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Fermi problem and superluminal signals in quantum electrodynamics 1 

Abstract   2 

Using as an example the Fermi problem dealing with nonstationary excitation trans-3 

formation from one atom to another the reason of superluminal signals appearance in quan-4 

tum electrodynamics is clearing. It is shown that the calculation using the conventional meth-5 

ods in Heisenberg and Schrödinger representations in nonstationary problems lead to differ-6 

ent results. The Schrödinger representation predicts the existents of specified quantum super-7 

luminal signals. In Heisenberg representation the superluminal signals are absent. The reason 8 

of nonidentity of representations is close connected with using of the adiabatic hypothesis.  9 

PACS  numbers: 42.50.-p 10 

1. Introduction 11 

 In 1932 year E. Fermi [1] by developing the Dirac theory [2] of quantum transpositions had 12 

considered the problem dealing with nonstationary transformation radiation between excited 13 

atom and another atom being in its ground state. He calculated the probability of such process 14 

as a square of corresponded matrix element. It was shown that the radiation transformation 15 

has the retarded character and is described by character construction /t R c= . Here t  is the 16 

time of excitation transformation, R  is the distance between atoms, c is the light velocity in 17 

vacuum. The result was repeated in many following theoretic papers [3,4] . 18 

The detailed analysis of Fermi calculations performed in the paper [5] had shown that the 19 

retarded character of signal defined by formula /t R c=  is only the approximation connected 20 

with using the pole approximation. More punctual calculations show the appearance of a 21 

small superluminal forerunner placed before the classical electromagnetic wave front at a dis-22 

tance of the order of one wave length. The author supposes that such a fact does not have the 23 

physical sense. In his paper [5] he tried to proof this fact in general form using the Heisen-24 

berg representation.  25 

In paper [6] the Fermi result was analyzed again. The appearance of the superluminal forerun-26 

ner forces the authors to clean the reason of its appearance and revise the Dirac theory [2] of 27 

quantum transpositions. In the paper [6] one postulates the incorrectness of representation of 28 

quantum transpositions probability as a square of consequence matric elements. One proposes 29 

to evaluate the observed values as quantum average values of consequence quantum operators. 30 
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These average values have to be calculated in Heisenberg representation. Such way leads to the 31 

exact realization of the expression /t R c= and likes the method proposed in [5]. The Schrö-32 

dinger representation was not investigated. 33 

In a paper [6] as in a paper [5] using the Heisenberg representation the authors came 34 

to the conclusion of impossibility of the appearance in quantum electrodynamics the super-35 

luminal signal. 36 

Last years the interest for the optical superluminal signals has risen supplementary. 37 

Such signals were discovered in many experimental works [7-14]. The necessity of their theo-38 

retical description has appeared. All attempts of theory constructions in present days (the fluc-39 

tuations excluded) deal extremely with using the classical representation of the internal struc-40 

ture of electromagnetic field [15-19]. The exception represents the paper [20]. In this work 41 

using the interaction representation and evident non-equality
2

2ˆ ˆЕ Е≥ , Е̂  being the strength 42 

operator of electromagnetic field, one shows the appearance in electrodynamics of excited 43 

media the superluminal signals. Such signals do not have the classical analogs. For the appear- 44 

ance of such signals the inversion population of atom states in media is not necessary. Such 45 

superluminal signals were experimentally observed and evidently are in a good coincidence 46 

with experimental data [13]. The reason and their appearance conditions in connection with 47 

experiments mentioned above are very interesting. In present work such questions are solved 48 

using the Fermi-problems example. In such a way one shows that the quantum radiation trans-49 

fer in quantum electrodynamics at the finite times in Heisenberg and Schrödinger representa-50 

tions are described in different way. Other words these representations are non-identical. Such 51 

result possesses not only the methodic character. The fact is that the superluminal signals ap-52 

pear only in Schrödinger representation. In Heisenberg representation they are absent. This fact 53 

permits to understand the result differences in the calculations using the different methods. 54 

Namely this fact opens the possibility for prediction the analogous results in other situations. 55 

We doubt not in the results of calculations in papers [5] and [6] but we doubt in the fi-56 

nite conclusions in these works. In these works the conclusions about the absent of superlu-57 

minal signals in quantum electrodynamics follows from Heisenberg representation. But in 58 

these works the analysis using Schrödinger representation is absent. We revise in the follow-59 

ing the solutions of Fermi-problem by using both representations. We shall show that noni-60 
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dentity of Schrödinger and Heisenberg representations in nonstationary problems is naturally 61 

and connected closely with using in quantum electrodynamics the adiabatic hypothesis. 62 

2. The state of the problem 63 

Let us suppose that the test atom (1) being in its ground state is placed at the point 1R  64 

and is attacked by the radiation of excited atom (2) placed in the point 2R .The excited atom 65 

begins interact with electromagnetic field at a moment of time 0t . Each atom possesses only 66 

one electron. We neglect the spin variables. One supposes the atoms are placed in wave zone 67 

at a large distance between them that permits to neglect in the exchange effect and in the lon-68 

gitudinal electromagnetic field. Suppose that each atom possesses only two energetic levels. 69 

But these levels may have energetic sublevels. The excited and ground states of primary ex-70 

cited atom (2) are describes consequently by indexes exj  and gj . The energetic states of no-71 

excited atom (1) are described by indexes exi and gi . The Hamiltonian of the problem in 72 

Schrödinger representation and quasi-resonant approximation is written in the following form 73 

0ˆ ˆ ˆH H H ′= + ,   0
1 1 1 1 1 1 2 2 2 2 2 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) phH H d H d Hψ ψ ψ ψ+ += + +∫ ∫r r r r r r  74 

1 1 2 2

1 21 1 1 1 1 1 2 2 2 2 2 2 0
ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )

e e
H p A d p A d t t

mc mc
ν ν ν νψ ψ ψ ψ θ+ +′ = − − −∫ ∫r rr r r r r r r r ,  (1) 75 

0( )t tθ − being the Heaviside step function that fixed the moment of time appearance of the 76 

interaction of radiated atom with electromagnetic field. Over the repeated indexes one sup-77 

poses the summation, 78 

1 1 1 1
ˆˆ ( ) ( )i i

i

bψ ψ= −∑r r R ,  2 2 2 2
ˆˆ ( ) ( )j j

j

bψ ψ= −∑r r R ,  
1ˆ ˆ ˆ
2phH ck λ λ

λ
α α+ = + 
 

∑ k k
k

h , 79 

( )ˆ ˆ ˆ( )
2

i ic
A e e e

kV
ν ν

λ λ λ
λ

α α + −= +∑ kr kr
k k k

k

r
h

. 80 

The wave functions  iψ  and jψ  denote the behavior of electrons in atoms (1) and (2), îb+  and 81 

ˆ
jb+  denote the electron creations operators at the same states. By ̂ λαk  and ˆ λα +

k the annihilation 82 

and creation photon operators in states ( , )λk are denoted. Here k  is the photon wave vector, 83 

λ  is the index of its polarization. The photons have only the transversal polarization λ84 



4 

 

=(1,2). The rationalized Gauss unite system is used. For the fulfil numbers equal to unity the 85 

form of operator commutation relations does not change the finite results. That is why for the 86 

sake of simplicity one supposes all the operators being the Bose-Einstein field operators. 87 

 Instead of Schrödinger representation it will be convenient to use the equivalent inter-88 

action representation. If ( )tΨ  is the system wave function in Schrödinger representation than 89 

in interaction representation the wave function ( )tΨ% has the following view 90 

0ˆ
( ) exp ( )

H
t i t t

 
Ψ = Ψ 

 

%

h
. 91 

For the initial state in which the atom (1) is in its ground state and atom (2) is in excited state 92 

and photons are absent the view of wave function is the following  93 

0 ˆ ˆ 0
g exi jb b+ +Ψ =% , 94 

where 0  being the wave function of vacuum state. If the photon field differs from the vacu-95 

um state and any conglomerate of free photons with fulfil numbers ( ) ..., ,...N λ= kN k is placed 96 

in it than the wave function of such state will be denoted as ( )N k . After the appearance in 97 

space of excited atom (2) the wave function( )tΨ%  of total system at any moment of time 98 

0t t>  may be expressed as a set over the self-functions of 0Ĥ  operator 99 

( )(1) (2)

( )

ˆ ˆ ˆ ˆ( ) ( ) 0 , ( ) ( )ij i j ij i j
ij ij

t c t b b c t b b+ + + +Ψ = +∑ ∑
N k

N k N k% .     (2) 100 

The summation over ( )N k  means the summation over all possible photon field conglomer-101 

ates. We are interested in the probability of exciting (1) atom at a moment of time 0t t> . Ac-102 

cording to Dirac theory [2] the condition probability of such event by the transition at the 103 

same time of atom (2) at its ground state at the absence of free photons in space is 
2

(1) ( )
ex gi jc t . 104 

The condition probability of exciting (1) atom at a presence in space photons in state ( )N k105 

is  
2

(2) ( , ( ))
ex gi jc t N k . The total probability ( )

exiP t  of the exciting of test atom (1) is the sum of 106 

condition probabilities 107 
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2 2(1) (2)

( )

( ) ( ) ( , ( ))
ex ex exi i j i j

j j

P t c t c t= +∑ ∑
N k

N k       (3) 108 

One may use the another way and look for probability under consideration as a mean number 109 

of excited atoms in the state with energy 
exiε if in system only one atom is present 110 

ˆ ˆ( ) ( ) ( )
ex ex exi i iP t t b b t+= Ψ Ψ% % .     (4) 111 

If Fermi used [1] the formula (3) then in paper [6] one utilizes the formula (4). Both 112 

calculations have to lead to one and the same result since the acquaintance (3) follows from 113 

acquaintance (4) after introduction in it of the expression (2). The reason of results discrepan-114 

cy in papers [2] and [6] is another. It is analyzed further. 115 

Let us say that the square of matrix element 
2

(1) ( )
ex gi jc t describes the probability of the 116 

excitation of (1) atom in coherent channel of atoms interaction. In this channel as a result of 117 

coherent process of reaction in space the free photons do not appear. Let us name the other 118 

channels of (1) atom excitation as no coherent. It follows from (3) that coherent channel of 119 

(1) atom excitation gives opportunity to estimate from the low value the total excitation prob-120 

ability of (1) atom 121 

2
(1)( ) ( )

ex ex gi i jP t c t≥ . 122 

In Fermi’s paper [1] the right side of this inequality is calculated. As it has shown in [5] the 123 

result of such calculation includes inside it the superluminal signal. Such signal can’t be 124 

compensated by more precisely calculations. 125 

 If the probability of (1) atom excitation is calculated using formula (4) and interaction 126 

representation than one came across the formula (3) describing the presence of superluminal 127 

forerunner. On the other words the interaction representation with necessity predicts the ap-128 

pearance of superluminal forerunner. According to the paper [5] in Heisenberg representation 129 

the superluminal signals never appear. We state the none-identity of Heisenberg and Schrö-130 

dinger representations in quantum electrodynamics of nonstationary processes. The reason of 131 

such non- identity is investigated later. 132 
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 Later we shall use other arguments which also lead to the conclusion on nonidentity of 133 

these representations and permit at the same time to clean the reason of nonidentity appear-134 

ance.  135 

In order to solve such problem let us calculate scalar product (4)  in both interaction represen-136 

tation and Heisenberg representation. At the same time we shall pay attention on the reason 137 

of the discrepancy in such calculation results.  138 

3.Interaction representation 139 

The probability of (1) atom excitation in a form of scalar product (4) permits to calcu-140 

late of such product in any quantum electrodynamics representation. In this paragraph we 141 

use the interaction representation. The Schrödinger equation in Schrödinger representa-142 

tion using the Hamiltonian (1) has a view 143 

( ) ˆ ( )
t

i H t
t

∂Ψ = Ψ
∂

h . 144 

In interaction representation the same equation has a form 145 

( ) ˆ ( ) ( )
t

i H t t
t

∂Ψ ′= Ψ
∂

%
%h ,   (5) 146 

where 147 

1 1 2 2

1 21 1 1 1 1 1 2 2 2 2 2 2 0
ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

e e
H t x p A x x d x p A x x d t t

mc mc
ν ν ν νψ ψ ψ ψ θ+ +′ = − − −∫ ∫r rr r , (6) 148 

1 1 1 1
ˆˆ ( ) ( )

ii t

i i
i

x b e
ε

ψ ψ
−

= −∑ r R h ,   2 2 2 2
ˆˆ ( ) ( )

ji t

j j
j

x b e
ε

ψ ψ
−

= −∑ r R h , 149 

( )ˆ ˆ ˆ( )
2

i ikct i ikctc
A x e e e

kV
ν ν

λ λ λ
λ

α α− + − += +∑ kr kr
k k k

k

h
. 150 

Here iε  and jε  are the atom internal energies in consequence quantum states, { },x t= r . The 151 

solution of equation (5) has a view 152 

0ˆ( ) ( )t S tΨ = Ψ% % ,   
1ˆ ˆ ˆ( ) ( )

t

S t T H t dt
i −∞

 
′ ′ ′=  

 
∫

h
, 153 
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T̂ being chronological operator. The transformation of excitation from one atom to another in 154 

lowest order of perturbation theory is defined by the forth order. For such goal due to (4) the 155 

matrix ˆ( )S t has to be evaluated in the third order 156 

(1) (2) (3)ˆ ˆ ˆ ˆ( ) 1 ( ) ( ) ( )S t S t S t S t= + + + ,  (7) 157 

(1) 1ˆ ˆ( ) ( )
t

S t H t dt
i −∞

′ ′ ′= ∫
h

,

2

(2)
ˆ 1ˆ ˆ( ) ( )

2!

tT
S t H t dt

i −∞

 
′ ′ ′=  

 
∫

h
,

3

(3)
ˆ 1ˆ ˆ( ) ( )

3!

tT
S t H t dt

i −∞

 
′ ′ ′=  

 
∫

h
.  (8) 158 

The operators (1)ˆ ( )S t  and (3)ˆ ( )S t  describe no-coherent channels of reactions in which in 159 

space the excited atom (1) and free photons are present. The coherent channel of atom (1) 160 

excitation is described by operator(2)ˆ ( )S t . The introduction (7) into (4) shows that 161 

(2) (2) (1) (3) (1) (3)ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )
ex ex ex ex exi i i i iP t S t b b S t S t S t b b S t S t+ += + + + . 162 

Let us calculate (2)ˆ ( )S t . The introduction (6) into (8) leads to 163 

1 2

1 2

2
(2)

1 1 1 1 2 2 2 2
ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( )

e
S t x p x x p x

i mc
ν νψ ψ ψ ψ+ + = ⋅ 

 
∫ r r

h
 164 

1 2 1 2
1 2 1 2 1 2

ˆ ˆˆ( , ) ( ) ( )i D x x NA x A x dx dxν ν ν ν ⋅ + h .  (9) 165 

Here we omitted the terms described the atoms self-action, N̂  is the normal product operator, 166 

dx d dt= r . They used the conventional identity 167 

1 2 1 2 1 2
1 2 1 2 1 2

ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( , ) ( ) ( )TA x A x i D x x NA x A xν ν ν ν ν ν= +h . 168 

In its turn 169 

1 2 1 2 1 2
1 2 1 2 1 2( , ) ( , ) ( , )rD x x D x x x xν ν ν ν ν ν= + ∆ ,  (10) 170 

where 1 2
1 2( , )rD x xν ν  is the retarded Green function 171 

1 2

1 21 2 1 2 1 2
1 2 1 2 1 2 1 2

1 2

1 ˆ ˆ( , ) ( ); ( ) ( )
4r

n n
D x x A x A x t t t t

i c

ν ν
ν νν ν ν ν δ

θ δ
π

−  − 
 = − = − − −   −  

r r

r rh
.  (11) 172 
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One supposes that the points 1r  and 2r  are divided by the wave radiation zone, 173 

( )1 2 1 2/n
νν = − −r r r r . Further 174 

1 2

1 21 2 1 2 1 2( )
1 2 1 2 1 22

1 2 0

1 ˆ ˆ( , ) 0 ( ) ( ) 0 sin
4

ikc t t
n nic

x x A x A x e k dk
ih

ν ν
ν νν ν ν ν δ

π

∞
−−

∆ = = − −
− ∫ r r

r r
.  (12) 175 

The term in (9) containing the operator N̂ describes the no-coherent channel of reaction. In 176 

this channel besides an excited atom (1) the two free photons appear in space. The probability 177 

of such reaction is described by one of terms in the late sum in (3). This process we omit. In 178 

coherent channel according to (9) 179 

(2) (2) (2)
1 2

ˆ ˆ ˆ( ) ( ) ( )S t S t S t= + .  (13) 180 

The first term contains function 1 2
rDν ν while the second one contains the function1 2ν ν∆ . The 181 

introduction (11) and (12) and (9) yields 182 

1

2
(2)
1 1

1ˆ ( ) exp ex g

ex g

t
i i

i i

e
S t p i t

i mc
ν

ε ε

−∞

−  = ⋅       
∫

h h
 183 

( )2 1 2
2 1 2 1 2 2 0 1 2

ˆ ˆ ˆ ˆ exp , , , ( )ex g

ex g g ex g ex

t
j j

i i j j j j rb b b b p i t D t t t t dt dtν ν ν
ε ε

θ+ +

−∞

− 
⋅ − −  

 
∫ R R

h
, 184 

1

2
(2)
2 12

1ˆ ( ) exp
4

ex g

ex g

t
i i

i i

e c
S t p t

mc
ν

ε ε
π −∞

−  = − ⋅       
∫

h h
 185 

1 2

1 22 1 2( )
2 1 2 2 0 1 2

1 20

ˆ ˆ ˆ ˆ exp sin ( )ex g

ex g g ex g ex

t
j j ikc t t

i i j j j j

n n
b b b b p i t k e dk t t dt dt

ν ν
ν νν

ε ε δ
θ

∞
−+ +

−∞

−  −
⋅ − − −   − 

∫ ∫ R R
R Rh

186 

,(14) 187 

ˆ( ) ( )
g ex g exi i i ip p dν νψ ψ∗= ∫ ρ

ρ ρ ρ . 188 

The introduction (14) in (4) shows that 189 

(2) (2) (2) (2) (1) (3) (1) (3)
1 2 1 2

0 0

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )
tx ex ex ex exi i i i iP t S S b b S S S S b b S S+ += + + + + + .   (15) 190 
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The quantum averaging process in this equality is performed over initial state of system. The 191 

operator (2)
1̂ ( )S t  does not contain superluminal forerunner while in operator (2)

2
ˆ ( )S t  such fore-192 

runner is present. 193 

4. Heisenberg representation 194 

The transposition from Schrödinger representation to the Heisenberg representation is per-195 

formed by operator ̂ ( )U t satisfying the equation 196 

( )0
ˆ ( ) ˆ ˆ ˆ ( )

U t
i H H U t

t

∂ ′= +
∂

h .  (16) 197 

The field operators in Heisenberg representation have a view 198 

ˆ ˆˆ( ) ( ) ( ) ( )x U t U tψ ψ
∨

+= r , ˆˆ ˆ( ) ( ) ( ) ( )A x U t A U tν ν
∨

+= r , ˆˆ ˆ( ) ( ) ( )
ex exi ib t U t b U t

∨
+= . 199 

The differential equation (16) may be transformed to the integral one 200 

0 0 01ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
t

U t U t U t U t H t U t dt
i −∞

′ ′ ′ ′ ′= + ∫
h

, 
0ˆ

0ˆ ( )
H

i t
U t e

−
= h . 201 

By using twice the iterative procedure we obtain [21] for the operator ( )
exib t

∨
 202 

( )
3

2

1 1ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ); ( ) ( ) ( ); ( ) ( ) ( )
ex ex ex ex

t t t

i i i ib t b t b t H t dt t t b t H t H t dt dt o e
i i

θ
∨

−∞ −∞ −∞

    ′ ′ ′ ′ ′′ ′ ′ ′ ′′ ′ ′′= + + − +    ∫ ∫ ∫
h h

203 

, 204 

where 205 

0ˆ

ˆ ˆ( )
ex ex

H
i t

i ib t b e
−

= h . 206 

By using the explicit form of operatorŝ( )H t′ , ˆ ( )xψ  and ˆ ( )xψ +  in dipole approximation one 207 

yields 208 

1 1

2

1
ˆ ˆˆ( ) exp ( , )

i i iex ex ex
ex g

ex ex i i gex g

t
i t i t i ti i

i i i

e e
b t b e e p i t A t dt b e

i mc i mc

ε ε ε
ν ν

ε ε∨ − − −

−∞

−   ′ ′ ′= − + ⋅       
∫ Rh h h

h h h
 209 
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( )1 2 1 2

0

3
1 2

ˆ ˆ ˆexp exp , , , ( )g ex g

ex g g ex g g ex

t t
ex i j j

i i j j r i j j

t

p i t p i t D t t dt dt b b b o eν ν ν ν
ε ε ε ε

+

−∞

− −   
′ ′′ ′ ′′ ′ ′′⋅ − +      

   
∫ ∫ R R

h h
210 

.(17) 211 

Now it is evident that  212 

1 1

2

1
ˆˆ( ) ( ) exp ( , )

i iex ex
ex g

ex i i i gex ex g

t
i t i ti i

i i

e e
P t b t e p i t A t dt b e

i mc i mc

ε ε
ν ν

ε ε∨ − −+

−∞

 −   ′ ′ ′= − + ⋅         
∫ Rh h

h h h
 213 

( )1 2 1 2

0

3
1 2

0

ˆ ˆ ˆexp exp , , , ( )g ex g

ex g g ex g g ex

t t
ex i j j

i i j j r i j j

t

p i t p i t D t t dt dt b b b o eν ν ν ν
ε ε ε ε

+

−∞

− −    
′ ′′ ′ ′′ ′′ ′⋅ − +       

    
∫ ∫ R R

h h
. 214 

Here the quantum averaging is performed over initial state of system. 215 

5. The discussing of the results 216 

The formulae (15) and (17) being calculated in different representations describe one and the 217 

same probability ( )
exiP t .  If in (15) the omitted term containing N̂ is reconstructed than in 218 

4~ e  approximation (15) and (17) evidentially would be equal.  But in the present form they 219 

are senseless since they contain in infinite limits the integrals from oscillated functions. It is 220 

necessary to use the adiabatic hypothesis [22]. We stress that for the acquaintance (15) and 221 

(17) expressions it is necessary to take into account all the terms proportional to 4~ e ,  and 222 

among them the term following from product of first order term on the third one. If  they ne-223 

glect of such term, that is necessary for coinciding with adiabatic hypothesis, than the results 224 

will be different. 225 

The analysis in detail we began from formula (17) obtained in Heisenberg representation. The 226 

first term in this formula which is proportional to 2~ e describes the (1) atom excitation due 227 

to its interaction with electromagnetic vacuum. Such a fact of not equality to zero the proba-228 

bility in question contradicts to the initial condition̂ ˆ 0
g exi jb b+ + . Besides this fact the electro-229 

magnetic vacuum cannot excite the atom being in its ground state according to the physical 230 

understanding. The probability of such processes has to be equal to zero. In conventional 231 

quantum electrodynamics such excitation is absent since it contradicts the low of energy con-232 

servation. The low of energy conservation follows from the adiabatic hypothesis that is addi-233 
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tionally putted on the solutions of quantum electrodynamics. Mathematically this hypothesis 234 

is expresses by the equality 235 

0( )
0

1
( )

2
i te dtω ωδ ω ω

π

∞
−

−∞

− = ∫ , 236 

0( )δ ω ω− being Dirac function. In its turn this equality demands the integration over the time 237 

in infinite limits. Only the additional using of adiabatic hypothesis turns the set of perturba-238 

tion theory to the physically sense. But in the problem under consideration the using of adia-239 

batic hypothesis in its usual form is impossible since the variable t  is finite. On the other 240 

hand the atom (1) before the interaction with excited atom (2) was in its ground state the infi-241 

nitely long time interval ( )t−∞ ÷  permanently interacting with electromagnetic vacuum. The 242 

time length of the interaction interval from the physically point of view is infinitely long. We 243 

use this circumstance to investigate of the problematic right side term in (17) 244 

1
ˆ ( , )exp ex g

t
i i

A t i t dtν
ε ε

−∞

− 
′ ′ ′ =  

 
∫ R

h
 245 

( )1 1ˆ ˆexp
2

ex g

t
i i i ikct i ikctc

e i t e e dt
kV

ν
λ λ λ

λ

ε ε
α α′ ′− − ++

−∞

− 
′ ′= +  

 
∑ ∫

kR kR
k k k

k

h

h
.   (18) 246 

It is necessary to pay attention to the fact that the probability of excitation transposition be-247 

tween (2) and (1) atoms does not depend on the time t  but only on the time difference 0t t− . 248 

Taken into account that the interaction of the atom (1) with electromagnetic field up to the 249 

time 0t  has the infinitely long duration it necessary to pose that the physical mining the ex-250 

pression (17) has only in the limitt → ∞ . At the same time the difference 0t t−  rests constant 251 

(general adiabatic hypothesis). Now from (18) yields 252 

1
ˆlim ( , )exp ex g

t
i i

t A t i t dtν
ε ε

→∞
−∞

− 
′ ′ ′ =  

 
∫ R

h
 253 

1 1ˆ ˆ2
2

ex g ex gi i i ii ic
e e kc e kc

kV
ν

λ λ λ
λ

ε ε ε ε
π α δ α δ−+

 − −    
= − + +        

    
∑ kR kR

k k k
k

h

h h
. 254 
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This expression carries in the result zero contribution since the free photons are absent in 255 

space. The vacuum term transforms into zero due to the energy conservation low. Now it is 256 

evident that the product of the first term of perturbation theory by the third one also turns into 257 

zero. In approximation 4~ e  only one term rests 258 

( )
exiP t =  259 

( )1 2 1 2

0

2
4

1 22

1
exp exp , , ,g ex g

ex g g ex

t t
ex i j j

i i j j r

t

e
p i t p i t D t t dt dt

mc
ν ν ν ν

ε ε ε ε

−∞

− −     ′ ′′ ′ ′′ ′′ ′= −             
∫ ∫ R R

h h h
. (19) 260 

This result found in Heisenberg representation being equal to the result of paper [6] does not 261 

contain of the superluminal forerunners. This result may be explained as the one photon radi-262 

ation by the atom (2) at time moment t′′  and the absorption of this photon by the atom (1) at 263 

a time moment t′ . The propagator  264 

1 2 1 2
1 2( , , , ) ~rD t t t t

c
ν ν δ

 − 
′ ′′ ′ ′′− − 

 

R R
R R  265 

points out the condition ( ) 1 2c t t′ ′′− = −R R . 266 

In the interaction representation we came across the same mathematical problem by calcula-267 

tion the operator (8) 268 

1

(1)
1 1 1 1 1 1 1 1

ˆ ˆˆ ˆˆ( ) ( ) ( , ) ( )
e

S t x p A t x d dt
i mc

ν νψ ψ+= − =∫ r R r
h

 269 

1
ˆexp ( , )ex g

tx g

t
i i

i i

e
p i t A t dt

i mc
ν ν

ε ε

−∞

− 
′ ′ ′= −   

 
∫ R

h h
. 270 

In the limit t → ∞  by condition 0t t const− =  one gets (1)ˆ ( ) 0S t →  if in space the free pho-271 

tons are absent. Now in (15) one gets (1) (3)

0

ˆ ˆˆ ˆ( ) ( ) 0
ex exi iS t b b S t+ = . 272 

Let us consider now the operator(2)
2

ˆ ( )S t . In this operator according (14) integration over 273 

intermedia variables 1t  captures the area1 0t t< . Let us divide the integral over 1t  in (14) by 274 

the sum of two integrals 275 
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0

0

1 1 1 1exp expex g ex g

t t
i i i i

t

kc kc
i t dt i t dt
ε ε ε ε

−∞

− + − +   
+      

   
∫ ∫

h h

h h
. 276 

But the limit transition t → ∞  if 0t t const− =  demands the limit transition0t → ∞ . In this 277 

case the first integral transforms in Dirac δ -function ( )( )/
ex gi ikcδ ε ε+ − h which is equal to 278 

zero due to the positive value of its argument. The expression (15) describing the probability 279 

of atom (1) excitation in approximation 4~ e  is now rewritten in the following view 280 

4

2

1
( )

exi

e
P t

mc
 =  
 h

1

0

1exp ex g

ex g

t
i i

i i

t

p i tν
ε ε− 

  
 

∫
h

2

0

2exp ex g

g ex

t
j j

j j

t

p i tν
ε ε− 

− ⋅  
 

∫
h

  (20) 281 

1 2

1 21 2

2

1 2 1 2 1 22
1 2 1 21 2

1 2 1 2

1 1
( , , , )

8
0 0

r

n ni
D t t dt dt

t t i t t i
c c

ν ν
ν νν ν δ

π

  
  −
 ⋅ + − 

− − −  − − + − + +   

R R
R R R RR R

282 

. 283 

Here the first term coincides with the result (19) obtained in Heisenberg representation. The 284 

second one describes the signals placed in superluminal zone at a distance of the order of one 285 

wave length that coincides with corrective Fermi calculations. In the limit 0t → −∞ , t → ∞  286 

the second term turns into zero due to integrands analytical properties. By this reason in sta-287 

tionary problems the representations Schrödinger and Heisenberg are identical. In 288 

nonstationary conditions formulae (20) and (19) calculated in different representations are not 289 

coincide.  290 

The formulae (19) and (20) arrived from formulae (15) and (17) if in the last one according to 291 

the general adiabatic hypothesis one misses the terms appearing from the products of the first 292 

order term of perturbation theory by the third one. By this reason these formulae cannot be 293 

equal. Other words the using of the general adiabatic hypothesis leads to non-equivalency of 294 

Schrödinger and Heisenberg representations in non-stationary quantum electrodynamics. We 295 

stress that the Schrödinger representation permits the appearance of superluminal forerun-296 

ners. 297 

The existence of the superluminal signals does not break [23] the causality principle. It is 298 

necessary the causality principle to understand in the following form: the consequences can’t 299 
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act on their reasons. The Lorentz invariance of quantum electrodynamics equations is not the 300 

obstacle for superluminal signals appearance.   301 

 302 

6. Conclution 303 

In this work the non-stationary processes of transformation excitation from one atom to an-304 

other is considered. The result of Fermi work in which the matrix element for such process 305 

was calculated permits to think about the principal presence in nature the superluminal sig-306 

nals. The repeated calculation of this process probability performed by using Heisenberg rep-307 

resentation leaded to the conclusion of the absence of superluminal signals in quantum theo-308 

ry. In the same work they postulated the no corrections of quantum transposition calculation 309 

as a square of corresponded matrix element. The other words they doubt about the Dirac the-310 

ory of quantum transpositions. 311 

It is shown in present work that the calculation of quantum transposition probability as matrix 312 

elements squared (Dirac’s method) or as quantum average of corresponded quantum opera-313 

tors lead to identity results if last calculations are performed in Schrödinger representation. 314 

Different results mentioned above are not the consequences of different probabilities defini-315 

tion. The results different is the consequences of non-identity Schrödinger and Heisenberg 316 

representation in quantum electrodynamics of nonstationary processes. As a proof of non-317 

identity representations in present work the probability of test atom excitation by spontaneous 318 

radiation of another atom expressed through quantum averaging of corresponded operators is 319 

calculated. The calculations of such quantum averaging are performed by both Schrödinger 320 

and Heisenberg representations leading to the different results. The representations nonidenti-321 

ty follows finely from the no correct definition of scattering matrix ̂ ( )S t creating the connec-322 

tion of interaction (Schrödinger) and Heisenberg representations. Since the product ̂ ( )S t Φ  323 

whereΦ is arbitrary wave function in quantum electrodynamic is represented as a divergent 324 

set that is non astonishing that the different summation set methods lead to different results. 325 

By using of the formal properties of ˆ( )S t  operator the sets of perturbation theory obtained in 326 

Schrödinger and Heisenberg representations at first glance are equal. But such sets do not 327 

represent sensible solutions of quantum electrodynamics. In order to put them the physical 328 

sense it is necessary to use the adiabatic hypothesis which supposes switching and shutting 329 
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off the interaction att → ±∞ .This hypothesis mathematically expressed by using the follow-330 

ing equality 331 

0( )
0

1
( )

2
i te dtω ω δ ω ω

π

∞
′−

−∞

′ = −∫    (21). 332 

By investigating of quantum transitions at finite time intervals it is not possible to use the 333 

conventional adiabatic hypothesis. Instead this hypothesis it is necessary to use its generation 334 

in the form 335 

0( )
0

1
lim ( )

2

t
i t

t e dtω ω δ ω ω
π

′−
→∞

−∞

′ = −∫ . 336 

At the same time as in conventional quantum electrodynamics it is necessary to watch the 337 

order of carry out the mathematical operations. First of all it is necessary to carry out the limit 338 

transition (21) and only then to carry out the quantum operation of summation... . After us-339 

ing the general adiabatic hypothesis the sets of perturbation theory lead to reasonable results. 340 

But such results obtained in Schrödinger and Heisenberg representations are different. The 341 

difference may appear already in the terms proportional to 4~ e . 342 

The representation nonidentity is worth in practical aspect. As is sown above the Schrödinger 343 

representation predicts the presents in the nature of specific quantum superluminal signals. 344 

The Heisenberg representation cannot describe the superluminal processes at all. In connec-345 

tion with experimentally observed superluminal phenomena such property of Schrödinger 346 

representation possesses the real interest. Due to nonidentity of Schrödinger and Heisenberg 347 

representations the theories using these representations have to be considered as two mutual 348 

non-connecting theories. The physical systems in which the matrix ˆ( )S t  is well definite are 349 

quasi-classical in the sense of non-possibility inside them the superluminal signals and 350 

Schrödinger and Heisenberg representations for such systems are identical. In general case 351 

the choice of one of these representations only the experiment may show. At present time on-352 

ly one such experiment is known which shows on Schrödinger representation and predicts at 353 

the same time the existence in quantum electrodynamics the superluminal signals.   354 
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