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ABSTRACT  12 
 13 
Kaluza-Klein cosmological model has been obtained in the general theory of relativity. The 
source for energy-momentum tensor is assumed a perfect fluid. The field equations have 
been solved by using a special form of the average scale 

factor ( ) β
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tttR proposed by Cai et al. The physical properties and the 

bouncing behavior of the model are also discussed. 
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1. INTRODUCTION  17 
According to recent cosmological observations in terms of Supernovae Ia [1-2], large scale 18 
structure [3-4] with the baryon acoustic oscillations [5], cosmic microwave background 19 
radiations [6-8], and weak lensing [9], the current expansion of the universe is accelerating 20 
and homogeneous. At the present time, the cosmic acceleration is explained by two ways: 21 
One is the introduction of the so called dark energy with negative pressure in general 22 
relativity and the other is the modification of gravity like f(R) gravity, f(t) gravity, f(R,T) gravity 23 
etc. on the large distances.  24 

The solution of the singularity problem of the standard Big Bang cosmology is known as 25 
bouncing universe. A bouncing universe with an initial contraction to a non-vanishing 26 
minimal radius and then subsequent an expanding phase provides a possible solution to the 27 
singularity problem of the standard Big Bang cosmology. Moreover, for the universe entering 28 
into the hot Big Bang era after the bouncing, the equation of state (EoS) of the matter 29 
content ω in the universe must transit from 1−<ω  to 1−>ω . In the contracting phase, the 30 

scale factor )(tR  is decreasing, this means 0)( <tR&  , and in the expanding phase, scale 31 

factor 0)( >tR& . Finally at the bouncing point, 0)( =tR&  and near this point 0)( >tR&& , for a 32 
period of time. It is also discussed with other view that in the bouncing cosmology, the 33 
Hubble parameterH passes across zero )0( =H  from  0<H to 0>H . Cai et al. have 34 
investigated bouncing universe with quintom matter. He showed that a bouncing universe 35 
has an initial narrow state by a minimal radius and then develops to an expanding phase 36 
[10]. This means for the universe arriving to the Big-bang era after the bouncing, the EoS 37 
parameter should crossing from 1−<ω  to 1−>ω . Sadatian [11] have studied rip singularity 38 
scenario and bouncing universe in a Chaplygin gas dark energy model. Recently, Bamba et 39 
al. [12] have investigated bounce cosmology from )(Rf gravity and )(Rf bi-gravity. 40 
Astashenok [13] has studied effective energy models and dark energy models with bounce 41 
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in frames of )(Tf  gravity. Solomans et al. [14] have investigated bounce behavior in 42 
Kantowski-Sach and Bianchi cosmology. Silva et al. [15] have studied bouncing solutions in 43 
Rastall’s theory with a barotropic fluid. Brevik and Timoshkin [16] have obtained 44 
inhomogeneous dark fluid and dark matter leading to a bounce cosmology. Singh et al. [17] 45 
have studied k-essence cosmologies in Kantowski-Sachs and Bianchi space times. 46 

The Kaluza-Klein theory [18-19] was introduced to unify Maxwell’s theory of 47 
electromagnetism and Einstein’s gravity theory by adding the fifth dimension. Due to its 48 
potential function to unify the fundamental interaction, Kaluza-Klein theory has been 49 
regarded as a candidate of fundamental theory. Ponce [20], Chi [21], Fukui [22], Liu and 50 
Wesson [23], Coley [24] have studied Kaluza-Klein cosmological models with different 51 
contexts. Adhav et al. [25] have obtained Kaluza-Klein inflationary universe in general theory 52 
of relativity. Reddy et al. [26] have discussed a five dimensional Kaluza- Klein cosmological 53 
model in the presence of perfect fluid in ),( TRf  gravity. Ranjeet et al. [27] have studied 54 
variable modified Chaplygin gas in anisotropic universe with Kaluza- Klein metric. Katore et 55 
al. [28] have obtained Kaluza-Klein cosmological model for perfect fluid and dark energy. 56 
Ram and Priyanka [29] have presented some Kaluza-Klein cosmological models in ),( TRf  57 
gravity theory. Sahoo et al. [30] have investigated Kaluza-Klein cosmological model in 58 

),( TRf  gravity with )(Tλ . Recenty, Reddy et al. [31] have studied Kaluza-Klein minimally 59 

interacting holographic dark energy model in a scalar tensor  theory of gravitation. Ghate 60 
and Mhaske [32] have investigated Kaluza-Klein barotropic cosmological model with varying 61 
gravitational constant G  in creation field theory of gravitation. 62 
In this paper, Bouncing behavior of Kaluza-Klein cosmological model has been studied in the 63 
general theory of relativity. This work is organized as follows: In section 2, the metric and 64 
field equations have been presented. The field equations have been solved in section 3 by 65 
using the physical condition that the expansion scalarθ  is proportional to shear scalar σ  66 

and the special form of average scale factor ( ) β
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[10]. The physical and geometrical behavior of the model have been discussed in section 4 . 68 
In the last section 5, concluding remarks have been expressed. 69 

 70 

2. METRIC AND FIELD EQUATIONS  71 

Five dimensional Kaluza-Klein metric is considered in the form  72 

 
22222222 )()()( ψdtBdzdydxtAdtds −++−= ,     (1) 73 

where )(tA  and )(tB  are functions of cosmic time t  and the fifth coordinate ψ  is taken to be 74 
space-like. 75 
The energy-momentum tensor when the source for energy is assumed a perfect fluid given 76 
by 77 
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where iu  is the flow vector satisfying .1=ji
ij uug Here ρ  is the total energy density of perfect 79 

fluid and p  is the corresponding pressure. For the perfect fluid, p and ρ  are related by and 80 

equation of state 81 
 ωρ=p ,  10 ≤≤ ω .         (3) 82 

In co-moving system of coordinates, using equation (2), one can find 83 
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The Einstein’s field equations are given by 85 
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Using equation (2), for the metric (1), the field equations (5) are given by 87 
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where an overhead dot represents differentiation with respect to t . 91 
The average scalar factor R  and volume scalar V  are given by 92 

 BAVR 34 == .         (9) 93 
The generalized mean Hubble parameter H  is defined by  94 
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where the directional Hubble parameters yx HH , , zH  and φH  are given by 96 
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The expansion scalar θ  and shear scalar σ  are given by 98 
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The deceleration parameter (DP) q  is defined  by 101 
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 103 

3. SOLUTION OF FIELD EQUATIONS  104 

The field equations (6) to (8) are a system of three highly non-linear differential equations in 105 
four unknowns ρ,,BA and ω . The system is thus initially undetermined. We need one extra 106 

condition for solving the field equations completely. 107 
We assume that the expansion )(θ  is proportional to shear )(σ   This condition leads to  108 
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which yields  110 
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where 0α and m are arbitrary constants.  112 
 113 
Above equation, after integration, reduces to  114 

( )mAB η= ,                      115 
where η  is an integration constant.  116 

 117 
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Here, for simplicity and without loss of generality, we assume that 1=η .   118 

Hence we have 119 
( )mAB = , )1( ≠m .                              (15) 120 

Collins et al. [33] have pointed out that for spatially homogeneous metric, the normal 121 

congruence to the homogeneous expansion satisfies that the condition 
θ
σ

 is constant. 122 

In cosmology, The constant deceleration parameter is commonly used by several 123 
researchers [34-38], as it duly gives a power law for metric function or corresponding 124 
quantity.  125 
The motivation to choose time dependent deceleration parameter (DP) is behind the fact that 126 
the expansion of the universe was decelerating in the past and accelerating at present as 127 
observed by recent observations of Type Ia supernova [1, 2, 39-41] and CMB anisotropies 128 
[42-43]. Also, the transition redshift from deceleration expansion to accelerated expansion is 129 
about 0.5. Now for a Universe which was decelerating in past and accelerating at the 130 
present time, the DP must show signature flipping [44-46]. So, in general, the DP is not a 131 
constant but time variable. The motivation to choose the following scale factor is that it 132 
provides a time-dependent DP. 133 
Under above motivations, we use a special form of deceleration parameter as  134 
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where R is average scale factor of the universe. 136 
This form is proposed by Cai et al. [10] and then modified by Sadatian [11].  137 
After integration of (16) , we obtain the Hubble parameter as 138 
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Integrating twice equation (16), we get the average scale factor which is time dependent 140 
given by 141 
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Where 0t is an initial time and 1<β  is constant. 143 

Solving equations mBA =  and 4

1
3 )()( BAtR = , and using (17) we get 144 
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With the help of equation (17), equation (15) takes the form 146 
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Using above two equations (18) and (19), the metric (1) takes the form 148 
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Equation (20) represents Kaluza-Klein cosmological model with time dependent scale 150 
factors. 151 
 152 

 153 
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4. PHYSICAL PROPERTIES OF THE MODEL 154 

The physical quantities such as spatial volume V , Hubble parameter H , expansion scalar 155 

θ , mean anisotropy mA , shear scalar 2σ , energy density ρ , equation of state parameter  156 

ω are obtained as follows: 157 
The average scale factor is  158 
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 161 
 162 

Fig. 1 Plot of Average scale factor versus time for 1,5.0 0 == tβ  163 
 164 
From fig. 1, in the earlier stage, the scale factor is slightly decreasing ( 0)( <tR& ) and in the 165 

expanding phase the scale factor increases rapidly ( 0)( >tR& ). Hence our model is bouncing 166 

at 0tt =  ( 0)( =tR& ). 167 
The spatial volume is given by 168 
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The spatial volume is finite at time 0=t and increases with increasing value of time hence 170 
the model starts expanding with finite volume. 171 
The Hubble parameter is given by 172 
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 178 
 179 

Fig. 2 Plot of Volume versus Time for 1,5.0 0 == tβ  180 
 181 
 182 

 183 
 184 

 185 
 186 

Fig. 3 Plot of Hubble Parameter versus Time for 1,5.0 0 == tβ  187 
 188 
From fig. 2, the Hubble parameter 0<H , for 1<t and  0>H , for  1>t  indicating that H  189 
passes across zero )0( =H  at 1=t , which represents that the universe is bouncing at 1=t .  190 
The expansion scalar is 191 
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The mean anisotropy parameter mA  is 193 
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The shear scalar is 195 
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We observe that 197 
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The mean anisotropy parameter mA  is constant and )0(lim
2

2

≠
∞→ θ

σ
t

 is also constant, hence 199 

the model is anisotropic throughout the evolution of the universe except at 1=m  i.e. the 200 
model does not approach isotropy.  201 
The matter energy density is given by  202 
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 205 

 206 
 207 

Fig. 4 Plot of Energy Density versus Time 2,1,5.0 0 === mtβ  208 
 209 
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From fig. 3, the energy density decreases at the early stage of evolution when 1<t and goes 210 
into the hot Big-bang era. The model bounces at 1=t and after bouncing the energy density 211 
rapidly increases for 1>t . 212 
 213 

 214 
 215 

Fig. 5 Plot of EoS parameter versus Time for 2,1,5.0 0 === mtβ  216 
 217 
The equation of state (Eos) parameter ω  is given by 218 
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A bouncing universe model has an initial narrow state by a non-zero minimal radius and then 220 
develops to an expanding phase. For the universe going into the hot Big Bang era after the 221 
bouncing, the equation of state parameter of the universe crosses from 1−<ω  to 1−>ω . 222 
From fig. 4, before bouncing point at 1=t , we see that the skew-ness parameter 1−<ω  223 
and after the bounce, the universe enter into the hot Big Bang era and occurs the big rip 224 
singularity. Further the Eos parameter 1−>ω , for 1>t . Hence our model is bouncing at 225 

1=t . 226 
 227 

CONCLUSION  228 

Kaluza-Klein cosmological model has been investigated in the general theory of relativity. 229 
The source for energy momentum tensor is a perfect fluid. The field equations have been 230 
solved by using time dependent deceleration parameter. The mean anisotropy parameter 231 

mA  is constant and )0(lim
2

2

≠
∞→ θ

σ
t

 is also constant, hence the model is anisotropic throughout 232 

the evolution of the universe except at 1=m  i.e. the model does not approach isotropy. It is 233 
interesting to note that the behavior of the model is bouncing as the Hubble parameter 234 
H passes across zero )0( =H from 0<H to 0>H , for some finite time 0tt = . Also the 235 

energy density decreases at the early stage of evolution and rapidly increases showing big 236 
bounce 0tt = . The Hubble parameter 0<H , for 0tt < and  0>H , for  0tt >  indicating that 237 

H  passes across zero )0( =H  at 0tt = , ( 00 ≠t ) which represents the model is bouncing at 238 

0tt = . The skew-ness parameter 1−<ω before the bounce at  0tt =
 
and 1−>ω  after the 239 

bounce. ,  240 
 241 
 242 
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