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Fermi problem and superluminal signalsin quantum electr odynamics
Abstract

Using as an example the Fermi problem dealing mathstationary
n from one atom to another the reason of superlainsignals appearance in
quantum electrodynamics is clearing. It is shovat the calculation using the conventional
methods in Heisenberg and Schrddinger represemsaitiononstationary problems lead to
different results. The Schrodinger representatiedipts the existents of specified quantum
superluminal signals. In Heisenberg representdtiersuperluminal signals are absent. The
reason representations is close connected with usingeftiabatic

hypothesis.
PACS numbers: 42.50.-p
1. Introduction

In 1932 year E. Fermi [1] by developing the Ditaeory [2] of quantum transpositions had
considered the problem dealing with nonstationeagsformation radiation between excited
atom and another atom being in its ground statecdft®ilated the probability

[t'was shown that the radiation transformation has
the retarded character and is described by chamemtstruction = R/ c. Heret is the time
of excitation transformationR is the distance between atoms, c is the lightoigion

vacuum. The result was repeated in many followireptetic papers [3,4] .

The detailed analysis of Fermi calculations perfirm the paper [5] had shown that the
retarded character of signal defined by formi#aR/ ¢ is only the approximation connected
with using the pole approximation. More punctudtakations show the appearance of a
small superluminal forerunner placed before thesital electromagnetic wave front at a
distance of the order of one wave length. The aughpposes that such a fact does not have
the physical sense. In his paper [5] he tried tmprthis fact in general form using the

Heisenberg representation.

In paper [6] the Fermi result was analyzed agalve dppearance of the superluminal
forerunner forces the authors to clean the reaks appearance and revise the Dirac theory
[2] of quantum transpositions. In the paper [6] postulates the incorrectness of

representation of quantum transpositions probgtakta square of consequence matric



31
32
33
34

35
36
37

38
39
40
41
42

43

44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60
61

elements. One proposes to evaluate the observedsvat quantum average values of
consequence quantum operators. Such have to be calculated in Heisenberg
representation. 1= way leads to the exact realization of the expogssiE R/ cand likes the

method proposed in [5]. The Schroddinger represemtat © was not investigated.

In a paper [6] as in a paper [5] the Heisenberg representation came
to the conclusion of impossibility of the appeamntquantum electrodynamics the

superluminal signal.

Last years the interest for the optical superluirsignals has risen supplementary.
Such signals were discovered in many experimental -14]. The necessity
theoretical description has attempts of theory constructions in present days
(the fluctuations excluded) deal extremely the classical representation of the internal

structure of electromagnetic field [15-19]. The eption represents the paper [20]. In this
- A2
work using the interaction representation <E2> > <E> , E being the strength

operator of electromagnetic field, one shows th@eapance in electrodynamics of excited
media the superluminal signals. Such signals ddae¢ the classical analogs. For the
appearance of such signals the inversion populafi@tom states in media is not necessary.
Such superluminal signals were experimentally oleseand evidently are in a good
coincidence with experimental data [13]. The reamh their appearance conditions in
connection with experiments mentioned above arg wmeresting. In present work such
guestions are solved using the Fermi example. In such a way one shows that the

guantum radiation transfer in quantum electrodyicarat the finite times in Heisenberg and

Schrodinger representations are described in difter words these representations
are non-identical. Such result possesses not balynethodic fact is that the
superluminal signals appear only in Schrodingerasgntation. In Heisenberg representation

they are absent. This fact permits to understa@ddsult differences in the calculations using
the different methods. Namely this fact opens th&sbility for prediction the analogous
results in other situations.

We doubt not in the results of calculations in pag8] and [6] but we doubt in the
finite conclusions in these works. In these woHes¢onclusions about the absent of
superluminal signals in quantum electrodynamicleted from Heisenberg representation.

But in these works the analysis using Schrodingprasentation is abserni.
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we shall the solutions of Fermi-problem by using both reprgations. We shall show
that nonidentity of Schrodinger and Heisenberg nonstationary

is naturally and connected closely with usinguagtum electrodynamics the
adiabatic hypothesis.

2. The state of the problem

Let us suppose that the test atom (1) being igrasnd state is placed at the polt
and is attacked by the radiation of excited atojp(@ced in the poinR,. The excited atom
begins interact with electromagnetic field at a neatrof timet, . Each atom possesses only

one electron. We neglect the spin variables. Oppases the atoms are placed in wave zone
at a large distance between them that permitsdgteaein the exchange effect and in the
longitudinal electromagnetic field. Suppose thatheatom possesses only two energetic
levels. But these levels may have energetic suldeVle excited and ground states of

primary excited atom (2) are describes consequéntindexesj,, andj, . The energetic
states of no-excited atom (1) are described byxeslg, andi, . The Hamiltonian of the

problem in Schrédinger representation and quasiR@® approximation is written in the

following form
H=H+H", H®= [ (r)H,(r)dr,+ [@( JH @ gr )dr +H,
= [ ) B A ) )er = [ ) B A 0 fr Jor Be-t), (1)

6(t —t,) being the function that fixed the moment of time appearavicie

interaction of radiated atom with electromagneattdf Over the repeated indexes one

supposes the summation,

l'[ll(rl) - Z‘/I. (rl_ Rl)B' ! 1/72(I’2) = Zl//J (rZ_Rz)Bi ! |:| ph ~ Zth(dl;dka +%j,
! i kA

A(r) = Z eM (A€ +d5e™).
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The ¢, andy; denote the behavior of electrons in atoms (1)(291,(13+

and BJ* denote the electron creations operators at the saéates. Byz,, anda,,the
annihilation and creation photon operators in stéite/) are denoted. Herk is the photon

wave vector, is the index of its polarization. The photons hawméy the transversal
polarizationA =(1,2). The rationalized Gauss unite system is uSedthe fulfil

to unity the form of operator commutation relaaioes not change the finite
results. That is why for the sake of simplicity aupposes all the operators being the Bose-

Einstein field operators.

Instead of Schrodinger representation it will bevenient to use the equivalent

interaction representation. W(t) is the system wave function in Schrédinger repregmsn

than in interaction representation the wave fumctié(t) has the following view
- He

For the initial state in which the atom (1) is s ground state and atom (2) is in excited state

and photons are absent the view of wave functidhegollowing

0),

W0 =p'b;

g Jex

|O> eing the wave function of vacuum state. If the phdield differs from the
and any conglomerate of free photons with fullimbersN(k) =...,N,, ,...
function of such state will be denoted|als(k)>. After the appearance
in space of excited atom (2) the wave functigf) of total system at any moment of time
t >t, may be expressed as a set over the self-funatib ki’ operator

0)+ > o (tNK))bD;

iiN(k)

ORI OLY Nk). @

The summation oveN(k) means the summation over all possible photon field
conglomerates. We are interested in the probatafigxciting of

timet >t,. According to Dirac theory [2] the condition prdidléty of such event by the
transition at the same time of atom (2) at its gubu absence of free photons in

4



110

111

112

113

114

115

116

117
118
119
120

121

122
123
124
125
126

127

128
129
130

131
132
133
134

2
space i#c&)jg (t)‘ . The condition probability of exciting (1) atomapresence in space

photons in stat(izN (k)> Cufj)g (t, N(k))r_ The total probability?_(t) of the exciting of test

atom (1) is the sum of condition probabilities

P =X of +> [e@tNK)| 3)
B T NGy
One may use way and look for probability under consideratioraasiean number of

excited atoms in the state with energyif in system only one atom is present

P =(P()

b:b_|P(). (4)

If Fermi had used [1] the formula (3) then in pajidrone utilizes the formula (4).
Both calculations have to lead to one and the saswdt since the acquaintance (3) follows
from acquaintance (4) after introduction in it bétexpression (2). The reason of results

discrepancy in papers [2] and [6] is another. #nalyzed further.

Let us say that the square of matrix elenﬁﬁtg (t)‘2 describes the probability of the

excitation of (1) atom in coherent channel of atameraction. In this channel as a result of
coherent process of reaction in space the freeopbato not appear. Let us name the other
channels of (1) atom excitation as no cohereffivlldws from (3) that coherent channel of
(1) atom excitation gives opportunity to estimataf the low value the total excitation

probability of (1) atom

2
()
R.(02]c? )] -

In Fermi’s paper [1] the right side of this ineqtials calculated. As it has shown in [5] the
result of such calculation includes inside it topexluminal signal. Such signal can’'t be

compensated by more precisely calculations.

If the probability of (1) atom excitation is calated using formula (4) and interaction
across the formula (3) describing the presence of
superluminal forerunner. On the other words theraxttion representation with necessity

predicts the appearance of superluminal forerunkerording to the paper [5] in Heisenberg
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representation the superluminal signals never appéa state the of
Heisenberg and Schrédinger representations in goaatectrodynamics of nonstationary

processes. The reason of such investigated later.

Later we shall arguments which also lead to the conclusion on none
identity of these representations and permit as#dree time to clean the reascn

appearance.

In order to solve such problem let us calculatescalar product (4
At the same time we shall pay attention on thegraf the

discrepancy in such calculation results.
3.Interaction representation

The probability of (1) atom excitation in a formsdalar product (4) permits to
calculate of such product in any guantum electrodynamics representation. In this
paragraph we use the interaction representatios.Stirddinger equation in Schrédinger

representation using the Hamiltonian (1) has a view

Qﬂﬂ:ﬁwm.

i
In interaction representation the same equatioratiasm
mg%ﬂzﬁnﬂmy (5)

where

H'(t) =—%Iéﬁf(>&) f)r"ll,&vl(xl)z/‘/l(x])dr1—%@;()(2)f,rv;sz(Xm () Bt-t ), 6)
B0) =Y w-RYBe ™, G060 =0, (=R )b

-~ hc A I N i
Av (X) - q‘: a e|kr iket +a,+ e ikr +ikct )
%: 2kV A ( kA kA )

Here g ande,; are the atom internal energies in consequencethmastatesx={r,t} . The

solution of equation (5) has a view
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@) =S P°, St :f(ij H '(t')dt'j,
1% -

00

T being chronological operator. The transformatioexitation from one atom to another in

the lowest order of perturbation theory is defibgdhe forth Oe*. For such goal due to

(4) the matrixS(t) has evaluated in the third order

S(t) =1+ 8P t) + SA () + S(t) (7)
. 14 - - HERR ° G ’
SP{)== [ H't)at', SPt)=—| = | H'(t)dt' | ,SP@t)=—| = | H'(t)dt' | . 8
(®) .hf t) (t) 2!ih_£ (t) (t) 3!m_£ t) ®)
The operatorsS®(t) and S®(t) describe no-coherent channels of reactions inlwinic
space the excited atom (1) and free photons aeepteThe coherent channel of atom (1)

excitation is described by operafé?)(t) . The introduction (7) into (4) shows that

R, () =(S?)|b’h, b, | S +S ).

é(z’(t)> + < é(l’(t) + §(3)(t)

Let us calculat&®(t) . The introduction (6) into (8) leads to
~ e 2
@) (1) = 7 (5 ) B2 (X WD (%) 824
§70=( e | [0 00RO (61
[@ihDWz(xl, x,) + NA" (xl)AVZ(xz)] dx dx.,. 9)

Here we omitted the terms described the atomsastiibn, N is the normal product operator,

dx=drdt. They used the conventional identity
TA% (%) A2(%,) =IRD"2(x,, X,) + NA" (X)) A2(X,) .
In its turn

D"2(x,, X,) = D;/*2(X, X,) + A2 (X, X,),

D/*?(x,X,) is the retarded Green function
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VinY2

D 05,0 = L[ 0o Aottt == T T o ot T
Artr, — | c

One supposes that the poimfsandr, are divided by the wave radiation zone,

n’ =(r,=r,)" /|r,=r,|. Further

ic Jvlvz Vanzw |kc (t-1) of _
pre J sink|r, —r,jdk.  (12)

wv 1 AV, AV
A2 (4, %) = 2-(O] A% (A (x,)| 0 = -

The term in (9) containing the operatl@lrdescribes the no-coherent channel of reaction. In
this channel besides an excited atom (1) the te® fihotons appear in space. The probability
of such reaction is described by one of termseénldte sum in (3). This process we omit. In

coherent channel according to (9)
SP(t) =571 +SP(). (13)

The first term contains functioDd;*2while the second one contains the funcitfi. The

introduction (11) and (12) and (9) yields
qom ot e | &, &

2 _ v . Clg ig

S (t>_5( ] [ s, exp[l ; tljt

PN —-&.
[a:xh ng ]®<J‘ p] Jex exp(_l h . tZJD;/lVZ(Rl’RZ’tl’tZ)H(Z_tO)jtpt 2

500 =22 = ] i, ex ( _E‘WJE

)

B b, b; ,&jp exp[—l o _ 'gtjj S|nk|R —R,| €t dka ¢, —t, it gt

0

= [ () B (p)dp

The introduction (14) in (4) shows that



195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

b,

P =(87 +&2[f 8|80 +82) +(89+ $9]6 6 |50+ 80) @

The quantum averaging process in this equalitgifopmed over initial state of system. The
operatoréfz’(t) does not contain superluminal forerunner whiIepberatoréé”(t) such

forerunner is present.
4. Heisenber g representation

The transposition from Schrédinger representatiainé Heisenberg representation is

performed by operatdd (t) satisfying the equation

AU@M) [0 i
ih=—= =(R°+A")d@. (16)

The field operators in Heisenberg representatiove lzaview

0 =0"OIOU0O, A =0"0OF O, b, ©=0" 000
The differential equation (16) may be transformethie integral one
1. A,
U =U (t)+ u (t)ju H'(t")U t)dt', U°(t)=e * .
By using twice the iterative procedure we obiain the
operatorhi ()
¢t

b, (1) =6, (t)+%j[q (0); F'(t") Jot + 12 [ Jow-v[[b.0: ') [ @) atat +o(e)

—00 —00

By using the explicit form of operatdﬁs’(t), (X) andg*(x) in dipole approximation one
yields
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e o -ife
;B
e " [

mc

_E -gja_gjg n (2% ] n [T AN 3
E_” .MeXP t'|p}7, ex it D/*2(R, 1" R, {")dt'dt"n bib, +0 € .

—oo0 t,

b (t) = Qe‘T -_€ e’iﬁ?tj 4 xSt p AR, 1D +
- T h R AT

Now it is evident that

E

~ ~ e
gtl Avl ’tl tl +
J R, +( 5

Pia(t)=<b; “{‘i e a j P exp{

£ £J _£l " V. ] n IR DAEDNN 3
[le exp i t'(pr7, exg —i———=1 D2 (R, 1" R, t")dt"dt'y b b, +0 ¢
0

—0 tg

.(17)
Here the quantum averaging is performed over irsteate of system.
5. The discussing of the results

The formulae (15) and (17) being calculated ined#ht representations describe one and the

same probabilityy_(t). If in (15) the omitted term containinl@ is in

Oe* approximation (15) and (17) evidentially woulddgual. But in the preseft
are senseless since they contain in infinite linesintegrals from oscillated functions. It is
necessary to use the adiabatic iyp ]. We stress that for the
it is necessary to take into account all the tepneportional téJ ¢*, and
the from the product of first order term on the third
,that is necessary for coinciding with adiabatipdthesis, then the

results will be different.

analysis we began from formula (17) obtained insdeberg representation. The

first term in this formula which is proportional fo e’ describes the (1) atom excitation due

to its interaction with electromagnetic vacuum. of not equality to zero the

probability in to the initial conditiorthIZBj*ex O}. Besides this fact the

electromagnetic vacuum cannot excite the atom heiitg ground state according to the

physical understanding. The probability of suchcpsses has to be equal to zero. In

conventional quantum electrodynamics such excitas@absent since it contradicts the low

10
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of energy conservation. The low of energy consawdbllows from the adiabatic
hypothesis that is additionally putted on the sohd of quantum electrodynamics.

Mathematically this hypothesis is expresses byetheality
o(w-w) = 1 T et
2. '

O(w- wy) being Dirac function. In its turn this equality denals the integration over the time

in infinite limits. Only the additional using of edbatic hypothesis turns the set of
perturbation theory to the physically sense. Buh@problem under consideration the using
of adiabatic hypothesis in its usual form is implolessince the variable is finite. On the

other hand the atom (1) before the interaction wibited atom (2) was in its ground state
the infinitely long time interva(—oo +t) permanently interacting with electromagnetic

vacuum. The time length of the interaction interfvain the physically point of view is
infinitely long. We use this circumstance to invgate of the problematic right side term in
17)

oA €, TE
IA“(Rl,t’)ex |%t' dt' =

SERmE

It is necessary to pay attention to the fact thatgrobability of excitation transposition

J( Ak glkRa-iket +O’ € —ikR, +iket' )dt . (18)

between (2) and (1) atoms does not depend onrtteet tbut only on the time

—t,. Taken into account that the interaction of tr@ra{l) with electromagnetic field up to
the timet, has the infinitely long duration it necessary ts@ that the physical mining the
expression (17) has only in the lirnit. . At the same time the differente t, rests

constant (general adiabatic hypothesis). Now fr8) ields

t Al/ I é"@(_“:' ' ,
t WJA(Rl’t)eXp ITQt dt’ =

N I R R
=217 — a,,eo ¢ —kc |+a,,e" | —2+kc||.
%: 2kV ”[ K ( h K h

11




262  This expression carries in the result the zero the free photons are absent in
263  space. The vacuum term transforms into zero dtieet@nergy conservation low. Now it is

264  evident that the product of the first term of pdration theory by the third one also turns into

265  zero. In approximatiori] €' only one term rests

266 P (t)=

lex

o <3

268  This result found in Heisenberg representationdeiual to the result of paper [6] does not

ex—a £ —€ ’
j j P, exp | "IpP —i%t" D™ (R, t' R, t")dt"dt| . (19)

—0 ty

269  contain of the superluminal forerunners. This reswdy be explained as the one photon
270  radiation by the atom (2) at time momeht by the atom (1) at a time

271 t'. The propagator

R,-R
272 DflVZ(Rl,Rz,t',t")~5(t'—t"——| ! 2|j
C

273 c(t'-t")=|R, -R,|.

274  In the interaction representation we came acrassdme mathematical problem by

275  calculation the operator (8)

276 SU() = [ (x) B A (R, LD, () gt =

277 'ie*_gtA” £t
IthJ. p|tx|g ( J (Rl )j

278 Inthe limitt - c by conditiont —t, = const one getsS¥(t) — 0 if in space the free

279  photons are absent. Now in (15) one g(é‘é)(t) ti;tiex §(3’(t)>0 =0.

280 Let us consider now the operaéfr’(t). In this operator according (14) integration over
281 intermedia variables captures the aréa<t,. Let us divide the integral ovey in (14) by

282  the sum of two integrals

12
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; &, ~& +keh t &, &, tkeh
_[exp ITH t1+jex ITH dt, .

)
But the limit transitiont — o if t—t, =const demands the limit transitigp — o . In this

case the first integral transforms in Dire&efunctiond(kc+(giex —gig)/h)which is equal to

zero due to the positive value of its argument. &kgression (15) describing the probability

of atom (1) excitation in approximatidi e’ is now rewritten in the following view

P () :i(%j Jplvll xp[ Jj'pl o exp(ﬂnggtz][ (20)

to

i g, —n'n” 1 1

D/*?(R,,R,,t,,t,)+
(R Ry L) 8772 |R1—R2|

|R1—R2| —" |R1—R2| . dt,dt,
tl—tz—THO tl—t2+T+I0

Here the first term coincides with the result (bBjained in Heisenberg representation. The
second one describes the signals placed in sup@edlzone at a distance of the order of one

wave length that coincides with Fermi calculations. In t, - —oo,t —»

the second term turns ue to integrands analytical properties. By thisozain
stationary problems the representations SchrodiagemHeisenberg are identical. In
nonstationary (20) and (19) calculated in differert not

coincide.

Other words the using of the general adiabatic thgsis leads to non-
Schrddinger and Heisenberg representations in tadiogary quantum electrodynamics. We
stress that the Schrédinger representation peth@tappearance of superluminal

forerunners.

13
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6. Conclusion

In this work the non-stationary processes of tramsétion excitation from one atom to

another is considered. The result of Fermi worllirich the matrix element for such process
permits to think about the principal presence itureathe superluminal

signals. The repeated calculation of this procesbability performed by using Heisenberg

representation leaded to the conclusion of theradesef superluminal signals in quantum

theory. In the same work they postulated the noections of quantum transposition

calculation as a square of corresponded matrixeienThe other words they doubt about the

Dirac theory of quantum transpositions.

It is shown in present work that the calculatiorgofntum transposition probability as matrix
elements squared (Dirac’s method) or as quantumageeof corresponded quantum
operators lead to identity results if last caldolas are performed in Schrodinger

representation.

are not the consequences of different probalslitie
definition. The results different is the conseque=nef non-identity Schrédinger and
Heisenberg representation in quantum electrodyrapofioonstationary processes. As a
proof of non-identity representations in presentkatbe excitation
by spontaneous radiation of another atom exprebdsedgh quantum averaging of
corresponded calculations of such quantum averaging are
performed by both Schrdodinger and Heisenberg reptasons leading to the different

results. The representations none-identity folléiwsly from the no correct definition of

scattering matri>é(t)creating the connection of interaction (Schrodihged Heisenberg

representations. Since é(t)|CD> @ is arbitrary wave function in quantum
electrodynamic is represented as a divergen non astonishing that the different

summation set methods lead to different resultsuélgg of the formal properties é(t)

operator the sets of perturbation theory obtainesahréodinger and Heisenberg
representations at first glance are equal. But sethido not represemnt

guantum electrodynamics. In order to put thempiigsical sense it is necessary to use the
adiabatic hypothesis which supposes switching anttiag off the interaction &t- +oo

.This hypothesis mathematically expressed by usiagollowing equality

14
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%T j @ Wat’ = 5(w-awy) (21).

By investigating of quantum transitions at finit@é intervals it is not possible to use the
conventional adiabatic hypothesis. Instead thiothygsis it is necessary to use its generation

in the form
1 t
lim, — | €“ 't = N w-w) .
o j (w-w)

At the same time as in conventional quantum eldgtramics it is necessary to watch the

order of carry out the mathematical operationsstkf all it is necessary to carry out the limit

transition (21) and only then to carry out the quanoperation of summatia(n } After

using the general adiabatic hypothesis the sgiemdirbation theory lead to reasonable

results. But such results obtained in Schrodingertdeisenberg representations are different.

The difference may appear already in the termsqotamal to0 e*.

The isworth in practical aspect. Asis above the
Schrddinger representation predicts the preseriteinature of specific quantum
superluminal signals. The Heisenberg representationot describe the superluminal
processes at all. In

. Due to none-identity of
Schrddinger and Heisenberg representations thei¢éisagsing these representations have to

be considered as two mutual non-connecting theories physical systems in which the
matrix é(t) is well definite are quasi-classical in the seofseon-possibility inside them the

superluminal signals. The Schrédinger and Heisentepresentations for such systems are
identical. In general case the choice of one dddhepresentations only the experiment may
show. At present time only one such experimentisan which shows on Schrddinger
representation and predicts at the same time tiséeege in quantum electrodynamics the

superluminal signals.
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