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Fermi problem and superluminal signalsin quantum electr odynamics
Abstract

Using as an example the Fermi problem dealing mathstationary excitation trans-
formation from one atom to another the reason péduminal signals appearance in quan-
tum electrodynamics is clearing. It is shown that ¢alculation using the conventional meth-
ods in Heisenberg and Schrodinger representationsnstationary problems lead to differ-
ent results. The Schrodinger representation piethet existents of specified quantum super-
luminal signals. In Heisenberg representation theduminal signals are absent. The reason

representations is close connected with usingeatiabatic hypothesis.
PACS numbers: 42.50.-p
1. Introduction

In 1932 year E. Fermi [1] by developing the Ditheory [2] of quantum transpositions had
considered the problem dealing with nonstationeagdformation radiation between excited
atom and another atom being in its ground statecdft®ilated the probability
as a square of corresponded matrix elementas shown that the radiation transformation
has the retarded character and is described baaiearconstruction= R/ c. Heret is the
time of excitation transformatiorR is the distance between atoms, c is the lightoiglan

vacuum. The result was repeated in many followireptetic papers [3,4] .

The detailed analysis of Fermi calculations perfrm the paper [5] had shown that the
retarded character of signal defined by formidaR/ ¢ is only the approximation connected
with using the pole approximation. More punctudtoktions show the appearance of a
small superluminal forerunner placed before thesital electromagnetic wave front at a dis-
tance of the order of one wave length. The authppsses that such a fact does not have the
physical sense. In his paper [5] he tried to pthi fact in general form using the Heisen-

berg representation.

In paper [6] the Fermi result was analyzed agalve dppearance of the superluminal forerun-
ner forces the authors to clean the reason oppgea@ance and revise the Dirac theory [2] of
guantum transpositions. In the paper [6] one pastalthe incorrectness of representation of
guantum transpositions probability as a squar@nsequence matric elements. One proposes

to evaluate the observed values as quantum aveshges of consequence quantum operators.
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These have to be calculated in Heisenberg representefioch way leads to the
exact realization of the expressibr R/ cand likes the method proposed in [5]. The Schro-

dinger representation was not investigated.

In a paper [6] as in a paper [5] using the Heisembepresentation the authors came
to the conclusion of impossibility of the appea®irtquantum electrodynamics the super-

luminal signal.

Last years the interest for the optical superlutrsignals has risen supplementary.
Such signals were discovered in many experimenials | -14]. The necessity theo-
retical description has attempts of theory constructions in present d#yes fluc-
tuations excluded) deal extremely the classical representation of the internal struc

ture of electromagnetic field [15-19]. The exceptiepresents the paper [20]. In this work
- A2 -
using the interaction representation <E2> > <E> , E being the strength

operator of electromagnetic field, one shows thgeapance in electrodynamics of excited
media the superluminal signals. Such signals ddaet the classical analogs. For the appear-
ance of such signals the inversion population efmastates in media is not necessary. Such
superluminal signals were experimentally observetlevidently are in a good coincidence
with experimental data [13]. The reason and thgrearance conditions in connection with
experiments mentioned above are very interestmgrésent work such questions are solved
using the Fermi: example. In such a way one shows that the quarddration trans-
fer in quantum electrodynamics at the finite tinresleisenberg and Schrddinger representa-
tions are described in different words these representations are non-identicah Suc
result possesses not only the methaodic fact is that the superluminal signals ap-
pear only in Schrédinger representation. In Heisegloepresentation they are absent. This fact
permits to understand the result differences irceileulations using the different methods.

Namely this fact opens the possibility for predatihe analogous results in other situations.

We doubt not in the results of calculations in pagB] and [6] but we doubt in the fi-
nite conclusions in these works. In these worksctireclusions about the absent of superlu-
minal signals in quantum electrodynamics followmirHeisenberg representation. But in
these works the analysis using Schrodinger reptaisen is absent. We: the follow-

ing the solutions of Fermi-problem by using botpresentations. We shall show that noni-
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dentity of Schrodinger and Heisenberg nonstationary problems is naturally

and connected closely with using in quantum eleginamics the adiabatic hypothesis.
2. The state of the problem

Let us suppose that the test atom (1) being igridsnd state is placed at the pokt
and is attacked by the radiation of excited atojrp(@ced in the poinR,.The excited atom

begins interact with electromagnetic field at a reairof timet,. Each atom possesses only

one electron. We neglect the spin variables. Oppases the atoms are placed in wave zone
at a large distance between them that permitsdteoktin the exchange effect and in the lon-
gitudinal electromagnetic field. Suppose that eztoim possesses only two energetic levels.

But these levels may have energetic sublevels ekbged and ground states of primary ex-

cited atom (2) are describes consequently by inglg¢xeandj, . The energetic states of no-

excited atom (1) are described by indekeandi, . The Hamiltonian of the problem in

Schrddinger representation and quasi-resonant eippation is written in the following form

H=HC+H', H°= (g ()P, (r)dr,+ [@50 )0 @ 41 )ar #H,
A= == [ (r) B A () )dr = [ Y B A (r ) fr Jor gt -t ), (1)
mc : mc ’

6(t —t,) being the function that fixed the moment of time appearavicthe

interaction of radiated atom with electromagnetdi Over the repeated indexes one sup-

poses the summation,

l'[/l(rl) - Zw‘ (rl_ Rl)ki ! 4?/2("2) = Zl//J (rZ -R 2)61' ! |:| ph ~ Zth(dl:/\dk/\ +%j )
i i kA

AV _ hc v [~ Akr A+ ik
A (r)—%: Mem (amek +age’ )

The ¢, andy; denote the behavior of electrons in atoms (1)(291,cﬁ+ and

6: denote the electron creations operators at the states. Byz,, and d,, the annihilation

and creation photon operators in stalesl) are denoted. Herk is the photon wave vector,

A is the index of its polarization. The photons ham§y the transversal polarizatioh
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=(1,2). The rationalized Gauss unite system is usedthe fulfil to unity the
form of operator commutation relations does nongdeethe finite results. That is why for the

sake of simplicity one supposes all the operateisgthe Bose-Einstein field operators.

Instead of Schrodinger representation it will bewenient to use the equivalent inter-

action representation. W (t) is the system wave function in Schrédinger repreg®n than

in interaction representation the wave functi(t) has the following view
) Ko
W) = exp(i 7tJ W)

For the initial state in which the atom (1) is & ground state and atom (2) is in excited state

and photons are absent the view of wave functidhedollowing

0),

B0 =p'b;
|O> eing the wave function of vacuum state. If the phdiwid differs from the
and any conglomerate of free photons with fulfil tnersN(k) =...,N,, ,...
in it than the wave function of such state will lmndted a$N (k)> After the appearance in
space of excited atom (2) the wave functiéfh) of total system at any moment of time
t >t, may be expressed as a set over the self-functioﬁlsoodiperator

0)+ > ¢ (t.N))gb;

iiN(K)

S(OEDICHOLY Nk)). @

The summation oveN (k) means the summation over all possible photon Gieltglomer-
ates. We are interested in the probability of excifitigatom of timet >t,. Ac-

cording to Dirac theory [2] the condition probability eick event by the transition at the
2

same time of atom (2) at its ground absence of free photons in spac%ﬁfe@g (t)‘ :

The condition probability of exciting (1) atom at a @ese in space photons in st{aﬂa(k)}

2 g .-y . .
ij)g (t,N(k))| . The total probabilityR (t) of the exciting of test atom (1) is the sum of

condition probabilities
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P.O= o+ [ tNK)[ 3)
i iN(k)

One may use the another way and look for probabhilityer consideration as a mean number

of excited atoms in the state with eneigyif in system only one atom is present

R.()=(¥()

b:b, [P()). (4)

If Fermi used [1] the formula (3) then in paper [6] oniéags the formula (4). Both
calculations have to lead to one and the same r&isgk the acquaintance (3) follows from
acquaintance (4) after introduction in it of the exp@s$®). The reason of results discrepan-

cy in papers [2] and [6] is another. It is analyzed furthe

Let us say that the square of matrix elerde,ﬁtg (t)‘2 describes the probability of the

excitation of (1) atom in coherent channel of atontsraction. In this channel as a result of
coherent process of reaction in space the free phdtmnst appear. Let us name the other
channels of (1) atom excitation as no coherent. It fadlfnam (3) that coherent channel of
(1) atom excitation gives opportunity to estimate friwm low value the total excitation prob-

ability of (1) atom

2
R.O2[cY, ] -

In Fermi’s paper [1] the right side of this inequalitc&éculated. As it has shown in [5] the
result of such calculation includes inside it theesypminal signal. Such signal can’t be

compensated by more precisely calculations.

If the probability of (1) atom excitation is calculatesing formula (4) and interaction
representation than one came across the formula (3) lbiegctine presence of superluminal
forerunner. On the other words the interaction reprasientwith necessity predicts the ap-
pearance of superluminal forerunner. According to theepgb] in Heisenberg representation
the superluminal signals never appear. We state the-identity of Heisenberg and Schro6-
dinger representations in quantum electrodynamics métationary processes. The reason of

such investigated later.
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Later we shall use other arguments which also ledklet conclusion on nonidentity of
these representations and permit at the same tiglean the reason of nonidentity appear-

ance.

In order to solve such problem let us calculate sgataduct (4 interaction represen-
tation and Heisenberg representation. At the samewienghall pay attention on the reason

of the discrepancy in such calculation results.
3.Interaction representation

The probability of (1) atom excitation in a form of kzgoroduct (4) permits to calcu-
late of such product in any quantum electrodynamicsesgmtation. In this paragraph we
use the interaction representation. The Schrodingetiegua Schrodinger representa-

tion using the Hamiltonian (1) has a view

PO - Hug.
ot
In interaction representation the same equation fasra
aw t
™0 a e, ©)

where
H'(t) = % [ @7 () B A Q) dr = — j PL(x B A (X {x )dr Gt =t ), (6)

471()(1) - Zw‘ (r= Rl)lie_i;it ' 1,172(X2) = ij (r,-R z)Bje—i?Jt )

AV( ) Z 2kV (é’k jkr —iket +é,;Ae—|kr+|kd)

Here ¢ andg; are the atom internal energies in consequencetmmsastatesx:{r,t} . The

solution of equation (5) has a view

B =509, 0= T( jHa)dtj
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T being chronological operator. The transformatioexiditation from one atom to another in

lowest order of perturbation theory is defined oy forth order. For such goal due to (4) the

matrixé(t) has evaluated in the third order

S(t) =1+ S )+ S?(t) + SP), (7)

t ~ t 2 ~ t
s“)(t):% j H'(t')dt',S(z)(t):g(% j H'(t')dt'j ,s%p%(% j H'(t')dt'j

3

(8)

The operatorsS® (t) and S®(t) describe no-coherent channels of reactions infwinic
space the excited atom (1) and free photons aeepteThe coherent channel of atom (1)

excitation is described by operaéSf) (t) . The introduction (7) into (4) shows that

R.®=(57()

b, [$1)+(S°®) + 5P

b, |S¥(®) +S°)).
Let us calculat&®(t) . The introduction (6) into (8) leads to
~ e 2
(2) — 7+ Vi Ty 7+ AV2,7)
§70=( | [0 00RO (61
D" (3, X,) + NA" () A" (x,) | dxx.. 9)

Here we omitted the terms described the atomsastin, N is the normal product operator,

dx=drdt. They used the conventional identity
TA" () A (x,) =iAD"?(x,, X,) + NA (X ) A”*(X,) .
In its turn
D2 (%1, %;) = D2 (X, X)) + A2 (X1, X ),

D/¥2(x,,X,) is the retarded Green function

—_n an

v 1 AV AV 5I/1V2 r-r
D2 (%, X,) =E[A L (x); A z(xz)] O(t,~t,) = _Wd(tl_t 2_| 1 - 2|j (11)
1 2




173 One supposes that the poimfsandr, are divided by the wave radiation zone,

174 n’” =(r,=r,)" /|r,—r,|. Further

ic a—vv -n"n’ < ike(t—t,)
- S kir,—r,ldk. 12
pP P !e sink|r, =1, (12)

vy 1 AV, AV
175 A" (%, %,) =—(0] A (x,)A” (x,)| 0) = -
ih

176  The term in (9) containing the operatﬁrdescribes the no-coherent channel of reaction. In
177  this channel besides an excited atom (1) the te® fihotons appear in space. The probability
178  of such reaction is described by one of termsénlate sum in (3). This process we omit. In

179  coherent channel according to (9)
180 SP(t)=5"(t)+SA(1). (13)

181  The first term contains functioD®;*>while the second one contains the functitfi. The

182  introduction (11) and (12) and (9) yields

183 éfz)(t)zi—( jj exp( 4, 1}[

n oo~ L -&.
184 [a;bl ng ]aj ] Jexe p[_l h . tszlijlvz(Rl’RZ’tllz)e(z_tO)jtJdt 2

185 éf)(t) = _(%j j P.;, © ( =% tlJ[

—00

©

t . )
186 [’ bb,_ | p‘j':jaexp(—l 'e*h 'gtJj sink|R1—R2|e"‘°(‘1't2)dkH(z—toﬁtptz

0

187 ,(14)
188 Pl =@ (0) B, (p)dp.

189  The introduction (14) in (4) shows that

100 R )=(87+87[F5_ |87+ 85 (50 5

~,
b'b
ISX IE(

SO+86) . (15)
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The quantum averaging process in this equalitgifopmed over initial state of system. The
operatoré{z)(t) does not contain superluminal forerunner whilep'neratoréf’(t) such fore-

runner is present.
4. Heisenber g representation
The transposition from Schrddinger representaticiné Heisenberg representation is per-

formed by operatorj (t) satisfying the equation

ad () _
ot

in—. (H +H )U(t) (16)

The field operators in Heisenberg representative lzaview
o n 7 n DV 1+ AV 1 . T+ M\ 11
Y =U"O@rU (), AX)=U"OA UL, b {=U )b U

The differential equation (16) may be transformethe integral one

HO

U@)=U (t)+1U (t)ju @H' ) @)dt, Ut =e " .

O
By using twice the iterative procedure we obtain (o1 the operatoiy_(t)

t ot

bi(t)zﬁex(t)+— j [, (0 A" o N L[ [ew-t) )[[B, ©: A" A [drd + ofe?)

—00 —00

By using the explicit form of operatdﬁé(t), ¢(x) and*(x) in dipole approximation one

2 g
—Iit
e " [
ame

yields

b.()=Be """ ——e'h j ol e

JA”m(Rl,t e, +( 2
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gig ' V. gla _Ejg " (212 1 " [ NN 3
P, ex —i———=t D (R, ' R, {")dt'dt"g byb,_ +0 €

tt ) gex —
EE(E

(17)

Now it is evident that

P ®=(b O] -2 e'i?tj 4 explic= by | s R, £ )ith +[ € jze"ﬁ;t[
fex - iex Ihn‘n 2 p ig p h 17 g

led iAmec

L v .£ex_£i ' v -£j9< _£l n V. ' n RPN 3
T [ o, expli U P, exg i D!** (R, t' R, ")dt"dt'y b/ b,_+0 € }) .

oty .
Here the quantum averaging is performed over irstete of system.

5. The discussing of theresults

The formulae (15) and (17) being calculated inad#ht representations describe one and the

same probabilit_(t). If in (15) the omitted term containin@ is reconstructed than in

~e* approximation (15) and (17) evidentially woulddsgual. But in the present
are senseless since they contain in infinite littesintegrals from oscillated functions. It is
necessary to use the adiabatic inyp ]. We stress that for the acquaintance (15) and
it is necessary to take into account all the tepnogortional to- ¢*, and
the from product of first order term on the third they ne-
glect of such term, that is necessary for coingdiith adiabatic hypothesis, than the results

will be different.

The analysis in detail we began from formula (13tamed in Heisenberg representation. The
first term in this formula which is proportional toe’ describes the (1) atom excitation due

to its interaction with electromagnetic vacuumu of not equality to zero the proba-

bility in to the initial conditioy’b;

O}. Besides this fact the electro-

magnetic vacuum cannot excite the atom being igridsind state according to the physical
understanding. The probability of such processesdae equal to zero. In conventional
guantum electrodynamics such excitation is absené st contradicts the low of energy con-

servation. The low of energy conservation followai the adiabatic hypothesis that is addi-

10
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tionally putted on the solutions of quantum eledymamics. Mathematically this hypothesis

is expresses by the equality
o(w-w) -1 T g@ @it
21 Y. '

o(w— ) being Dirac function. In its turn this equality danas the integration over the time

in infinite limits. Only the additional using of edbatic hypothesis turns the set of perturba-
tion theory to the physically sense. But in thebpean under consideration the using of adia-
batic hypothesis in its usual form is impossiblecsithe variablé is finite. On the other

hand the atom (1) before the interaction with edt@étom (2) was in its ground state the infi-
nitely long time interva(—oo +t) permanently interacting with electromagnetic vanutihe

time length of the interaction interval from theypltally point of view is infinitely long. We

use this circumstance to investigate of the prohtamight side term in (17)

Lo &, &
jAV(Rl,t')exp(i = gt’Jdt':
SR

It is necessary to pay attention to the fact thatgrobability of excitation transposition be-

J(dméml—im’ + d;/‘ e—ikR1+ikct' ) at’ . (18)

tween (2) and (1) atoms does not depend on thettimé only on the time t—t,.

Taken into account that the interaction of the afdjwith electromagnetic field up to the

time t, has the infinitely long duration it necessary ts@ that the physical mining the ex-

pression (17) has only in the limit- o . At the same time the differentet, rests constant

(general adiabatic hypothesis). Now from (18) yseld

toa &, TE
m, . j A“(Rl,t')exp(lﬁt'jdt':

_-g _ & €
=2my. he g, Meled b —ke [+a;,e" g =—2+ke||.
KA 2kV h h

11
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This expression carries in the result zero the free photons are absent in
space. The vacuum term transforms into zero dtiegetenergy conservation low. Now it is

evident that the product of the first term of pdration theory by the third one also turns into

zero. In approximation €* only one term rests

P ()=

lex

_i(ij“
h*lme

This result found in Heisenberg representationdenual to the result of paper [6] does not

&, "€,

(L £ - 2
[ ] et exp(iTgt'J Pl ex{—i”Tt"J D2 (R, t' R, t")dt"dt| . (19)

ex

—o0 ty

contain of the superluminal forerunners. This reswdy be explained as the one photon radi-
ation by the atom (2) at time mometfit of this photon by the atom (1) at

atime t'. The propagator

D*:(R,,R,,t't") ~5(t' —t" ——|R1;R2|J

c(t' -t")=|R,~-R,|.

In the interaction representation we came acrassdme mathematical problem by calcula-

tion the operator (8)

(1) :_i o+ AV AV h -
S0 =~ — [ (%) B A (Ry, L (o gt

iAmc h

i E —& ~

In the limitt — o by conditiont —t, = const one getsS®(t) — 0 if in space the free pho-

tons are absent. Now in (15) one géé%”(t)ti;f),a é“‘)(t)>O =0.

Let us consider now the opera%?)(t). In this operator according (14) integration over

intermedia variable$ captures the aréa<t,. Let us divide the integral ovérin (14) by

the sum of two integrals

12
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to & —& tken t & & +ken
Iexp |T"t1 dt1+'|'ex |T"t1 dt; .

fo
But the limit transitiont — o if t —t, = const demands the limit transitidf — . In this

case the first integral transforms in DireYefunctiond(kc+(£iex —gig)/h)which is equal to

zero due to the positive value of its argument. &karession (15) describing the probability

of atom (1) excitation in approximatione® is now rewritten in the following view

P ()= hl[ jj P, e ( J et expf—ngjgtth (20)

- nVl an 1 1

|R R2|+O t,—t,+ 7|R1_R2|+i0
c c

i O
D:lVZ(R11R2It1’t2)+8;T2 e dtldtz

|R1_R2| t -

Here the first term coincides with the result (b®jained in Heisenberg representation. The

second one describes the signals placed in supeduzone at a distance of the order of one

wave length that coincides with corrective Fermcakations. In t, - —oo,t - o

the second term turns ue to integrands analytical properties. By thisosain sta-
tionary problems the representations Schrodingersgisenberg are identical. In
nonstationary (20) and (19) calculated in differert not

coincide.

The formulae (19) and (20) arrived from formulaB)(and (17) if in the last one according to
the general adiabatic hypothesis one misses thvesteppearing from the products of the first
order term of perturbation theory by the third oBg.this reason these formulae cannot be
equal. Other words the using of the general adiabgpothesis leads to nci:

Schrddinger and Heisenberg representations in tatiosary quantum electrodynamics. We
stress that the Schrédinger representation peth@tappearance of superluminal forerun-

ners.

13
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6. Conclution

In this work the non-stationary processes of tramsétion excitation from one atom to an-
other is considered. The result of Fermi work inakitthe matrix element for such process
permits to think about the principal presence itureathe superluminal sig-
nals. The repeated calculation of this processalitiby performed by using Heisenberg rep-
resentation leaded to the conclusion of the absehseperluminal signals in quantum theo-
ry. In the same work they postulated the no coiwastof quantum transposition calculation
as a square of corresponded matrix element. Ther atbrds they doubt about the Dirac the-

ory of quantum transpositions.

It is shown in present work that the calculatiomofntum transposition probability as matrix
elements squared (Dirac’s method) or as quantumageeof corresponded quantum opera-

tors lead to identity results if last calculatiaare performed in Schrédinger representation.

are not the consequences of different probalsldiefini-
tion. The results different is the consequencamatidentity Schrodinger and Heisenberg
representation in quantum electrodynamics of ndiostary processes. As a proof of non-
identity representations in present work the excitation by spontaneous
radiation of another atom expressed through quamatteraging of corresponded
calculations of such quantum averaging are pesdrby both Schrédinger

and Heisenberg representations leading to therdiffeesults. The representations nonidenti-

ty follows finely from the no correct definition stattering matri>é(t) creating the connec-
tion of interaction (Schrodinger) and Heisenbeqgesentations. Since é(t)|CD>

@ is arbitrary wave function in quantum electrodynamic isesgnted as a divergent
set that is non astonishing that the different summation esitotis lead to different results.
By using of the formal properties é(t) operator the sets of perturbation theory obtained in

Schrddinger and Heisenberg representations at first glaeaegual. But such sets do not
represent sensibie guantum electrodynamics. In order to put them the physica

sense it is necessary to use the adiabatic hypothegk stipposes switching and shutting

14
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off the interaction dt - +o .This hypothesis mathematically expressed by using thaafoll
ing equality
1 [e¢)

ETJ €@t = 5(w- ) (21).

—00

By investigating of quantum transitions at finite time iné&s\t is not possible to use the
conventional adiabatic hypothesis. Instead this hypothdsiaécessary to use its generation
in the form
1 t
; [ et g = _
lim, ., 277_'!;e dt' = d(w-w) .
At the same time as in conventional quantum electrodynamgsecessary to watch the

order of carry out the mathematical operations. Birsil it is necessary to carry out the limit
transition (21) and only then to carry out the quantunmaijms of summatio(1..>. After us-
ing the general adiabatic hypothesis the sets of pettonbtheory lead to reasonable results.
But such results obtained in Schrodinger and Heisenbkergsentations are different. The

difference may appear already in the terms proportimnale® .

The representation nonidentity is worth in practical aspecis sown above the Schrédinger
representation predicts the presents in the nature dfisppr@ntum superluminal signals.

The Heisenberg representation cannot describe the sup®lyprocesses at all. I

.-Due to nonidentity of Schrdodinger and Heisenberg
representations the theories using these representhtivago be considered as two mutual
non-connecting theories. The physical systems in whicmgkteix é(t) is well definite are

guasi-classical in the sense of non-possibility indieent the superluminal signals and
Schrédinger and Heisenberg representations for suchrsysie identical. In general case
the choice of one of these representations only the iexgeetr may show. At present time on-
ly one such experiment is known which shows on Schgédirepresentation and predicts at

the same time the existence in quantum electrodynamicspleesminal signals.
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