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   A Hydrodynamic Model of Flow in Bifurcating Streams, Part 2: Effects   2 
                                      of Environmental Thermal Differentials 3 
 4 
Abstract This paper presents a hydrodynamic model of flow in a bifurcating stream, in which 5 
the effects of environmental thermal differentials are investigated. The governing nonlinear 6 
and coupled equations are solved analytically using similarity transformation and 7 
perturbation series expansions methods. Solutions for the temperature, velocity and 8 
concentration are obtained and analyzed graphically. The results show that the heat 9 
exchange parameter reduces the velocity of the flow, and this enhances early deposition of 10 
the streambed loads. Furthermore, it is seen that free convection force increases the flow 11 
velocity, thus serving as a cushion for the adverse effect of heat exchange parameter on the 12 
flow. 13 
 14 
Keywords:   bifurcating stream, hydrodynamic model, thermal differentials,  15 
similarity transformation,  perturbation method 16 
 17 
 18 
 1.    INTRODUCTION 19 
 20 
Much of the studies on flow in streams and rivers have been carried out using non-21 
hydrodynamic approaches such as hydrologic, hydraulic and stochastic probability models. 22 
The hydrologic model involves the use of spatial form of the continuity equation or water 23 
balance and flux relation (see Singh [1]); the hydraulic model is based on the use of St. 24 
Venant equations (see Singh [2]); the stochastic probability model involves the use of Monte 25 
Carlo method (see Hoey [3], Galino [4]). Being motivated by this, we presented an analytic 26 
and hydrodynamic model of the flow in a bifurcating stream. In the said model, which is part 27 
one of the study, the effects of bifurcation angle and nature of the source rocks on the flow 28 
were investigated, while the effects of environmental thermal differentials were played down. 29 
Presently, we shall examine the situation where the environmental thermal differentials are 30 
considered significant. Therefore, the purpose of this study is to investigate the effect of 31 
environmental thermal differentials on the flow of a bifurcating stream. 32 
 33 
Several reports exist in literature on the flow in bifurcating and non-bifurcating channels. 34 
Bifurcation (in sense that a flow system divides into two or more daughter channels) 35 
phenomenon is seen in both natural and artificial worlds.Therefore, it is significant in science 36 
and engineering. This import greatly attracted the interest of researchers in the past 37 
decades. Pedley et al. [5] introduced the use of theoretical approach or mathematical tools in 38 
the study of branching flows. Tadjar and Smith [6] investigated a three-dimensional one-to-39 
two symmetrical flow in which the mother is straight and of circular cross-section, containing 40 
a fully developed incident motion, while the diverging daughters are straight and of semi-41 
circular cross-section.  Using the method of direct numerical simulation and slender 42 
modeling for a variety of Reynolds number and divergent angles, they observed that a flow 43 
separation or reversal occurs at the corners of the junction. Additionally, they noticed that the 44 
inlet pressure increases as the bifurcation angle increases. Soulis [7] showed that changes 45 
in bifurcation angle alter the flow condition and changes the magnitude of the wall shear 46 
stress. Zhang et al. [8] studied the flow phenomenon in micro/mini channel networks of 47 
symmetrical bifurcation using computer simulation with analytic validation, and saw that 48 
oscillation amplitude has dominant effects on the streaming velocity in channel networks. 49 
More so, they observed that the streaming velocity is proportional to the oscillation 50 
frequency. Okuyade and Abbey [9] studied blood flow in abifurcating artery, using the 51 
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method of regular perturbation, and noticed that an increase in bifurcation angle and 52 
Reynolds number increases the transport velocity factor.  53 
 54 
The flow through porous media is prevalent in nature and artficial settings. Therefore, it is of 55 
principal interest in science and engineering. It has relevance in petroleum engineering for 56 
the study of the movement of natural gas, oil and water through the oil reserviour; in 57 
chemical engineering for filtration of and purification processes; in hydrology for studying the 58 
underground water resources. Rao and Sobha [10] investigated the flow in a rotating porous 59 
straight pipe, and showed that the Nusselt number increases with increase in porosity. 60 
Avremenko et al. [11] studied the flow in a curved porous channel with rectangular cross-61 
section filled with a fluid saturated porous medium, the flow being driven by a constant 62 
azimuthal pressure gradient, and using a gerneralized Fourier series method of solution 63 
found that the velocity profiles depend on the geometry of the channel and Darcy number. 64 
 65 
Moreso, the study of the flow of fluid through porous media has also been extended to 66 
include the effect of magnetic field.  Abdel-Malek and Helal [12] investigated the effect of 67 
magnetic field on the flow in a rectangular enclosure using perturbation technique, and 68 
reported that the imposed magnetic field diminished the wall shear. Asadolah et al. [13] 69 
examined the influence of magnetic field on the skin friction factor of a steady fully 70 
developed laminar flow through a pipe by experimental and finite difference numerical 71 
scheme. They observed that the pressure drop varies in proportion to the square of the 72 
magnetic field and sine angle; the pressure is proportional to the flow rate, and the axial 73 
velocity asymptotically approaches its limit as the Hartmann number becomes large. 74 
Ventakaswalu et al. [14] studied the free convection flow through a vertical porous channel in 75 
the presence of an applied magnetic field using the finite difference numerical approach, and 76 
noticed that the velocity decreases with the increase in the magnetic and porosity 77 
parameters throughout the region. 78 
  79 
Similarly, magnetohydrodynamic convective heat and mass transfer in porous and non-80 
porous media is of considerable interest in techical field due to its applications in industries, 81 
geothermal, high temperature plasma, liquid metal and MHD power generating systems. 82 
Okuyade [15] investigated the effects of magnetic field and convective force on the flow in 83 
bifurcating porous fine capillaries using the regular perturbation series expansions method, 84 
and found that magnetic field reduces the flow velocity, whereas the convective force 85 
increases it. Additionally, Okuyade and Abbey [16] examined blood flow in bifurcating 86 
arteries analytically, and observed that an increase in the heat exchange parameter and 87 
Grashof number increases the velocity, concentration and Nusselt number of the flow, while 88 
an increase in the heat exchange parameter increases the Sherwood number.  89 
 90 
The purpose of this present paper is to examine the effects of thermal differentials on a 91 
bifurcating flowing stream. 92 
     93 
This paper is organized in the following format: section 2 is the material and methods, 94 
section 3 is the results and discussion, and section 4 is the conclusion.  95 
    96 
 97 
 2.  MATERIAL AND METHODS 98 
       99 
There is always a temperature difference between the internal/ambient temperature of the 100 
stream and that at its surface called the external or environmental temperature condition. 101 
This temperature differential can be described in terms of the Newton’s law of cooling as 102 
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 where h is the film heat transfer coefficient that could be negative. The 103 

magnitude of the temperature at the surface of the stream is influenced by the climatic 104 
condition of the region where it is found. In particular, the environmental temperature 105 
depends tremendously on the radiation from the sun. The higher the radiation the higher it 106 
becomes. When the environmental temperature is higher than the equilibrium temperature of 107 
the stream, heat flows from the surface into it, that is, the stream absorbs heat from the 108 
environmental source. The effects of heat absorption can be seen in the energization of the 109 
water particles.  110 
 111 
 112 
 113 

 114 
 115 
Figure 1 A physical model of symmetrical bifurcating flowing stream (α and β are the 116 

bifurcation angles and are equal).                  117 

 118 
We assumed the stream bifurcates symmetrically, as shown in Figure 1, and that the flow is 119 
symmetrical about the 'z -axis. Therefore, if ( ',' vu ) are respectively the velocity components 120 

of the fluid in the mutually orthogonal ( ',' yx ) axes, then the mathematical equations of 121 
mass balance/continuity, momentum, energy and diffusion governing the flow, considering 122 
the Boussinesq approximations, become: 123 
 124 
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The model examines the dynamics of a bifurcating stream flowing from a point −∞='x  131 

towards a shore at oxx =' , then continued towards +∞='x , as seen in Figure 1. The 132 

model shows that the channel is assumed symmetrical and divided into two regions: the 133 
upstream (or mother) region oxx <'  and downstream (or daughter) region oxx >' , where ox  134 

is the bifurcation or the nodal point, which is assumed the origin such that the stream 135 
boundaries become dy ±='  for the upstream region and '' xy α=  for the downstream 136 

region. Due to the geometrical transition between the mother and daughter channels, the 137 
problem of wall curvature effect is bound to occur. To fix up this, a very simple transition 138 
wherein the width of the daughter channel is made equal to half that of the mother channel 139 
i.e.  d± is such that the variation of the bifurcation angle is straight-forwardly used (see 140 
Tadjar and Smith [6]).  Furthermore, if the width of the stream ( d2 ) is far less than its length 141 

( ol ) before the point of bifurcation such that the ratio of 1
2 <<ℜ=

ol

d
, (where ℜ is the 142 

aspect ratio), the flow is laminar and Poiseuille (see Bestman [17]). d  is assumed to be 143 
non-dimensionally equal to one (see Tadjar and Smith [6]). Similarly, at the entry region of 144 

the mother channel, the flow velocity is given as ( )2'1' yUu o −= , where oU is the 145 

characteristic velocity, which is taken to be maximum at the centre and zero at the wall (see 146 
Tadjar and Smith [6]). Based on the fore-going, the boundary conditions are: 147 
 148 
                                                 1'=u , 0'=v , 1'=T , 1'=C   at  0'=y                                  (6)                       149 

                                             0'=u , 0'=v , 'T = wT , wCC ='    at  1'=y                     (7)                                                           150 

for the mother channel 151 
                    0'=u , 0'=v , 'T = 0, 0'=C    at  0'=y                          (8)                                           152 

                      0'=u , 0'=v , 'T = γ 1 wT ,  wCC 2' γ= , γ 1 < 1, γ 2 < 1  at '' xy α=              (9)                           153 

for the daughter channel    154 
 155 
 Introducing the dimensionless variables and similarity transformations, 156 
 we have                                                                      157 

                                                         0'' =f                    (10)  158 

                    
''' '' 2 ' ' '' ''

1 Re( )f f M f f f ff Gr+ − + + = − Θ Gc− Φ              (11)                                                    159 

             0)Pr(Re 2'''''' =Θ+Θ+Θ−+Θ+Θ Nff                   (12)                                                160 

              
'' ' ' ' ' 2

1( ) 0R eSc f f δΦ + Φ + − Φ + Φ + Φ =                                                    (13)                                                161 

with the boundary indications: 162 

                          1,1,0,1 ' =Φ=Θ== ff     at 0=η                  (14)                                         163 

                 
1 =  at      = ,= ,0,0' ηwwff ΦΦΘΘ==

            (15)
164 

 
 165 

 for the mother channel                                                               166 
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                 0,0,0,0 ' =Φ=Θ== ff     at  η  = 0                 (16)167 
                

   

 168 

                 
  

'
1 20, 0, , ,w wf f γ γ= = Θ = Θ Φ = Φ  1 21, 1γ γ< <

   
at  ax=η                     (17)169 

        

 170 
for the daughter channel                                               171 
where 172 
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are the dimensionless variables, 178 

                                    Ψ = (Uoυ x ) ½ f ( )η ,   η = y
x

U o

2/1







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the similarity transformations,  180 

                                      u = 
y∂
Ψ∂

 ,  v = 
x∂
Ψ∂−                 (19) 181 

the velocity components,    182 
 183 
and βt   and  βc  are  the volumetric expansion coefficient for temperature and concentration 184 

respectively; 'p  is the pressure; C∞  is the concentration at equilibrium. T∞  is the 185 

temperature at equilibrium;κ  is the permeability parameter of the porous medium. 2
oB is the 186 

applied uniform magnetic field strength due to the nature of the fluid; eσ is the electrical conductivity 187 

of the fluid; ok  is the thermal conductivity of the fluid. Cp is the specific heat capacity at constant 188 

pressure; Q is the heat absorption coefficient; 
2
rk   is the rate of chemical reaction of the fluid, which 189 

is homogeneous and of order one.'C  is concentration (quantity of material being transported); D  190 

diffusion coefficient; g is gravitational field vector; 'T   is the fluid temperature; 'ρ   is the density of 191 

the fluid. µ   is the viscosity of the fluid; mµ  is the magnetic permeability of the fluid;υ  is the  192 

kinematic viscosity; cl is the scale length; Uo is the characteristic or reference velocity which 193 

is maximum at the centre and almost zero at the wall. wC  is the constant wall concentration 194 

at which the  channel is maintained; wT  is the constant wall temperature at which the  195 

channel is maintained; 
∞

p  is the ambient/equilibrium pressure. Re is the Reynolds number; 196 

Gr is the Grashof number due to temperature difference; Gc is the Grashof number due to 197 
concentration difference. χ 2 is the local Darcy number; M2 is the Hartmann’s number; Pr is 198 

the Prandtl number; Sc is the Schmidt number; 2
1δ  is the rate of chemical reaction; and N2 is 199 

the heat exchange parameter. 200 
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s 201 
Equations (10) - (13) are coupled and highly non-linear. Therefore, to linearize and make 202 
them tractable, we introduce the regular perturbation series solutions of the form:                                       203 
                                 204 

...),(),(),( 1 ++= yxhyxhyxh o ξ                  (20)205 

  206 

 where 1
Re

1 <<=ξ  Is the perturbing parameter. We choose this parameter because, 207 

almost at the point of bifurcation, due to a change in the geometrical configuration, the 208 
inertial force rises and the momentum increases. The increase in the momentum is 209 
associated with a drastic increase in the Reynolds number, indicating a sort of turbulent flow. 210 
In this regard, equations (10) - (17) become: 211 
 212 
for the zeroth order: 213 

                                                            
0"=of

                 
(21)                            214 

                                    oooo GcGrfMff Φ−Θ−=−+ '"'" o
2

1                  (22)  215 

                                        0'" 2 =Θ+Θ+Θ ooo N
                  

(23)216 

                            0'" 1
2 =Φ+Φ+Φ ooo δ                       (24)                                                       217 

with the boundary conditions 218 

                  of = 1, '
of  = ''

of  = 0, oΘ = 1, oΦ =1   at η   = 0                                   (25) 219 

                 of  = 0, '
of  = ''

of =0, oΘ = Θ w, oΦ = Φ w   at η   =    1                        (26)                   220 

for the first order:   221 

                                                            
0"

'1 =f                     (27)
                  

222 

             11oo
'

1
2

111 ""'"'" Φ−Θ−−=−+ GcGrfffffMff oo                                 (28) 223 

             )'''Pr('" o1
2

11 ooo ffN Θ−Θ=Θ+Θ+Θ
                      

(29)
                

224 

             
)'''('" o1

2
111 ooo ffSc Φ−Φ=Φ+Φ+Φ δ

                   
(30) 225 

with the boundary conditions  226 

         0,0,0,0 11
'

11 =Φ=Θ== ff   at  η  = 0                         (31)             227 

         
'

1 1 1 1 1 20, 0, , ,w wf f γ γ= = Θ = Θ Φ = Φ 1 21, 1γ γ< <
  at  axη =                        (32)                228 

      229 
The zeroth order equations describe the flow in the upstream channel, while the first order 230 
equations describe the flow in the downstream channels. The presence of the zeroth order 231 
terms in the first order equations indicate the influence of the upstream on the downstream 232 
flow. 233 
    234 
The solutions to equations (21) - (26) and (27) - (32) are: 235 
                               

236 

                       

( ) ( )1 1
1 1

2 2
1 1

1 1

sinh sinh (1 )
( )

sinh sinh
w

o

e e
η η

µ η µ ηη
µ µ

− −−Θ −Θ = +
                                        

(33)                              237 

 238 
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( ) ( )1 1
1 1

2 2
2 2

2 2

sinh sinh (1 )
( )

sinh sinh
w

o

e e
η η

µ η µ ηη
µ µ

− −−Φ −Φ = +                                          (34)

 

239 

  240 

                     ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )3 2 1 2 1
3 3

3 3

0 sinh 1 sinh

sinh sinh

o p o p

o

f e f e
f

µ η ηµ η µ η
η

µ µ

− + − −

= +  241 

                                242 

                                           ( ) ( ) ( )
( ) ( )3 20o op pf e fµ η η− +− +

                                                (35)                                  
 243 

for the mother channel 244 
 245 
                     246 
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( ) ( )3 1/ 2( )

1 10 x

p pf e fα µ η η+−− +
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  257 

 258 
and for the daughter region. 259 
 

                                                       

260 
3     RESULTS AND DISCUSSION        

 

261 
 262 
This paper investigates the effects of thermal differentials on the flow in a bifurcating stream. 263 
To this end, Figure2 – Figure 8 obtained using Maple 12 computational soft ware show the 264 

profiles of the flow variables obtained for various values of 2
1χ , N2 and Gr/Gc. For realistic 265 

values of Pr =0.71, γ1 = 0.6, γ2 =0.6,  γ =0.7, Φw = 2.0, Θw =2.0, 2.02
1 =δ , M2= 0.2, α =10, 266 

Re=400,  and varying values of 2χ = 0.1, 0.5, 1.0, 10; N2= 0.001, 0.01, 0.1, 0.4 and 267 
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Gr/Gc=0.01, 0.1, 0.5, 1.0, 5, 10,  the profiles indicate that the flow velocity decreases as 2χ  268 
and  N2 increase, but increases with the increase in Gr/Gc.  269 
 270 
A high porosity of the stream bank may give room for a soak-away of the water. Therefore, 271 
as the porosity increases the stream water is soaked away into its bank, thus leading to a 272 
dcreases in its volume. Moreso, the water level of the stream will remain decreased if there 273 
is not a commensurate increase in the water supplied from the aquifers that feed it, possibly, 274 
due to man’s water delivery activities on them. Consequent upon these, the flow velocity, 275 
which is usually maximum when the volume is high, decreases. These may account for what 276 
is seen in Figure 2. And, this is in perfect agreement with Avremenko et al. [11], Asadolah et 277 
al. [13] and Ventakaswalu et al. [14].s In another development, a high porosity of the source 278 
rock of the stream creates room for water to flow from the supplying aquifers into it. 279 
However, by the analysis of this model the flow velocity of the water from the aquifers 280 
decreases with high porosity of the source rock. Even so, the oscillatory/fluctuation motion, 281 
manifested in the form of back-and-forth movement of the water, as seen in Figure 3 and 282 
Figure 4, possibly, may be due to the internal waves developed in the water in the flow 283 
process, or may be due to the interaction between the pressure forces and the gravity 284 
forces.   285 
 286 
 287 
      288 
 289 
 290 
 291 
 292 
 293 
 294 
 295 
 296 
 297 
 298 
 299 
 300 
 301 
Figure 2 Velocity-porosity parameter (χ2) profiles at various distances (η) in the mother 302 
channel  303 
   304 

 305 
 Figure 3 Velocity profiles for various porosity parameter (χ2) in the daughter channel 306 
 307 
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 308 
 Figure 4 Velocity-porosity parameter (χ2) profiles at various distances (η) in the daughter  309 
channel 310 
 311 
Furthermore, as the environmental temperature increases, the stream may lose its water 312 
through evaporation, and soak-away into the dry flood plain. This leads to a decrease in its 313 
water level. Again, if the water supplied from the aquifers is not equatable to that which is 314 
lost (due to man’s water delivery activities on them), the stream water level in such a season 315 
remains reduced.Consequently, the velocity, which is usually maximum when the water 316 
volume is high, drops. This accounts for the results seen in Figure 5. 317 
 318 

 319 
 Figure 5 Velocity-heat exchange parameter (N2) profiles at various distances (η) in the 320 
mother channel 321 
                322 
 323 
On the other hand, there is always a temperature differential between the environmental 324 
temperature and the ambient temperature of the water.The temperature differential in the 325 
presence of gravity produces free convection currents, which serve as lifting/buoyancy 326 
forces for the water particles. In particular, the temperature differential depends on the 327 
environmental temperature, which in turn depends on the radiation from the sun. The higher 328 
the radiation, the higher the temperature differential, and the higher the convection currents, 329 
otherwise called buoyancy force or Grashof number (which in this case is due to 330 
temperature change) produced. The increase in the buoyancy force increases the flow 331 
velocity (see Figure 6–Figure 8). A comparison with previous research works shows a 332 
complete agreement; see Okuyade [15], Okuyade and Abbey [16]. 333 
 334 
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 335 
Figure 6 Velocity-Grashof number (Gr/Gc) profiles at various distances (η) in the mother 336 
channel. 337 
 338 

 339 
Figure 7 Velocity profiles for various Grashof numbers (Gr/Gc) in the daughter channel 340 
 341 

 342 
Figure 8 Velocity-Grashof numbers (Gr/Gc) profiles at various distances (η) in the daughter 343 
channel 344 
 345 
 346 
The increase and decrease in the velocity coupled with the oscillating/fluctuating motion of 347 
the water have some great significance on the flow. The increase in velocity saves the 348 
stream from early shallow-up as it tends to delay the deposition of the sediments and 349 
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bedloads it is carrying in its course towards the standing water bodies into which it empties 350 
its water. On the other hand, the decrease in velocity produces the contrary situation. 351 
Furthermore, the oscillatory/fluctuating motion leads to loss of energy for the flow in the axial 352 
direction, and this adversely affects the transport of the bedloads. 353 
 354 
4    CONCLUSION 355 
 356 
The steady flow in a bifurcating stream with emphasis on the effects of environmental 357 
thermal differentials is presented. The solutions of the problem are analyzed graphically. The 358 
analyses show that the porosity and heat exchange parameters decrease the flow velocity, 359 
while the free convection force increases it. Furthermore, an increase in the porosity leads to 360 
a oscillatoryfluctuating motion. These results have serious implications on the flow. The 361 
increase in velocity tends to delay the deposition of sediments/bedloads on the stream floor 362 
and flood plains, thus saving it from early shallow-up. On the other hand, the decrease in the 363 
velocity leads to the contrary. Similarly, the fluctuating motion leads to loss of energy for the 364 
axial flow.   In particular, the free convection force tends to cushion the velocity reducing-365 
effects of porosity and heat exchange parameters. It is worthy to note that a considerable 366 
amount of work is needed to further study and understand the streaming flow 367 
hydrodynamically.  368 
 369 
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