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Abstract 

 

According to mathematical constructivism, a mathematical object can exist only if 

there is a way to compute (or "construct") it; so, what is non-computable is non-

constructive. In the example of the quantum model, whose Fock states are associ-

ated with Fibonacci numbers, this paper shows that the mathematical formalism of 

quantum mechanics is non-constructive since it permits an undecidable (or effec-

tively impossible) subset of Hilbert space. On the other hand, as it is argued in the 

paper, if one believes that testability of predictions is the most fundamental prop-

erty of any physical theory, one needs to accept that quantum mechanics must be an 

effectively calculable (and thus mathematically constructive) theory. With that, a 

way to reformulate quantum mechanics constructively, while keeping its mathe-

matical foundation unchanged, leads to hypercomputation. In contrast, the pro-

posed in the paper superselection rule, which acts by effectively forbidding a coher-

ent superposition of quantum states corresponding to potential and actual infinity, 

can introduce computable constructivism in a quantum mechanical theory with no 

need for hypercomputation. 
 

Keywords: Computability, Mathematical constructivism, Hypercomputation, Fibo-

nacci numbers, Golden ratio, Fock states, Superselection, Actual and potential infin-

ity. 

 

 

1. Introduction 

 

Should a mathematical structure of a physical theory be algorithmic? That is, must the 

collection of the mathematical objects associated with a physical theory allow the collec-

tion of all physical quantities of a particular system to determine all possible system’s 

outcomes (or their probabilities) not only well-definably but also in an effectively calcu-

lable way, specifically, in a finite amount of time (or in a finite number of steps provided 

that each step takes only a finite amount of time to perform)? 

 

These questions are relevant to the foundational debate [1, 2, 3, 4], whose main topic 

might be roughly expressed as follows: Are the mathematical foundations of our current 

physical theories necessarily non-constructive? Alternatively, are the laws of physics 

computable? 



 

On the one hand, the requirement of effective calculability may seem to be groundless 

and superfluous, having no part of explaining physics. Probably because of that, current 

physical theories are formulated using classical analyses (including such branches as 

differential equations, measure theory and numerical analyses), which does not contain 

the requirement of effective calculability. To justify this state of affairs, one may put for-

ward that to generate a result the universe does not need to proceed step by step, with a 

specific rule to cover what to do at each step, or to use any effective method for that 

matter; therefore, to claim effective calculability as a necessary property of any physical 

theory (that is, to allege computability of the physical laws) is to confuse the objective 

reality with a human way of perception, calculation or simulation of that reality. 

 

On the other hand, all the results produced by physical theories must be verifiable or 

falsifiable. Hence, if a particular physical theory gives an infinite answer to a question 

that should have a finite answer (of whose existence classical analysis assures us) or ad-

mits an infinite waiting time for that finite answer, then this theory has a problem re-

garding the testability of its results, which might be a sign for a missing piece in the the-

ory. Given that, the requirement of effective calculability could be the very principle that 

needs to be added to the theory in question to make it testable for all possible results. 

 

Of course, one can offer another argument that, for example, an “accelerated Turing ma-

chine” [5] – a model of computation that has capabilities beyond those of the standard 

Turing machine – could eliminate the infinite waiting time from the theory without re-

quiring effective calculability but at the cost of admitting infinitely short times for per-

forming each step during the computation. But then again, given a widely believed 

breakdown of space-time structure below the level of the Planck time, allowing such in-

finitely short times in the theory may appear to be as much unphysical as the infinite 

waiting time itself. 

 

Such a course of reasoning makes evident that assuming or rejecting effective calculabil-

ity has to be considered just as any other assumption or axiom of the mathematical 

framework of a physical theory and consequently treated as such. In other words, in any 

attempt to examine the question whether or not it is true that the laws of physics are 

computable, one must elucidate all the conclusions or consequences that would be 

brought about in the physical theory by the postulation or rejection of effective calcula-

bility. 

 

The main goal of this paper is to do exactly this, that is, to demonstrate the consequences 

of the acceptance of effective calculability in quantum mechanics. Henceforth in the paper 

by “quantum mechanics” we will refer collectively to all theories accounting for quan-



tum phenomena, such as the “standard quantum mechanics” introduced by W. Heisen-

berg and E. Schrödinger in 1925–1926, in opposition, for example, to “Collapse Theo-

ries” or “Bohmian mechanics” that are mathematically different theories, rather than 

different interpretations of quantum mechanics [6]. 

 

2. A quantum model whose number states are associated with Fibonacci numbers 

 

Let us start by considering the following linear equation with unknown numbers 𝑥1, 𝑥2, 

and 𝑥3: 

 

𝐷(𝑥1, 𝑥2, 𝑥3) = 𝑥3 − 𝑥2 − 𝑥1 = 0   . (1) 

 

To find out whether this equation has a non-negative integer solution by quantum algo-

rithms, it requires the realization of a Fock space [7] – i.e., the sum of a set of Hilbert 

spaces representing number states with well-defined numbers of particles. On this Fock 

space, we construct the quantum Hamiltonian 𝐻𝐷 corresponding to the equation 

𝐷(𝑥1, 𝑥2, 𝑥3) = 0 

 

𝐻𝐷 = (𝑎3
†𝑎3 − 𝑎2

†𝑎2 − 𝑎1
†𝑎1)

2
   , (2) 

 

where the creation 𝑎𝑗
† and annihilation 𝑎𝑗  operators similar to those of the 3D quantum 

harmonic oscillator 

 

𝑗, 𝑘 ∈ {1,2,3}: [𝑎𝑗, 𝑎𝑘
†] ≡ 𝑎𝑗𝑎𝑘

† − 𝑎𝑘
†𝑎𝑗 = 𝛿𝑗𝑘  ,

[𝑎𝑗
†, 𝑎𝑘

†] = [𝑎𝑗, 𝑎𝑘] = 0  ,
 (3) 

 

make up the number operators 𝑁𝑗  

𝑁𝑗 ≡ 𝑎𝑗
†𝑎𝑗   ,

[𝑁𝑗 , 𝐻𝐷] = [𝑁𝑗, 𝑁𝑘] = 0  ,
 (4) 

 

which have only non-negative integer eigenvalues 𝑛𝑗  and whose eigenstates |𝜓⟩ are 

those of the Hamiltonian 𝐻𝐷 

 

𝑁𝑗|𝜓⟩ = 𝑛𝑗|𝜓⟩  ,

𝐻𝐷|𝜓⟩ = (𝑛3 − 𝑛2 − 𝑛1)
2|𝜓⟩ ≡ 𝐸𝐷|𝜓⟩  .

 (5) 

 



In this way, performing a projective measurement of the ground energy 𝐸𝐷 of the quan-

tum system governed by the Hamiltonian (2), one can answer whether or not the Dio-

phantine equation (1) has an integer solution 𝑛3 − 𝑛2 − 𝑛1 = 0. 

 

In principle the equation (1) may have infinitely many integer solutions, so the zero 

ground state |𝜓0⟩ of the Hamiltonian (2) (i.e., the state with the zero ground energy 

𝐸𝐷 = 0) will be a linear superposition of Fock states (that is, a superposition of states 

with definite particle number) 

 

|𝜓0⟩ = ∑𝑐𝑖|𝑛1𝑖⟩|𝑛2𝑖⟩|𝑛3𝑖⟩

∞

𝑖=1

   , (6) 

 

where 𝑛𝑗𝑖  specifies the number of particles in the 𝑖-th state 𝑗𝑖, while the superposition 

coefficients 𝑐𝑖 meet the normalization requirement ∑ |𝑐𝑖|
2 = 1∞

𝑖=1 . Among the non-vac-

uum states |𝑛1𝑖⟩|𝑛2𝑖⟩|𝑛3𝑖⟩ (with nonzero number of particles), one may find such states 

that 

 

𝑛1𝑖 = 𝐹1𝑖   ,

𝑛2𝑖 = 𝐹2𝑖   ,

𝑛3𝑖 = 𝐹3𝑖   ,

 (7) 

 

where 𝐹1𝑖 , 𝐹2𝑖 , and 𝐹3𝑖  are Fibonacci numbers 

 

𝐹3𝑖 = 𝐹1𝑖 + 𝐹2𝑖       (8) 

 

(in the vacuum state |01𝑖⟩|02𝑖⟩|03𝑖⟩ all 𝐹𝑗𝑖 = 0); let us denote these states as Fibonacci 

states |𝐹1𝑖⟩|𝐹2𝑖⟩|𝐹3𝑖⟩. 

 

Since the set of natural numbers ℕ can be written as the direct sum ℕ = 𝐹 ⊕ 𝑍 of two of 

its proper subsets, the Fibonacci 𝐹 and non-Fibonacci 𝑍 numbers, the eigenspace ℰ0 of 

the zero ground energy 𝐸𝐷 = 0 for the considered quantum model can be expressible as 

the direct sum of two subsets ℰ𝐹 and ℰ𝑍 formed by the Fibonacci and non-Fibonacci 

states, respectively, 

 

ℰ0 = ℰ𝐹⊕ℰ𝑍 = {|𝐹1𝑖⟩|𝐹2𝑖⟩|𝐹3𝑖⟩} ⊕ {|𝑧1𝑖⟩|𝑧2𝑖⟩|𝑧3𝑖⟩}  , (9) 

 

where the non-vacuum non-Fibonacci states are defined by 

 



|𝑧1𝑖⟩|𝑧2𝑖⟩|𝑧3𝑖⟩ ∈ {|𝑛1𝑖⟩|𝑛2𝑖⟩|𝑛3𝑖⟩} ∖ {|𝐹1𝑖⟩|𝐹2𝑖⟩|𝐹3𝑖⟩}     (10) 

 

and the vacuum state |01𝑖⟩|02𝑖⟩|03𝑖⟩ belongs to the intersection ℰ𝐹 ∩ ℰ𝑍; subsequently, 

the system’s zero ground state |𝜓0⟩ can be presented as the superposition of the Fibo-

nacci and non-Fibonacci states 

 

|𝜓0⟩ = 𝑐𝑖|01𝑖⟩|02𝑖⟩|03𝑖⟩ +∑𝛼𝑗 |𝐹1𝑗⟩ |𝐹2𝑗⟩ |𝐹3𝑗⟩

𝑗

+∑𝛽𝑘|𝑧1𝑘⟩|𝑧2𝑘⟩|𝑧3𝑘⟩

𝑘

 (11) 

 

such that 𝑐𝑖 and the coefficients 𝛼𝑗  and 𝛽𝑘 before the non-vacuum states satisfy the con-

dition 𝑐𝑖, 𝛼𝑗 , 𝛽𝑘 ∈ {𝑐𝑚}𝑚=1
∞ . 

 

It is natural to ask whether the Fibonacci states subset ℰ𝐹 is recognizable. Explicitly, 

given a positive triple (𝑏1, 𝑏2, 𝑏3) gotten through the measurement on the zero ground 

state of the Hamiltonian (2), can one decide in a finite amount of time whether its ele-

ments 𝑏1, 𝑏2, 𝑏3 are Fibonacci numbers? 

 

 

3. Recognizing Fibonacci numbers 

 

A straightforward (brute-force) way to recognize Fibonacci numbers is to generate 

them until one becomes equal to a given positive integer 𝑏𝑗: If it does, then the integer 𝑏𝑗  

is a Fibonacci number, if not, the numbers will eventually become bigger than 𝑏𝑗 , and 

the procedure can stop. 

 

Another way is to use the closed-form expression for Fibonacci numbers known as Bi-

net's formula [8, 9]. According to this expression, the positive integer 𝑏𝑗  would belong to 

the Fibonacci sequence if and only if the closed interval 𝑆𝑗  defined by 

 

𝑆𝑗 = [𝜑𝑏𝑗 −
1

𝑏𝑗
, 𝜑𝑏𝑗 +

1

𝑏𝑗
]    , (12) 

 

where 𝜑 is the golden ratio 

 

𝜑 =
1

2
(1 + √5)    , (13) 

 

intersects the set of all natural numbers ℕ at some element (or elements), that is, 



 

𝑆𝑗⋂ℕ ≠ ∅    . (14) 

 

Let the golden ratio 𝜑 = 1 + {𝜑}, where {𝜑} denotes the infinite continued fraction 

 

{𝜑} =
1

1 +
1

1 +
1

1 +⋯

  = [0; 1,1,1,… ]    , 
(15) 

 

be calculated to the accuracy of the 𝑛th Diophantine approximation of {𝜑} 

 

{𝜑} ≅ [0; 1,1,1,… ,1⏟      
𝑛

] =
𝑝𝑛
𝑞𝑛
    , (16) 

 

such that the positive integers 𝑝𝑛 and 𝑞𝑛 are given by the Fibonacci recurrence relation 

 

𝑝𝑛 = 𝑞𝑛−1  ,

𝑞𝑛 = 𝑞𝑛−1 + 𝑞𝑛−2
 (17) 

 

with the seed values 𝑝1 = 1 and 𝑞1 = 1 (as it can be seen, the denominator 𝑞𝑛 increases 

strictly monotonic when 𝑛 goes up, i.e., when additional unities are included in the ap-

proximation of {𝜑}; just observe, for example, the first four approximations of the fraction 

{𝜑}: [0; 1] = 1 1⁄ , [0,1,1] = 1 2⁄ , [0; 1,1,1] = 2 3⁄ , [0; 1,1,1,1] = 3 5⁄ ). Then the criterion 

(14) can be rewritten in the form of the following equality [10] 

 

⌊𝑏𝑗
𝑝𝑛
𝑞𝑛
+ 𝑏𝑗 +

1

𝑏𝑗
⌋ − ⌈𝑏𝑗

𝑝𝑛
𝑞𝑛
+ 𝑏𝑗 −

1

𝑏𝑗
⌉ = 0    , (18) 

 

where ⌊∙⌋ and ⌈∙⌉ stand for the floor and ceiling functions, respectively. 

 

Suppose that for the positive triple (𝑏1, 𝑏2, 𝑏3) measured on the zero ground state |𝜓0⟩ of 

the Hamiltonian (2) the equality (18) does hold. To decide whether in this case 𝑏1, 𝑏2, 𝑏3 

are indeed Fibonacci numbers (and correspondingly the system's quantum state after the 

measurement is a Fibonacci state), the upper bound for the Diophantine approximations 

𝑝𝑛 𝑞𝑛⁄  of {𝜑} [11, 12] 

 



|{𝜑} −
𝑝𝑛
𝑞𝑛
| <

1

√5𝑞𝑛2
      (19) 

 

must be much less than the reciprocals of the integers 𝑏1, 𝑏2, 𝑏3, meaning that the fraction 

{𝜑} must be calculated to such an accuracy that the following inequality holds 

 

𝑞𝑛
2 ≫

𝑏𝑗

√5
    . (20) 

 

With regard to the last inequality, it is important to note two things. 

 

First, in contrast to any other irrational number 𝛾, for which there are infinitely many 

Diophantine approximations 𝑝𝑛 𝑞𝑛⁄  whose distance from 𝛾 is significantly smaller than 

the limit 1 √5𝑞𝑛
2⁄ , for the golden ratio fraction {𝜑} the upper bound 1 √5𝑞𝑛

2⁄  is tight: 

Any Diophantine approximation of {𝜑} almost exactly keeps this distance away from 

{𝜑} (which makes the golden ratio 𝜑 the most difficult number to approximate ration-

ally) [13]. 

 

Second, since the zero ground state |𝜓0⟩ of the Hamiltonian (2) is formed by the super-

position of all possible Fibonacci and non-Fibonacci states, measuring the triple 

(𝑏1, 𝑏2, 𝑏3) can yield any of the results 𝑏1𝑖 , 𝑏2𝑖 , 𝑏3𝑖 ∈ ℕ with corresponding probabilities 

given by |𝑐𝑖|
2. Thus, in the most general case, 𝑏𝑗  might be anywhere from zero to infin-

ity. 

 

Together these two things indicate that in order to recognize correctly number states of 

the Fibonacci subset ℰ𝐹  included in the eigenspace ℰ0 of the considered quantum sys-

tem (i.e., to decide correctly whether those states are Fibonacci or not) is necessary to 

calculate the fraction {φ} to an unbounded accuracy 𝑛 = ∞, which can certainly be 

achieved only by way of applying the recurrence relation (17) infinitely many times and 

hence would take an infinite amount of time (using the brute-force method described at 

the beginning of this Section would involve generating the entire Fibonacci sequence, 

which would obviously take an infinite time too). 

 

Such an infinite waiting time, however, presents a problem to the mathematical formal-

ism of quantum mechanics: Namely, when a complete description of a quantum state is 

given in the form of Fibonacci states or its superpositions, it is principally impossible to 

always verify this – i.e., to decide in every given measurement whether or not the states 

are Fibonacci – since it might demand an infinite amount of time. But this constitutes a 

contradiction to the prevailing conception of any physical theory that must express only 

those predictions, which can be testable in all cases (albeit even in principle). So, how 



does it come to be that quantum mechanics predicts something that cannot be verified 

even in theory? 

 

 

4. Ways to resolve the problem 

 

Let us see how this problem can be resolved. 

 

1. Fibonacci numbers have no physical relevance. To begin with, one can merely ob-

ject to the existence of any problem here asserting that the Fibonacci sequence is a 

mathematical object, which does not correspond to any actual process or a physical sys-

tem, and, as a result, recognizing the Fibonacci numbers does not have a lot more mean-

ing in the physical world than, say, recognizing the odd numbers. Therefore, the consid-

ered above quantum model whose states are associated with Fibonacci numbers is just 

a “toy model” that has nothing to do with the physical realm. 

 

Still, even if one dismisses that the Fibonacci numbers appear in nature often enough to 

prove that they reflect some naturally occurring patterns (particularly, phyllotaxic pat-

terns generated whenever a vascular plant repeatedly produces similar botanical ele-

ments at its tip such as leaves, bractae, florets etc.; these patterns are directly related to 

the Fibonacci sequence and the golden ratio and in fact are so regular that a physicist 

can compare their order to that of crystals; see for example paper [14] that investigates 

the striking predominance of Fibonacci order in botany), the problem won't go away 

completely. 

 

The problem created by unrecognizability of the Fibonacci states subset ℰ𝐹 in a finite 

time might still be important to the application of quantum formalism to so-called quan-

tum-like systems, i.e., non-physical systems ranging, for example, from finance [15, 16] 

and population dynamics [17] to social science [18], psychology [19], cognition [20] and 

neuroscience [21]. 

 

2. Physically realizable integers are limited in size. Seeing as the assumption of infi-

nite quantities is apparently never realized in the observable universe, one can suppose 

that all the integers that are related to natural processes are limited in size. Conforming 

to this supposition (which is in line with the mathematical philosophy of finitism [22] 

and especially the theory of explicit finitism [23]) for a physically meaningful quantum 

system the results of the measurement of the triple (𝑏1, 𝑏2, 𝑏3) on the zero ground state 

|𝜓0⟩ of the Hamiltonian (2) would always be in a finite interval and, hence, recognizable 

as the Fibonacci or non-Fibonacci numbers in a finite amount of time. 

 



Let us consider the computable function 𝑓, which equals 1 if 𝑏𝑗  belongs to the Fibonacci 

sequence and zero otherwise: 

 

𝑓(𝑏𝑗) = {
1, 𝑏𝑗 ∈ {𝐹𝑚}𝑚=1

∞

0, otherwise
    . (21) 

 

As it can be readily seen, if the physically realizable positive integer 𝑏𝑗  were to be lim-

ited in size, then there would exist a naturally originated limit on computability of the 

function 𝑓(𝑏𝑗). 

 

Unfortunately, it is very hard for the finistic proposal to answer the charge of arbitrari-

ness: No matter where this limit on computability would be drawn (say, as it is pro-

posed in the paper [23]], it is put at the level of the Ackermann function 𝐴(4,4) =

22
265536

− 3 [24]), it would be ad hoc and so perpetually subject to shifting. Accordingly, 

one cannot modify the function 𝑓(𝑏𝑗) so that to accommodate this limit and at the same 

time preserve the procedure for computing the function 𝑓(𝑏𝑗) well-defined. This means 

that the proposal of explicit finitism cannot be acceptable logically since there is no way 

to formulate the proposal unambiguously. 

 

3. Hypercomputation. Assume that the mathematical formalism of quantum mechanics 

is complete (i.e., no additional hypothesis need to be admitted to its foundation) and ap-

plicable to any physical system. Then, to guarantee testability of all predictions made 

within the frame of the quantum formalism, the function 𝑓(𝑏𝑗) must be computable for 

any unlimited arguments 𝑏𝑗  in a finite amount of time. That might be only if this function 

𝑓(𝑏𝑗) were to be computable either non-recursively or by “super-Turing” machines. 

 

To be sure, if it were possible to find the exact value of the fraction {𝜑} either without 

applying the recurrence relation (17) infinitely many times (say, through the use of a 

computing device, such as a BSS machine [25, 26], which has the ability to compute 𝑥 +

𝑦, 𝑥 − 𝑦, 𝑥𝑦, 𝑥 𝑦⁄ , and ⌊𝑥⌋ in a single step for any two infinite-precision real numbers 𝑥 

and 𝑦 ≠ 0) or with calculating this relation on every occasion of 𝑛 in an unboundedly 

short time-length (say, by using an infinite time Turing machine that includes as a part 

the accelerating Turing machine mentioned in the Introduction), then the function 𝑓(𝑏𝑗) 

could be definitely computable for any 𝑏𝑗  in a finite amount of time. 

 

Yet, real computers (operating on the set of real numbers), infinite time Turing ma-

chines, or all other models of hypercomputation proposed so far do not seem to be 

physically constructible and reliable (at least, for the moment) [27]. This casts doubt 

upon the physical existence of hypercomputers and, in this way, upon the assumption of 



completeness of the quantum formalism (which brings into being the need for hyper-

computation). 

 

4. Effectively calculable quantum mechanics. So, as an alternative, let us assume that 

the mathematical formalism of quantum mechanics is not complete in such a way that 

the requirement of effective calculability has to be added to its axiomatic base in order 

to complete the formalism. 

 

A familiar tactic to do so would be through the agency of superselection rule [28, 29]. 

 

Let us present the Fock space of the system we are considering – i.e., the closed set of 

the number states – as the direct sum of the following two superselection sectors: 

 

{|𝑛1𝑖⟩|𝑛2𝑖⟩|𝑛3𝑖⟩} = 𝑐ℋ ⊕ℋ∞   , (22) 

 

where 𝑐ℋ denotes the open set, whose each member (i.e., a quantum state) is an eigen-

state of the particle number operator corresponding to a finite number of particles in 

the given state and can be achieved (for example, by repeatedly operating with the crea-

tion operator 𝑎𝑗
† on the vacuum state) in a finite number of steps, while ℋ∞ stands for 

the “boundary” set of the infinite members, i.e., the number states corresponding to an 

actual infinity of particles. 

 

We will put forward that for all physically realizable observables 𝑄 there is a superse-

lection rule 

 

⟨Ψ1|𝑄|Ψ2⟩ = 0   , (23) 

 

in the presence of which a vector of Hilbert space |Ψ⟩ consisting of two components |Ψ1⟩ 

and |Ψ2⟩ 

 

|Ψ⟩ =
1

√2
(|Ψ1⟩ + |Ψ2⟩)    (24) 

 

that belong to the two superselection sectors 𝑐ℋ and ℋ∞, respectively, cannot repre-

sent a physical state. Then, substituting (24) in (23) will give 

 

⟨Ψ|𝑄|Ψ⟩ =
1

2
(⟨Ψ1|𝑄|Ψ1⟩ + ⟨Ψ2|𝑄|Ψ2⟩) = Tr(𝜌𝑄)   , (25) 

 



where the density matrix 𝜌 corresponding to the vector |Ψ⟩ is given by the combination 

of the pure density matrices for the components |Ψ1⟩ ∈ 𝑐ℋ and |Ψ2⟩ ∈ ℋ∞ 

 

𝜌 =
1

2
(|Ψ1⟩⟨Ψ1| + |Ψ2⟩⟨Ψ2|)     (26) 

 

and therefore defines a mixed state rather than a pure state. This means that in the 

presence of the superselection rule (23) a convex linear combination of the state vectors 

belonging to the superselection sectors 𝑐ℋ and ℋ∞ cannot be a pure state. 

 

Because the (time independent) Hamiltonian 𝐻𝐷 for the considered system is the self-

adjoint observable 𝐸𝐷 = (𝑛3 − 𝑛2 − 𝑛1)
2, the Schrödinger evolution will never evolve a 

state vector of the system from one superselection sector to another, i.e., from 𝑐ℋ to 

ℋ∞, and will always evolve a pure state to a pure state. In consequence, the superposi-

tion of the physically realizable number states (6) that represents a pure state cannot 

contain the components in ℋ∞. Accordingly, measuring the triple (𝑏1, 𝑏2, 𝑏3) on the zero 

ground state of the Hamiltonian 𝐻𝐷 can always yield only finite results 𝑏1𝑖 , 𝑏2𝑖 , 𝑏3𝑖 < ∞. 

Thus, in the presence of the superselection rule (23) it would become principally possi-

ble (i.e., physically realizable) to decide in every given measurement whether the ob-

tained (finite) numbers 𝑏1𝑖 , 𝑏2𝑖 , 𝑏3𝑖 are Fibonacci or not. 

 

As it can be seen, the superselection rule (23) is equivalent to the assumption that the 

matrix elements of the physically realizable observables 𝑄 cannot distinguish between 

states from the superselection sectors 𝑐ℋ and ℋ∞, that is, between potential (computa-

tional) infinity (such as a non-terminating process of consecutively applying the creation 

operator 𝑎𝑗
† to the vacuum state |0𝑗⟩) and actual infinity (such as the set of all natural 

numbers ℕ) [30]. In other words, the superselection rule (23) postulates that in the 

physical universe a coherent superposition of states corresponding to potential and actual 

infinity cannot be verified or prepared. 

 

The fact that no one has ever succeeded in forming such a superposition can provide 

some evidence for the superselection rule (23). Again, the apparent absence of infinite 

things within the region where all scientific experiments and human experiences hap-

pen can be a further indication lending support to this rule. 

 

The question, nonetheless, remains about how this proposed superselection rule could 

be understood: Namely, is it a formalistic mathematical device or full of a physical 

meaning? 

 



Let the volume of a system be taken to grow in proportion with the numbers of particles 

in the system; then, actual infinity of particles would correspond to a system occupying 

an infinite volume of space. Assuming that such a system may exist (which is equivalent 

to the assumption that the universe, while continuing to expand exponentially on the 

largest scales, is already spatially infinite [31]), the physical reason keeping a coherent 

superposition of states relating to potential and actual infinity of particles from occur-

ring might be the presence of new physics at infinitely long distances (or ones that at 

least large than 1010
10122

 Mpc [32]). 

 

 

4. Concluding remarks: Computable constructivism in quantum theory 

 

Ideologically, the effectively calculable quantum mechanics approach outlined above is 

closely related to mathematical constructivism, which asserts that a mathematical object 

exists only if there is a way (i.e., an effective procedure) to compute (or "construct") it 

and accordingly what is non-computable is non-constructive [33]. 

 

In view of that, the mathematical formalism of quantum mechanics should be consid-

ered non-constructive1 since it permits a subset of Hilbert space that is effectively im-

possible (i.e., noncomputable): As it has been demonstrated, this formalism allows the 

existence of the Fibonacci states subset in the Fock space of the quantum model (whose 

Hamiltonian mimics the form of the left–hand–side squared of the Diophantine equation 

for non-negative integers) such that there is no algorithm that can in a finite amount of 

time decide whether or not an arbitrary state of the model belongs to this subset. 

 

At the same time, if one believes that verifiability/falsifiability is the most crucial prop-

erty of any physical theory, one need to accept that quantum mechanics must be an ef-

fectively calculable and so mathematically constructive theory. 

 

Therewith, a way to introduce mathematical (to be exact, computable) constructivism in 

quantum mechanics without revising its mathematical foundation leads to hypercompu-

tation, that is, to the idea that physical systems can be identified or designed (con-

structed or exploited), which can compute non-recursive functions or outperform the 

standard Turing machines. 

 

In contrast, the proposed superselection rule, which acts by effectively forbidding a co-

herent superposition of quantum states that correspond to potential and actual infinity, 

                                                           
1 it is noteworthy that non-constructivism of quantum mechanics (in either the sense of intuitionism or that of 
Bishop-constructivism) was already demonstrated in the paper [34], which argued that unbounded linear Her-
mitian operators in Hilbert space are not even legitimately recognizable as mathematical objects from a thor-
oughgoing constructivist point of view. 



institutes computable constructivism in a quantum mechanical theory with no need for 

hypercomputation. 
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