactive 35 
MHD flow. Raju et al. (2013) investigated an unsteady free convection and chemically reactive MHD flow through infinite 36 
vertical porous plate. Bakr (2011) driven the effect of chemical reaction an a micropolar fluid with oscillatory plate. Das et 37 
al. (1994) analyzed the effective of first order homogeneous chemical reaction of an unsteady micropolar fluid flow. 38 
Ibrahim et al. (2008), Anand Rao et al. (2012), Das (2012) and Raju et al. (2013) investigated the effect of chemical 39 
reaction on an unsteady MHD free convection fluid through semi-infinite vertical porous plate with heat absorption. 40 



 

 Bakr (2011) analyzed the characteristic of a micropolar fluid velocity on oscillatory plate and constant heat source in a 41 
rotating frame. Kucaba-Pietal (2004), Khedr et al. (2009) investigated the micro inertia effects on the flow of a micropolar 42 
fluid past a semi-infinite plate.  43 
Hence our main goal is to investigate a free convective mass transfer steady flow of a chemically reactive micropolar 44 
fluid past a semi-infinite porous plate. 45 

2. ANALYSIS AND SOLUTION 46 
2.1 MATHEMATICAL FLOW 47 
A natural convective mass transfer steady flow of a chemically reactive micropolar fluid through a semi-infinite vertical 48 
porous plate is taken into account at the presence of magnetic field. The flow is considered vertically by x-direction and y-49 
direction is represented horizontally. When the flow at rest, the species concentration level C=C ∞ at all point, where C ∞ be 50 

the concentration of uniform flow. It is also assumed that a magnetic field B of uniform strength is applied normal to the 51 
flow region. The physical configuration and co-ordinate system of the problem is presented in the following Fig.1.   52 

 

53 

 54 
 55 

Fig. 1. Physical configuration of the flow 56 
 57 
Within the framework of the above stated assumption, the governing equations under the boundary-layer approximations 58 
are given by,   59 
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Angular Momentum Equation 
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Concentration Equation 
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with boundary condition, 67 

0,u = ,
u
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0,u = 0,Γ =        C C∞=  at y → ∞  69 

where u  is the velocity component, Γ  is the velocity acting in z - direction ( the rotation of Γ  is in the yx −  plane), 0B  70 

is the magnetic field component, g  is local acceleration due to gravity, χ  is the vortex viscosity, γ  is the spin gradient 71 

viscosity, β ∗ is concentration expansion coefficient. 72 
 73 
2.2 MATHEMATICAL FORMULATION 74 
Since our goal is to attain analytical solutions of the problem so we introduce the following dimensionless variables, 75 
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The dimensionless equations are,  77 
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 87 
2.3 MATHEMATICAL ANALYSIS 88 
Since the solution is sought for the large suction further transformation can be made Arifuzzaman (2015) as, 89 
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Now the model with small quantity, 94 
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The associate boundary conditions 98 
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2.4 SOLUTION  102 

Now for the large suction ( )1w >f , ε  will be very small. Therefore following Bestman (1990), GF ,  and H  can be 103 

expended in terms of the small perturbation quantity ε , 104 
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The dimensionless equations (5) - (7) transform into the following first order, second order and third order equations with 108 
their associated boundary conditions, 109 
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Now the solution of first order, second order and third order equations are given following, 124 
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Substituting the values of F, H and G, We get  132 
The velocity equation, 133 
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137 

The angular velocity equation, 138 
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The concentration equation, 141 
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 145 
3. RESULT AND DISCUSSION 146 
 147 
For the purpose of the applicability of the present mathematical model, the analytical solution are driven using the 148 
perturbation method and the discussion is made for various values of parameters just as Modified grashof number Gm 149 
,Suction parameter fw, Magnetic force number M, permeability of porous plate K, Micro-rotational number ∆, Vortex 150 

viscosity λ, Spin gradient viscosity number ( )∧ , Schmidt number Sc  and Chemical reaction parameter Cr. The fluid 151 

velocity, angular velocity and concentration versus the non-dimensional coordinate variable η
 
are displayed in Figures. 152 

The increase values of magnetic parameter create a drag force known as Lorent force. The velocity profiles are illustrated 153 
in Fig. 2. As it is observed, the velocity profiles curve climb up at the increase of magnetic force number. Afterwards, the 154 
suction parameter (fw) stabilize the boundary layer growth. So the velocity profiles curve decline with go up suction 155 
parameters. Schmidt number decrease the molecular diffusivity. For this reason velocity curves downward due to Schmidt 156 
number (Sc). Modified Grashof number signifies the effect of buoyancy force to the viscous hydrodynamic force. So, 157 
velocity curves increase with modified Grashof number (Gm). The velocity profiles go down for permeability of prous plate 158 
(K). Then with increase of vortex viscosity, the velocity profiles plunge. Fig. 3 revels the angular velocity profiles. Firstly, 159 
angular velocity profiles decline with rise of suction parameter (fw). Afterthat, it increases with the increase of modified 160 
Grashof number (Gm). But in Fig. 3(c) angular velocity profiles show flactution for Schmidt number (Sc). Then at the 161 
upsurge of micro-rotational number the angle velocity increase. At the end of the list of figure, angular velocity decline due 162 
to soar of spin gradient viscosity number and vortex viscosity. 163 
Fig. 4 describes the concentration profiles. As it is noticed, concentration boundary layer is lowered down as chemical 164 
reaction parameter (Cr) climb up. Concentration curves is also declined as Schmidt number (Sc), suction parameter (fw), 165 
micro-rotational parameter ∆ increase. 166 
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Fig. 2. Velocity profiles for different values of (a) modified Grashof number (b) suction parameter (c) 
Schmidt number (d) magnetic force number (e) permeability of porous plate (f) spin gradient viscosity 

number. 
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Fig. 3. Angular velocity profiles for different values of (a) modified Grashof number (b) Schmidt number 
(c) suction parameter (d) micro-rotational number (e) spin gradient viscosity number (f) vortex viscosity. 
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Fig. 4. Concentration profiles for different values of (a) suction parameter (d) Schmidt number (c) micro-
rotational number (d) chemical reaction parameter.                                                    

4. CONCLUTION 167 
Some of the important findings of the present work obtained from the graphical representation of the results are listed 168 
below: 169 

1. The fluid velocity and angular velocity profiles decreases with the increase of Modified Grashof number. 170 

2. The velocity and angular velocity profiles decreases with the increase of Suction parameter and also the 171 

concentration profile decreases with the increase of Suction parameter. 172 

3. The velocity profile decreases and angular velocity profiles decreases with the increase of Schmidt number and 173 

also the concentration profile decreases with the increase of Schmidt number. 174 

4. The velocity profile increase with Magnetic force number. 175 

5. The velocity profiles decreases with the increase of Permeability of porous plate. 176 

6. The concentration profile decreases with the increase of Chemical reaction parameter. 177 

7. The angular velocity profile increases with the increase of Micro-rotational number and the concentration profile 178 

decreases with the increase of Micro-rotational number. 179 

8. The angular velocity profile decreases with the increase of Spin gradient viscosity number. 180 

9. The angular velocity profile decreases with the increase of Vortex viscosity. 181 
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