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Abstract A hydrodynamic model of the flow in a bifurcating stream is presented. The problem is 6 
modeled using the Boussinesq approximations, and the governing nonlinear equations solved analytically 7 
by the methods of similarity transformation and regular perturbation series expansions. Similarity 8 
expressions for the temperature, concentration and velocity are obtained and analyzed graphically. The 9 
results show that bifurcation angle and Reynolds number increase the transport velocity. Furthermore, it 10 
is seen that the magnetic field parameter decreases the velocity in the upstream region, and makes it 11 
oscillatory in the downstream region.   12 
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NOMENCLATURE 17 

'C  concentration (quantity of material being transported) 18 
D  diffusion coefficient 19 
g   gravitational field vector 20 
Gc  Grashof number due to concentration difference 21 
Gr  Grashof number due to temperature difference 22 

'p  fluid pressure  23 
p  dimensionless pressure  24 

Pr  Prandtl number 25 
Q   heat absorption coefficient  26 
Re  Reynolds number,  27 
Sc  Schmidt number 28 

'T   fluid temperature  29 
( ',' vu )  velocity components of the fluid in the mutually orthogonal axes 30 
 ( vu, )  non-dimensionalized velocity components 31 

( ',' yx )  mutually orthogonal axes  32 
  ( yx, ) dimensionless orthogonal axes 33 

α , β   bifurcation angles 34 

'ρ   density of the fluid 35 
ρ  dimensionless density of the fluid 36 

µ   viscosity of the fluid  37 

mµ  magnetic permeability of the fluid 38 

κ   permeability of the porous medium  39 

eσ
 
 electrical conductivity of the fluid 40 

υ   kinematic viscosity of the fluid 41 
χ 2 local Darcy number  42 

2
1δ   rate of chemical reaction 43 

Θ   dimensionless temperature 44 

Φ  dimensionless concentration 45 

cB   volumetric expansion coefficients due to concentration 46 



2
oB   applied uniform magnetic field strength 47 

tB
  
volumetric expansion coefficients due to temperature 48 

pC
 
 specific heat capacity at constant pressure 49 

wC  constant wall temperature maintained 50 

C∞  
concentration at equilibrium  51 

ok
 
 thermal conductivity of the medium  52 

2
rk

 
 rate of chemical reaction 53 

cl   scale length 54 

M2  Hartmann’s number 55 
N2  heat exchange parameter   56 

∞
p

 
ambient/equilibrium pressure  57 

wT   constant wall concentration at which the  channel is maintained 58 

T∞   temperature at equilibrium 59 

oU   characteristic velocity of the flow 60 

 61 
1 Introduction 62 

 63 
The strength of a stream depends on its mass-volume and velocity. And its velocity, amongst others, 64 
depends on the difference in gradient between its source in the mountain and mouth in a standing water 65 
body ([1], [2]). Based on the slope differential, a stream can be divided into three regions: the erosion 66 
(upper or torrent) zone; the transfer (middle or valley) zone, and the depositional zone. In the erosion 67 
zone, the stream flows through a deep descent; therefore, its velocity is very high and the flow very 68 
erosive. Here, the flow vertically down-cuts and removes the bed rocks from the valley floor and sides. In 69 
the mid-valley course, the gradient is lower than that of the upper course and so is the velocity, but it is 70 
able to carry the eroded materials and rocks farther. In the depositional course, the gradient is very low 71 
and so is the flow such that the rate of deposition of materials on the stream bed, and on the flood plain 72 
during flood is very high.      73 
 74 
Several features like the braided streams (or rivers), anastomosing stream, meanders and the likes are 75 
formed in the depositional zone ([1], [2]). In particular, anastomosing rivers represent a type of rivers that 76 
are currently of interest in geomorphology and sedimentology. They have multiple inter-connected 77 
channels separated by areas of the flood plains. Usually, in the tropical region, the river banks are 78 
stabilized by vegetation and in the arid region by highly consolidated rocks. They help to inhibit lateral 79 
migration of channels. However, at points where the banks have loose structures, the stream may 80 
suddenly abandon its old course for a new course or part of its old course to form a by-pass. At the points 81 
of the by-pass, the river is said to divide or anastomose ([1], [2]). 82 
 83 
Much of the works on stream flow have been carried out using non-hydrodynamic approaches. Some 84 
used the hydrologic model, which involves the use of spatial form of the continuity equation or water 85 
balance and flux relation expressing storage as a function of inflow and outflow (see [3]); some the 86 
hydraulic model, which is based on the use of St. Venant equations (see [4]), and others the stochastic 87 
probability model, which involves the use of Monte Carlo method (see [5], [6]). All these used computer 88 
simulation techniques. Therefore, we are motivated to study the flow hydrodynamically and analytically. 89 
Thus, this study intends to develop a hydrodynamic model of the flow in a bifurcating stream. 90 
 91 
Some reports exist in literature on flow in both bifurcating and non-bifurcating channels. For example, [7], 92 
[8], [9], [10], [12] and [13] examined numerically and experimentally the flow structure in bifurcating 93 
systems and observed that bifurcation angle increases the inlet pressure and subsequently increases the 94 



flow velocity of such systems. Similarly, [14, 15] studied the magneto-hydrodynamic viscous steady bio-95 
fluid flow through a curved pipe with circular cross-section under various conditions, using spectral 96 
method as the principal tool and the Fourier series, Chebyshev polynomials, collocation and iteration 97 
methods as secondary tools, and observed that the axial velocity increases with an increase in the Dean 98 
number, whereas it is suppressed with greater curvature and magnetic field parameter. More so, [16] 99 
examined the magneto-hydrodynamic laminar blood flow through a curved blood vessel with circular 100 
cross-section, using spectral collocation algorithm, and noticed that the axial velocity is displaced towards 101 
the centre of the vessel with corresponding low fluid particle vortices for high magnetic field parameter 102 
and Dean number and low curvature; [17] investigated the combined effects of rotation (coriolis force), 103 
magnetic field and curvature (centrifugal force) on the steady flow of an incompressible viscous fluid 104 
through a rotating curved pipe  of circular cross-section and magnetic field using spectral method of 105 
solution, and observed that for a high magnetic field four-vortex solution is seen in rotating curved 106 
systems. Most recently, [18] studied the flow of blood in convergent and divergent channels using the 107 
method of perturbation series expansion, and noticed that Reynolds number increases the flow velocity.  108 
 109 
Apart from the gradient differential, a number of factors affect the flow of a stream, dynamically. Based on 110 
this, the purpose of this paper is to investigate the effects of bifurcation angles and the nature of the 111 
source rocks on the flow of a bifurcating stream.  112 
 113 
This paper is organized in the following manner: section 2 is the methodology; section 3 holds the results; 114 
section 4 is the discussion of results, and section 5 holds the conclusions.  115 
 116 
2      Methodology 117 
 118 
 119 
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  Figure 1 A physical model of symmetrical bifurcating flowing stream (α=β).                  122 

The stream is approximately rectangular in form and planar at the surface. We assume that the flow is 123 
axi-symmetrical about the 'z -axis; the fluid is incompressible, Newtonian, magnetically susceptible (due 124 
to the nature of the source rock), chemically reacting, and of a homogeneous first order type (i.e. the 125 
reaction is proportional to the concentration); the fluid viscosity is a function of temperature and magnetic 126 
field; the porous medium is non-homogeneous, therefore, its permeability is anisotropic; the fluid have 127 
constant properties except that the density varies with the temperature and concentration which are 128 
considered only in the force term. If ( ',' vu ) are respectively the velocity components of the fluid in the 129 

mutually orthogonal ( ',' yx ) axes, the mathematical equations of mass balance/continuity, momentum, 130 
energy and diffusion governing the flow in the presence of bifurcation, and considering the Boussinesq 131 
and Swell’s free flow in vector form become: 132 
 133 
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                               139 
The problem examines the dynamics of a bifurcating stream flowing from a point −∞='x  towards a 140 

shore at oxx =' , as seen in Figure 1. The model shows that the channel is assumed to be symmetrical 141 

and divided into two regions: the upstream (or mother) region oxx <'  and downstream (or daughter) 142 

region oxx >' , where ox  is the bifurcation or the nodal point, which is assumed to be the origin such that 143 

the stream boundaries become dy ±='  for the upstream region and '' xy α=  for the downstream region. 144 

Due to geometrical transition between the mother and daughter channels, the problem of wall curvature 145 
effect is bound to occur. To fix up this, a very simple transition wherein the width of the daughter channel 146 
is made equal to half that of the mother channel i.e. d±  such that the variation of the bifurcation angle is 147 
straight-forwardly used (see [13]). Furthermore, if the width of the stream ( d2 ) is far less than its length 148 

( ol ) before the point of bifurcation such that the ratio of 1
2 <<ℜ=

ol

d
, (where ℜ is the aspect ratio), the 149 

flow is laminar and Poiseuille (see [19]). d  is assumed to be non-dimensionally equal to one (see [14]). 150 

Similarly, at the entry region of the mother channel, the flow velocity is given as ( )2'1' yUu o −= , where 151 

oU is the characteristic velocity, which is taken to be maximum at the centre and zero at the wall (see 152 

[14]). Based on the fore-going, the boundary conditions are: 153 
                              154 
                                              1'=u , 0'=v , 1'=T , 1'=C   at  0'=y                                              (5)                       155 

                                             0'=u , 0'=v , 'T = wT , wCC ='    at  1'=y                              (6)                                                                          156 

for the upstream/mother channel                                    157 
 158 
                                           0'=u , 0'=v , 'T = 0, 0'=C    at  0'=y                                  (7)                                           159 

                      0'=u , 0'=v , 'T = γ 1 wT ,  wCC 2' γ= , γ 1 < 1, γ 2 < 1  at '' xy α=                        (8)                           160 

for the downstream/daughter channel 161 
 162 
Introducing the following non-dimensional variables: 163 
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 167 
into equations (1) - (8),we have   168 
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                                        175 
with the boundary conditions 176 
                                         1=u , 0=v , 1=Θ , 1=Φ   at  0=y                                            (15)                       177 

                                             0=u , 0=v , Θ = wΘ , wΦ=Φ    at  1=y                          (16)                                                                          178 

for the upstream channel 179 
                                         0=u , 0=v , Θ = 0, 0=Φ    at  0=y                               (17)                                           180 

                      0=u , 0=v , Θ = γ 1 Θ w,  wΦ=Φ 2γ , γ 1 < 1, γ 2 < 1  at xy α=                                  181 

(18)                            182 
for the downstream channel 183 
 184 
Introducing the similarity solution: 185 
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with the velocity components represented as 187 
 188 
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into equations (10) - (18),  we have the following equivalent equations 190 
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with the boundary indications: 197 

                           
'1, 0, 1, 1f f= = Θ = Φ =    at 0=η                              (25) 198 

                    
' 0, 0,  = , =    at     = 1w wf f η= = Θ Θ Φ Φ

                      
(26)  199 

for the upstream channel  200 

                              0,0,0,0 ' =Φ=Θ== ff     at  η  = 0                                   (27)                                                201 

         
'

1 20, 0, , ,w wf f γ γ= = Θ = Θ Φ = Φ  1 21, 1γ γ< <
   

at  ax=η                                     (28)  202 

 for the downstream channel     203 
 204 



Equations (21) - (28) show that the similarity equations are coupled and highly non-linear. Therefore, to 205 
minimize the effect of non-linearity on the flow variables we introduce perturbation series solutions of the 206 
form 207 

                                    
( ) 1, ) ( , ) ( , ) ...oh x y h x y h x yξ= + +

                           
(29) 208 

where 1
Re

1 <<=ξ  is the perturbing parameter. We choose this parameter because, almost at the point 209 

of bifurcation, due to a change in the geometrical configuration, the inertial force rises and the momentum 210 
increases. The increase in the momentum is associated with a drastic increase in the Reynolds number, 211 
indicating a sort of turbulent flow at such a point. In this regard, equations (21) - (28) become: 212 
for the zeroth order: 213 
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for the first order:  221 
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The zeroth order equations describe the flow in the upstream channel, while the first order equations    229 
describe the flow in the downstream channels. The presence of the zeroth order terms in the first order 230 
equations indicates the influence of the upstream on the downstream flow. 231 
 232 
The solutions to equations (30) - (35) and (36) - (41) are:  233 
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for the upstream region 240 
 241 



and 
 

242 

          

( )
( ) ( ) ( )11

22
111 1

1
1 1

sinhsinh
( )

sinh( ) sinh( )

xx

pw
x ee

x x

α ηα η α µ ηγ µ ηη
µ α µ α

− −− ΘΘΘ = −  243 

                                    244 

                       
( ) ( ) ( )2

11

1

0 sinh

sinh( )

x
p e

x

µα η µ η
µ α

− +Θ
+ ( ) ( ) ( ( ) )

( )
1 1 2

1 10 ( )x
p pe α µ η η− − +−Θ + Θ      

 
          (45)  245 

         246 

           ( )
( )

( ) ( ) ( )11
22

212 2
1

2 2

sinhsinh

sinh( ) sinh( )

xx

pw
x ee

x x

α ηα η α µ ηγ µ ηη
µ α µ α

− −− ΦΦΦ = +  247 

                                                  248 

                           
( ) ( ) ( )2

21

2

0 sinh

sinh( )

x
p e

x

µα η µ η
µ α

− +Φ
+ ( ) ( ) ( ( ) )

( ) ( )2 1 2
1 10 x

p pe α µ η η− − +−Φ + Φ            (46) 249 

           250 
       251 

               ( ) ( ) ( ) ( )
( ) ( ) ( )3 / 2 1 2

3 31 1

1
3 3

0 sinh sinh

sinh sinh( )

x x
p pf e f x e

f
x x

µ α η α ηµ η α µ η
η

µ α µ α

− + −

= +  252 

     253 

                             ( ) ( ) ( )
( ) ( )3 1/ 2( )

1 10 x

p pf e fα µ η η+−− +
                                                                 (47)

 

                                                       

254 

                                                       255 
for the downstream region 256 
 257 
3     Results 258 
 259 
 Using the following realistic and constant values of γ1 = 0.6, γ2 =0.6, Φw = 2.0, Θw =2.0, Peh =0.07, Pem 260 

=0.07, Re= 400, Gr = 0.1, Gc = 0.1, 2.02
1 =δ , N2 =0.2, 2.02 =χ  and varied values of  α, Re and M2, we 261 

have the follow results:  262 
 263 
 264 

 265 
 Figure 2 Velocity variations with respect to bifurcation angles (α) in the downstream region 266 
 267 



 268 

 269 
 Figure 3 Velocity-bifurcation angles (α) variations with respect to distances (η) in the downstream region.    270 
 271 

 272 
Figure 4 Velocity-Reynolds number (Re) variations with respect to distances (η) in the downstream 273 
region. 274 
 275 
 276 

 277 
Figure 5 Velocity-magnetic field parameter (M2) variations with respect to distances (η) in the upstream    278 
region 279 



 280 
 281 
 282 

 283 
Figure 6 Velocity variations with respect to magnetic field parameter (M2) in the downstream region 284 
 285 

 286 
 287 
 Figure 7 Velocity-magnetic field parameter (M2) variations with respect to distances (η) in the 288 
downstream region 289 
 290 
 291 
4    Discussion 292 
 293 
The purpose of this present paper is to investigate the effects of bifurcation angle and magnetic field on 294 
the flow. To this end, Figure 2 – Figure 7 illustrate the effects of bifurcation angle, Reynolds number and 295 
magnetic field on the transport of water in a stream. The results obtained, show that, for varied values of 296 
α, Re and M2 the transport velocity increases as α and Re increase (see Figure 2 - Figure 4), but 297 
decreases in the upstream region as M2 increases (see Figure 5). Furthermore so, the velocity oscillates 298 
and fluctuates in the downstream region as M2 increases (see Figure 6 and Figure 7). 299 
 300 
An increase in the angle of bifurcation narrows down the width of the stream, which in turn increases the 301 
inlet pressure in the downstream region. Consequent upon this, the velocity increases (see Figure 2 and 302 
Figure 3). This agrees with [8], [9], [10], [11], [12] and [13]. 303 
 304 



More so, the flow in the upstream region is laminar and Poiseuille; therefore, its Re is moderate. But, 305 
almost at the point of bifurcation or the entry point of the downstream region, the flow exhibits some 306 
oscillatory behaviour in the upstream due to a change in geometrical configuration. At this point, the 307 
inertial force rises, leading to a drastic increase in the Re. The increase in the Re consequently increases 308 
the transport velociy. This accounts for what is seen in Figure 4. As the Re increases the velocity 309 
increases and the water rushes into the downstream region with a great force. The flow regains its 310 
laminar nature some distance away from the entry region. This result is in perfect agreement with [18]. 311 
 312 
Similarly, the source rocks in the mountain may be made of metallic oxides and salts. These dissolve in 313 
the water to make it alkaline or saline. With this, the water becomes electrolytic, and therefore; exists as 314 
charges. The action of the earth magnetic field on the charges produces a mechanical force, the Lorentz 315 
force, which gives the flow a new orientation. In particular, the Lorentz force has a freezing impact on the 316 
velocity flow structure, thus accounting for what is seen in Figure 5. This result is in consonance with 317 
those of [14] and [15]  318 
 319 
Also, the oscillatory and fluctuating motion manifested in the form of back-and-forth movement of the 320 
water, as seen in Figure 6 and Figure 7, possibly, in addition, may be due to the internal waves 321 
developed in the water in the flow process, or may be caused by the interaction between the pressure 322 
forces and the gravity forces.  323 
 324 
The increase and decrease in velocity, coupled with the oscillatory motion in the downstream have 325 
tremendous implications on the flow. The drastic increase in velocity at the inlet of the downstream 326 
channel leads to lateral washing away of the embankment, and makes navigation risky; the increase in 327 
the velocity enhances the transfer of sediments towards a standing water body ahead of it. On the other 328 
hand, the decrease in velocity gives room for early deposition of sediments on the stream bed, and this 329 
tends to shallow it up earlier; the oscillatory motion of the fluid at the early stage leads to loss of energy 330 
for the flow, and also makes navigation risky.   331 
 332 
5    Conclusion 333 
 334 
The analyses of the flow model show that the velocity increases with bifurcation angle and Reynolds 335 
number; magnetic field freezes the motion in the upstream region, and makes it oscillatory in the 336 
downstream region. The increase in the velocity enhances the transport of the stream bed loads farther 337 
towards the mouths of standing water bodies and saves it from early deposition and shallow-up. The 338 
effects of bifurcation angle and Reynolds number tends to cushion the adverse effects of magnetic field 339 
on the flow. This study enhances our global understanding of the hydrodynamics of flow in bifurcating 340 
streams. It is also relevant to flow in the bifurcating green plants and arteries. 341 
 342 
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